1
|
Schwarz L, Križanac AM, Schneider H, Falker-Gieske C, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Genetic and genomic analysis of reproduction traits in holstein cattle using SNP chip data and imputed sequence level genotypes. BMC Genomics 2024; 25:880. [PMID: 39300329 DOI: 10.1186/s12864-024-10782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Reproductive performance plays an important role in animal welfare, health and profitability in animal husbandry and breeding. It is well established that there is a negative correlation between performance and reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction traits on imputed sequence-level genotypes with subsequent enrichment analyses. RESULTS Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction traits. For genome-wide association studies, we were able to detect genome-wide significant association signals for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity of reproduction events were hypothesised. CONCLUSION Our results confirm previous findings of other authors in a comprehensive cohort including 13 different traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative information source for further research. This work can make a contribution to reveal the genetic architecture of reproduction traits in context of trait specific interactions.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Ana-Marija Križanac
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| | - Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Cortes-Hernández JG, Ruiz-López FJ, Vásquez-Peláez CG, García-Ruiz A. Runs of homocigosity and its association with productive traits in Mexican Holstein cattle. PLoS One 2022; 17:e0274743. [PMID: 36121861 PMCID: PMC9484644 DOI: 10.1371/journal.pone.0274743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to describe the runs of homozygosity (ROH) detected in the Mexican Holstein population and to associate them with milk, fat and protein yields, and conformation final score. After imputation and genomic quality control, 4,227 genotyped animals with 100,806 SNPs markers each were used. ROH with a minimum length of 1 Mb and a minimum of 10 SNPs were included in the analysis. One heterozygous SNP marker and five missing genotypes per ROH were allowed. A total of 425,098 ROH were found in the studied population (71.83 ± 10.73 ROH per animal), with an average length and coverage of 4.80 ± 0.77 Mb, and 276.89 Mb, respectively. The average chromosome length covered by ROH was 10.40 ± 3.70 Mb. ROH between 1 and 2 Mb were the most frequent in the population (51.33%) while those between 14 and 16 Mb were the least frequent (1.20%). Long chromosomes showed a larger number of ROH. Chromosomes 10 and 20, had a greater percentage of their length covered by ROH because they presented a largest number of long ROH (>8 Mb). From the total ROH, 17 were detected in 1,847 animals and distributed among different chromosomes, and were associated with milk, fat and protein yield and percentage, and conformation final score. Of the ROH with effects on production traits, the majority were found with a length between 1 and 4 Mb. These results show evidence of genomic regions preserved by genetic selection and associated with the improvement of the productivity and functionality of dairy cattle.
Collapse
Affiliation(s)
- José G. Cortes-Hernández
- Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Felipe J. Ruiz-López
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
| | - Carlos G. Vásquez-Peláez
- Departamento de Genética y Bioestadística de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana García-Ruiz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
- * E-mail:
| |
Collapse
|
3
|
Crum TE, Schnabel RD, Decker JE, Taylor JF. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds. Front Genet 2021; 12:758394. [PMID: 34733318 PMCID: PMC8558500 DOI: 10.3389/fgene.2021.758394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.
Collapse
Affiliation(s)
- Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
A Genome-Wide Association Study for Calving Interval in Holstein Dairy Cows Using Weighted Single-Step Genomic BLUP Approach. Animals (Basel) 2020; 10:ani10030500. [PMID: 32192064 PMCID: PMC7143202 DOI: 10.3390/ani10030500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to identify genomic region(s) associated with the length of the calving interval in primiparous (n = 6866) and multiparous (n = 5071) Holstein cows. The single nucleotide polymorphism (SNP) solutions were estimated using a weighted single-step genomic best linear unbiased prediction (WssGBLUP) approach and imputed high-density panel (777 k) genotypes. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. The results showed that the accuracies of GEBVs with WssGBLUP improved by +5.4 to +5.7, (primiparous cows) and +9.4 to +9.7 (multiparous cows) percent points over accuracies from the pedigree-based BLUP. The most accurate genomic evaluation was provided at the second iteration of WssGBLUP, which was used to identify associated genomic regions using a windows-based GWAS procedure. The proportion of additive genetic variance explained by windows of 50 consecutive SNPs (with an average of 165 Kb) was calculated and the region(s) that accounted for equal to or more than 0.20% of the total additive genetic variance were used to search for candidate genes. Three windows of 50 consecutive SNPs (BTA3, BTA6, and BTA7) were identified to be associated with the length of the calving interval in primi- and multiparous cows, while the window with the highest percentage of explained genetic variance was located on BTA3 position 49.42 to 49.52 Mb. There were five genes including ARHGAP29, SEC24D, METTL14, SLC36A2, and SLC36A3 inside the windows associated with the length of the calving interval. The biological process terms including alanine transport, L-alanine transport, proline transport, and glycine transport were identified as the most important terms enriched by the genes inside the identified windows.
