1
|
Besnard F, Guintard A, Grohs C, Guzylack-Piriou L, Cano M, Escouflaire C, Hozé C, Leclerc H, Buronfosse T, Dutheil L, Jourdain J, Barbat A, Fritz S, Deloche MC, Remot A, Gaussères B, Clément A, Bouchier M, Contat E, Relun A, Plassard V, Rivière J, Péchoux C, Vilotte M, Eche C, Kuchly C, Charles M, Boulling A, Viard G, Minéry S, Barbey S, Birbes C, Danchin-Burge C, Launay F, Mattalia S, Allais-Bonnet A, Ravary B, Millemann Y, Guatteo R, Klopp C, Gaspin C, Iampietro C, Donnadieu C, Milan D, Arcangioli MA, Boussaha M, Foucras G, Boichard D, Capitan A. Massive detection of cryptic recessive genetic defects in dairy cattle mining millions of life histories. Genome Biol 2024; 25:248. [PMID: 39343954 PMCID: PMC11441225 DOI: 10.1186/s13059-024-03384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. RESULTS We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. CONCLUSIONS The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.
Collapse
Affiliation(s)
- Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- IDELE, 149 Rue de Bercy, 75012, Paris, France.
| | - Ana Guintard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Margarita Cano
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Clémentine Escouflaire
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Hélène Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | | | - Lucie Dutheil
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Jeanlin Jourdain
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Marie-Christine Deloche
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- ELIANCE, 75012, Paris, France
| | - Aude Remot
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | - Adèle Clément
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Marion Bouchier
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Elise Contat
- VetAgro Sup, Université Lyon1, 69280, Marcy-L'Etoile, France
| | - Anne Relun
- Oniris, INRAE, BIOEPAR, 44300, Nantes, France
| | | | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, 78350, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Camille Eche
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Guillaume Viard
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | - Sarah Barbey
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | - Clément Birbes
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | | | - Frédéric Launay
- UE326, Unité Expérimentale du Pin, INRAE, 61310, Le Pin Au Haras, France
| | | | - Aurélie Allais-Bonnet
- ELIANCE, 75012, Paris, France
- Université Paris-Saclay, INRAE, Ecole Nationale Vétérinaire d'Alfort, BREED, 78350, Jouy-en-Josas, France
| | | | | | | | - Christophe Klopp
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, 31320, Castanet-Tolosan, France
| | - Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, 31320, Castanet-Tolosan, France
| | - Denis Milan
- GenPhySE, Université Fédérale de Toulouse, INRAE, INPT, ENVT, 31320, Castanet-Tolosan, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, 31076, Toulouse, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
- ELIANCE, 75012, Paris, France.
| |
Collapse
|
2
|
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals (Basel) 2024; 14:659. [PMID: 38473046 DOI: 10.3390/ani14050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.
Collapse
Affiliation(s)
- Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | - Amy Katherine McLean
- Department of Animal Science, University of California Davis, Davis, CA 95617, USA
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
3
|
Jacques A, Leroy G, Rognon X, Verrier E, Tixier-Boichard M, Restoux G. Reintroducing genetic diversity in populations from cryopreserved material: the case of Abondance, a French local dairy cattle breed. Genet Sel Evol 2023; 55:28. [PMID: 37076793 PMCID: PMC10114384 DOI: 10.1186/s12711-023-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Genetic diversity is a necessary condition for populations to evolve under natural adaptation, artificial selection, or both. However, genetic diversity is often threatened, in particular in domestic animal populations where artificial selection, genetic drift and inbreeding are strong. In