Collapse
|
5
|
Zhou J, Liu L, Chen CJ, Zhang M, Lu X, Zhang Z, Huang X, Shi Y. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics 2019; 20:827. [PMID: 31703627 PMCID: PMC6842163 DOI: 10.1186/s12864-019-6224-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background Dual-purpose cattle are more adaptive to environmental challenges than single-purpose dairy or beef cattle. Balance among milk, reproductive, and mastitis resistance traits in breeding programs is therefore more critical for dual-purpose cattle to increase net income and maintain well-being. With dual-purpose Xinjiang Brown cattle adapted to the Xinjiang Region in northwestern China, we conducted genome-wide association studies (GWAS) to dissect the genetic architecture related to milk, reproductive, and mastitis resistance traits. Phenotypic data were collected for 2410 individuals measured during 1995–2017. By adding another 445 ancestors, a total of 2855 related individuals were used to derive estimated breeding values for all individuals, including the 2410 individuals with phenotypes. Among phenotyped individuals, we genotyped 403 cows with the Illumina 150 K Bovine BeadChip. Results GWAS were conducted with the FarmCPU (Fixed and random model circulating probability unification) method. We identified 12 markers significantly associated with six of the 10 traits under the threshold of 5% after a Bonferroni multiple test correction. Seven of these SNPs were in QTL regions previously identified to be associated with related traits. One identified SNP, BovineHD1600006691, was significantly associated with both age at first service and age at first calving. This SNP directly overlapped a QTL previously reported to be associated with calving ease. Within 160 Kb upstream and downstream of each significant SNP identified, we speculated candidate genes based on functionality. Four of the SNPs were located within four candidate genes, including CDH2, which is linked to milk fat percentage, and GABRG2, which is associated with milk protein yield. Conclusions These findings are beneficial not only for breeding through marker-assisted selection, but also for genome editing underlying the related traits to enhance the overall performance of dual-purpose cattle.
Collapse
Affiliation(s)
- Jinghang Zhou
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Liyuan Liu
- School of Agriculture, Ningxia University, Yinchuan, China.,Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Chunpeng James Chen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xin Lu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA.
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| | - Yuangang Shi
- School of Agriculture, Ningxia University, Yinchuan, China.
| |
Collapse
|
6
|
Ma L, Cole J, Da Y, VanRaden P. Symposium review: Genetics, genome-wide association study, and genetic improvement of dairy fertility traits. J Dairy Sci 2019; 102:3735-3743. [DOI: 10.3168/jds.2018-15269] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
|
7
|
Tiezzi F, Arceo ME, Cole JB, Maltecca C. Including gene networks to predict calving difficulty in Holstein, Brown Swiss and Jersey cattle. BMC Genet 2018; 19:20. [PMID: 29609562 PMCID: PMC5880070 DOI: 10.1186/s12863-018-0606-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Calving difficulty or dystocia has a great economic impact in the US dairy industry. Reported risk factors associated with calving difficulty are feto-pelvic disproportion, gestation length and conformation. Different dairy cattle breeds have different incidence of calving difficulty, with Holstein having the highest dystocia rates and Jersey the lowest. Genomic selection becomes important especially for complex traits with low heritability, where the accuracy of conventional selection is lower. However, for complex traits where a large number of genes influence the phenotype, genome-wide association studies showed limitations. Biological networks could overcome some of these limitations and better capture the genetic architecture of complex traits. In this paper, we characterize Holstein, Brown Swiss and Jersey breed-specific dystocia networks and employ them in genomic predictions. Results Marker association analysis identified single nucleotide polymorphisms explaining the largest average proportion of genetic variance on BTA18 in Holstein, BTA25 in Brown Swiss, and BTA15 in Jersey. Gene networks derived from the genome-wide association included 1272 genes in Holstein, 1454 genes in Brown Swiss, and 1455 genes in Jersey. Furthermore, 256 genes in Holstein network, 275 genes in the Brown Swiss network, and 253 genes in the Jersey network were within previously reported dystocia quantitative trait loci. The across-breed network included 80 genes, with 9 genes being within previously reported dystocia quantitative trait loci. The gene-gene interactions in this network differed in the different breeds. Gene ontology enrichment analysis of genes in the networks showed Regulation of ARF GTPase was very significant (FDR ≤ 0.0098) on Holstein. Neuron morphogenesis and differentiation was the term most enriched (FDR ≤ 0.0539) on the across-breed network. Genomic prediction models enriched with network-derived relationship matrices did not outperform regular GBLUP models. Conclusions Regions identified in the genome were in the proximity of previously described quantitative trait loci that would most likely affect calving difficulty by altering the feto-pelvic proportion. Inclusion of identified networks did not increase prediction accuracy. The approach used in this paper could be extended to any instance with asymmetric distribution of phenotypes, for example, resistance to disease data. Electronic supplementary material The online version of this article (10.1186/s12863-018-0606-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maria E Arceo
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 27705, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Pausch H, Emmerling R, Gredler-Grandl B, Fries R, Daetwyler HD, Goddard ME. Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution. BMC Genomics 2017; 18:853. [PMID: 29121857 PMCID: PMC5680815 DOI: 10.1186/s12864-017-4263-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
Background Genotyping and whole-genome sequencing data have been generated for hundreds of thousands of cattle. International consortia used these data to compile imputation reference panels that facilitate the imputation of sequence variant genotypes for animals that have been genotyped using dense microarrays. Association studies with imputed sequence variant genotypes allow for the characterization of quantitative trait loci (QTL) at nucleotide resolution particularly when individuals from several breeds are included in the mapping populations. Results We imputed genotypes for 28 million sequence variants in 17,229 cattle of the Braunvieh, Fleckvieh and Holstein breeds in order to compile large mapping populations that provide high power to identify QTL for milk production traits. Association tests between imputed sequence variant genotypes and fat and protein percentages in milk uncovered between six and thirteen QTL (P < 1e-8) per breed. Eight of the detected QTL were significant in more than one breed. We combined the results across breeds using meta-analysis and identified a total of 25 QTL including six that were not significant in the within-breed association studies. Two missense mutations in the ABCG2 (p.Y581S, rs43702337, P = 4.3e-34) and GHR (p.F279Y, rs385640152, P = 1.6e-74) genes were the top variants at QTL on chromosomes 6 and 20. Another known causal missense mutation in the DGAT1 gene (p.A232K, rs109326954, P = 8.4e-1436) was the second top variant at a QTL on chromosome 14 but its allelic substitution effects were inconsistent across breeds. It turned out that the conflicting allelic substitution effects resulted from flaws in the imputed genotypes due to the use of a multi-breed reference population for genotype imputation. Conclusions Many QTL for milk production traits segregate across breeds and across-breed meta-analysis has greater power to detect such QTL than within-breed association testing. Association testing between imputed sequence variant genotypes and phenotypes of interest facilitates identifying causal mutations provided the accuracy of imputation is high. However, true causal mutations may remain undetected when the imputed sequence variant genotypes contain flaws. It is highly recommended to validate the effect of known causal variants in order to assess the ability to detect true causal mutations in association studies with imputed sequence variants. Electronic supplementary material The online version of this article (10.1186/s12864-017-4263-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland. .,Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.
| | - Reiner Emmerling
- Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586, Grub, Germany
| | | | - Ruedi Fries
- Animal Breeding, Technische Universitaet Muenchen, 85354, Freising, Germany
| | - Hans D Daetwyler
- Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.,School of Applied Systems Biology, LaTrobe University, Bundoora, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
9
|
Buzanskas ME, Grossi DDA, Ventura RV, Schenkel FS, Chud TCS, Stafuzza NB, Rola LD, Meirelles SLC, Mokry FB, Mudadu MDA, Higa RH, da Silva MVGB, de Alencar MM, Regitano LCDA, Munari DP. Candidate genes for male and female reproductive traits in Canchim beef cattle. J Anim Sci Biotechnol 2017; 8:67. [PMID: 28852499 PMCID: PMC5569548 DOI: 10.1186/s40104-017-0199-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
Background Beef cattle breeding programs in Brazil have placed greater emphasis on the genomic study of reproductive traits of males and females due to their economic importance. In this study, genome-wide associations were assessed for scrotal circumference at 210 d of age, scrotal circumference at 420 d of age, age at first calving, and age at second calving, in Canchim beef cattle. Data quality control was conducted resulting in 672,778 SNPs and 392 animals. Results Associated SNPs were observed for scrotal circumference at 420 d of age (435 SNPs), followed by scrotal circumference at 210 d of age (12 SNPs), age at first calving (six SNPs), and age at second calving (four SNPs). We investigated whether significant SNPs were within genic or surrounding regions. Biological processes of genes were associated with immune system, multicellular organismal process, response to stimulus, apoptotic process, cellular component organization or biogenesis, biological adhesion, and reproduction. Conclusions Few associations were observed for scrotal circumference at 210 d of age, age at first calving, and age at second calving, reinforcing their polygenic inheritance and the complexity of understanding the genetic architecture of reproductive traits. Finding many associations for scrotal circumference at 420 d of age in various regions of the Canchim genome also reveals the difficulty of targeting specific candidate genes that could act on fertility; nonetheless, the high linkage disequilibrium between loci herein estimated could aid to overcome this issue. Therefore, all relevant information about genomic regions influencing reproductive traits may contribute to target candidate genes for further investigation of causal mutations and aid in future genomic studies in Canchim cattle to improve the breeding program. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0199-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba (UFPB), Areia, Paraíba 58397-000 Brazil
| | | | | | - Flavio Schramm Schenkel
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, ON N1G 2W1 Canada
| | - Tatiane Cristina Seleguim Chud
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo 14884-900 Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo 14884-900 Brazil
| | - Luciana Diniz Rola
- Departamento de Zootecnia, Núcleo de Pesquisa e Conservação de Cervídeos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo 14884-900 Brazil
| | | | - Fabiana Barichello Mokry
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905 Brazil
| | | | | | | | | | | | - Danísio Prado Munari
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo 14884-900 Brazil
| |
Collapse
|
10
|
Müller MP, Rothammer S, Seichter D, Russ I, Hinrichs D, Tetens J, Thaller G, Medugorac I. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18. J Dairy Sci 2017; 100:1987-2006. [PMID: 28109604 DOI: 10.3168/jds.2016-11506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/20/2016] [Indexed: 01/07/2023]
Abstract
Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method outperformed the MLMA in accuracy and precision. The haplotype-based cLDLA method allowed for a more precise mapping and the definition of ancestral and derived QTL alleles, both of which are essential for the detection of underlying quantitative trait nucleotides.
Collapse
Affiliation(s)
- M-P Müller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - S Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - D Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - I Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - D Hinrichs
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - J Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - G Thaller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - I Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
11
|
Jahuey-Martínez FJ, Parra-Bracamonte GM, Sifuentes-Rincón AM, Martínez-González JC, Gondro C, García-Pérez CA, López-Bustamante LA. Genomewide association analysis of growth traits in Charolais beef cattle1. J Anim Sci 2016; 94:4570-4582. [DOI: 10.2527/jas.2016-0359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- F. J. Jahuey-Martínez
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - G. M. Parra-Bracamonte
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - A. M. Sifuentes-Rincón
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - J. C. Martínez-González
- Universidad Autónoma de Tamaulipas-Facultad de Ingeniería y Ciencias, Victoria, Tamaulipas, México, 87749
| | - C. Gondro
- The Centre for Genetic Analyses and Applications, University of New England, Armidale, NSW, Australia, 2351
| | - C. A. García-Pérez
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | | |
Collapse
|
12
|
Mao X, Kadri N, Thomasen J, De Koning D, Sahana G, Guldbrandtsen B. Fine mapping of a calving QTL on Bos taurus
autosome 18 in Holstein cattle. J Anim Breed Genet 2015; 133:207-18. [DOI: 10.1111/jbg.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/01/2015] [Indexed: 02/02/2023]
Affiliation(s)
- X. Mao
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
- Department of Animal Breeding and Genetics; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - N.K. Kadri
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| | - J.R. Thomasen
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
- VikingGenetics; Assentoft Denmark
| | - D.J. De Koning
- Department of Animal Breeding and Genetics; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - G. Sahana
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| | - B. Guldbrandtsen
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| |
Collapse
|
13
|
Stratz P, Wellmann R, Preuss S, Wimmers K, Bennewitz J. Genome-wide association analysis for growth, muscularity and meat quality in Piétrain pigs. Anim Genet 2014; 45:350-6. [DOI: 10.1111/age.12133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 12/21/2022]
Affiliation(s)
- P. Stratz
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - R. Wellmann
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - S. Preuss
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - K. Wimmers
- Research Unit Molecular Biology; Institute for Genome Biology; Leibniz Institute for Farm Animal Biology (FBN); Wilhelm-Stahl-Allee 2 D-18196 Dummerstorf Germany
| | - J. Bennewitz
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| |
Collapse
|
14
|
|
15
|
Wu X, Fang M, Liu L, Wang S, Liu J, Ding X, Zhang S, Zhang Q, Zhang Y, Qiao L, Lund MS, Su G, Sun D. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics 2013; 14:897. [PMID: 24341352 PMCID: PMC3879203 DOI: 10.1186/1471-2164-14-897] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 12/10/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Genome-wide association study (GWAS) is a powerful tool for revealing the genetic basis of quantitative traits. However, studies using GWAS for conformation traits of cattle is comparatively less. This study aims to use GWAS to find the candidates genes for body conformation traits. RESULTS The Illumina BovineSNP50 BeadChip was used to identify single nucleotide polymorphisms (SNPs) that are associated with body conformation traits. A least absolute shrinkage and selection operator (LASSO) was applied to detect multiple SNPs simultaneously for 29 body conformation traits with 1,314 Chinese Holstein cattle and 52,166 SNPs. Totally, 59 genome-wide significant SNPs associated with 26 conformation traits were detected by genome-wide association analysis; five SNPs were within previously reported QTL regions (Animal Quantitative Trait Loci (QTL) database) and 11 were very close to the reported SNPs. Twenty-two SNPs were located within annotated gene regions, while the remainder were 0.6-826 kb away from known genes. Some of the genes had clear biological functions related to conformation traits. By combining information about the previously reported QTL regions and the biological functions of the genes, we identified DARC, GAS1, MTPN, HTR2A, ZNF521, PDIA6, and TMEM130 as the most promising candidate genes for capacity and body depth, chest width, foot angle, angularity, rear leg side view, teat length, and animal size traits, respectively. We also found four SNPs that affected four pairs of traits, and the genetic correlation between each pair of traits ranged from 0.35 to 0.86, suggesting that these SNPs may have a pleiotropic effect on each pair of traits. CONCLUSIONS A total of 59 significant SNPs associated with 26 conformation traits were identified in the Chinese Holstein population. Six promising candidate genes were suggested, and four SNPs showed genetic correlation for four pairs of traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
16
|
Höglund JK, Guldbrandtsen B, Lund MS, Sahana G. Analyzes of genome-wide association follow-up study for calving traits in dairy cattle. BMC Genet 2012; 13:71. [PMID: 22888914 PMCID: PMC3465222 DOI: 10.1186/1471-2156-13-71] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/02/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND There is often a pronounced disagreement between results obtained from different genome-wide association studies in cattle. There are multiple reasons for this disagreement. Particularly the presence of false positives leads to a need to validate detected QTL before they are optimally incorporated or weighted in selection decisions or further studied for causal gene. In dairy cattle progeny testing scheme new data is routinely accumulated which can be used to validate previously discovered associations. However, the data is not an independent sample and the sample size may not be sufficient to have enough power to validate previous discoveries. Here we compared two strategies to validate previously detected QTL when new data is added from the same study population. We compare analyzing a combined dataset (COMB) including all data presently available to only analyzing a validation dataset (VAL) i.e. a new dataset not previously analyzed as an independent replication. Secondly, we confirm SNP detected in the Reference population (REF) (i.e. previously analyzed dataset consists of older bulls) in the VAL dataset. RESULTS Clearly the results from the combined (COMB) dataset which had nearly twice the sample size of other two subsets allowed the detection of far more significant associations than the two smaller subsets. The number of significant SNPs in REF (older bulls) was about four times higher compare to VAL (younger bulls) though both had similar sample sizes, 2,219 and 2,039 respectively. A total of 424 SNP-trait combinations on 22 chromosomes showed genome-wide significant association involving 284 unique SNPs in the COMB dataset. In the REF data set 101 associations (73 unique SNPs) and in the VAL 24 associations (18 unique SNPs) were found genome-wide significant. Sixty-eight percent of the SNPs in the REF dataset could be confirmed in the VAL dataset. Out of 469 unique SNPs showing chromosome-wide significant association with calving traits in the REF dataset 321 could be confirmed in the VAL dataset at P < 0.05. CONCLUSIONS The follow-up study for GWAS in cattle will depend on the aim of the study. If the aim is to discover novel QTL, analyses of the COMB dataset is recommended, while in case of identification of the causal mutation underlying a QTL, confirmation of the discovered SNPs are necessary to avoid following a false positive.
Collapse
Affiliation(s)
- Johanna K Höglund
- Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, Tjele, DK-8830, Denmark
- VikingGenetics, Ebeltoftvej 16, Assentoft, Randers, SØ, DK-8960, Denmark
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7070, Uppsala, 750 07, Sweden
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, Tjele, DK-8830, Denmark
| | - Mogens S Lund
- Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, Tjele, DK-8830, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, Tjele, DK-8830, Denmark
| |
Collapse
|
17
|
Martín-Burriel I, Rodellar C, Cañón J, Cortés O, Dunner S, Landi V, Martínez-Martínez A, Gama LT, Ginja C, Penedo MCT, Sanz A, Zaragoza P, Delgado JV. Genetic diversity, structure, and breed relationships in Iberian cattle. J Anim Sci 2011; 89:893-906. [PMID: 21415418 DOI: 10.2527/jas.2010-3338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Iberia there are 51 officially recognized cattle breeds of which 15 are found in Portugal and 38 in Spain. We present here a comprehensive analysis of the genetic diversity and structure of Iberian cattle. Forty of these breeds were genotyped with 19 highly polymorphic microsatellite markers. Asturiana de los Valles displayed the greatest allelic diversity and Mallorquina the least. Unbiased heterozygosity values ranged from 0.596 to 0.787. The network based on Reynolds distances was star-shaped with few pairs of interrelated breeds and a clear cluster of 4 breeds (Alistana/Arouquesa/Marinhoa/Mirandesa). The analysis of the genetic structure of Iberian cattle indicated that the most probable number of population clusters included in the study would be 36. Distance results were supported by the STRUCTURE software indicating a relatively recent origin or possible crossbreeding or both between pairs or small groups of breeds. Five clusters included 2 different breeds (Betizu/Pirenaica, Morucha/Avileña, Parda de Montaña/Bruna de los Pirineos, Barrosã/Cachena, and Toro de Lidia/Brava de Lide), 3 breeds (Berrenda en Negro, Negra Andaluza, and Mertolenga) were divided in 2 independent clusters each, and 2 breeds were considered admixed (Asturiana de los Valles and Berrenda en Colorado). Individual assignation to breeds was not possible in the 2 admixed breeds and the pair Parda de Montaña/Bruna de los Pirineos. The relationship between Iberian cattle reflects their geographical origin rather than their morphotypes. Exceptions to this geographic clustering are most probably a consequence of crossbreeding with foreign breeds. The relative genetic isolation within their geographical origin, the consequent genetic drift, the adaptation to specific environment and production systems, and the influence of African and European cattle have contributed to the current genetic status of Iberian cattle, which are grouped according to their geographical origin. The greater degree of admixture observed in some breeds should be taken into account before using molecular markers for genetic assignment of individuals to breeds.
Collapse
Affiliation(s)
- I Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang Q, Zhao H, Pan Y. SNPknow: a web server for functional annotation of cattle SNP markers. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2010-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wang, Q., Zhao, H. and Pan, Y. 2011. SNPknow: a web server for functional annotation of cattle SNP markers. Can. J. Anim. Sci. 91: 247–253. Single nucleotide polymorphisms (SNP) microarray technology provides new insights to identify the genetic factors associated with the traits of interest. To meet the immediate need for a framework of genome-wide association study (GWAS), we have developed SNPknow, a suite of CGI-based tools that provide enrichment analysis and functional annotation for cattle SNP markers and allow the users to navigate and analysis large sets of high-dimensional data from the gene ontology (GO) annotation systems. SNPknow is the only web server currently providing functional annotations of cattle SNP markers in three commercial platforms and dbSNP database. The web server may be particularly beneficial for the analysis of combining SNP association analysis with the gene set enrichment analysis and is freely available at http://klab.sjtu.edu.cn/SNPknow .
Collapse
Affiliation(s)
- Qishan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Shanghai Key Lab of Animal Biotechnology, Shanghai, 200240, P. R. China
| | - Hongbo Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yuchun Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Shanghai Key Lab of Animal Biotechnology, Shanghai, 200240, P. R. China
| |
Collapse
|
19
|
Streit M, Neugebauer N, Meuwissen THE, Bennewitz J. Short communication: evidence for a major gene by polygene interaction for milk production traits in German Holstein dairy cattle. J Dairy Sci 2011; 94:1597-600. [PMID: 21338826 DOI: 10.3168/jds.2010-3834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022]
Abstract
The present study investigated putative interaction effects between the DGAT1 K232A mutation and the polygenic term (i.e., all genes except DGAT1) for 5 milk production traits in the German Holstein dairy cattle population. Mixed models were used, and the test for interaction relied on the comparison of polygenic variance components depending on the sire's genotypes at DGAT1 K232A. Substitution effects were highly significant for all traits. Significant interaction effects were found for milk fat and protein percentage.
Collapse
Affiliation(s)
- M Streit
- Institute of Animal Husbandry and Breeding, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
20
|
Seidenspinner T, Tetens J, Habier D, Bennewitz J, Thaller G. The placental growth factor (PGF) - a positional and functional candidate gene influencing calving ease and stillbirth in German dairy cattle. Anim Genet 2011; 42:22-7. [DOI: 10.1111/j.1365-2052.2010.02073.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics 2010; 187:289-97. [PMID: 21059885 DOI: 10.1534/genetics.110.124057] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying quantitative trait loci (QTL) underlying complex, low-heritability traits is notoriously difficult. Prototypical for such traits, calving ease is an important breeding objective of cattle (Bos taurus)-improving programs. To identify QTL underlying calving ease, we performed a genome-wide association study using estimated breeding values (EBVs) as highly heritable phenotypes for paternal calving ease (pCE) and related traits. The massively structured study population consisted of 1800 bulls of the German Fleckvieh (FV) breed. Two pCE-associated regions on bovine chromosomes (BTA) 14 and 21 (P = 5.72 × 10(-15) and P = 2.27 × 10(-8), respectively) were identified using principal components analysis to correct for population stratification. The two most significantly associated SNPs explain 10% of the EBV variation. Since marker alleles with negative effect on pCE have positive effects on growth-related traits, the QTL may exert their effects on the birthing process through fetal growth traits. The QTL region on BTA14 corresponds to a human chromosome (HSA) region that is associated with growth characteristics. The HSA region corresponding to the BTA21 pCE QTL is maternally imprinted and involved in the Prader-Willi and Angelman syndromes. Resequencing of positional candidate genes on BTA14 revealed a highly significantly (P = 1.96 × 10(-14)) associated polymorphism ablating a polyadenylation signal of the gene encoding ribosomal protein S20 (RPS20). Our study demonstrates the leverage potential of EBVs in unraveling the genetic architecture of lowly heritable traits.
Collapse
|
22
|
Seidenspinner T, Bennewitz J, Thaller G. Confirming QTL for calving and fertility traits on bovine chromosomes 7 and 10 in German Holsteins. Livest Sci 2010. [DOI: 10.1016/j.livsci.2010.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Brand B, Baes C, Mayer M, Reinsch N, Seidenspinner T, Thaller G, Kühn C. Quantitative trait loci mapping of calving and conformation traits on Bos taurus autosome 18 in the German Holstein population. J Dairy Sci 2010; 93:1205-15. [DOI: 10.3168/jds.2009-2553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/09/2009] [Indexed: 11/19/2022]
|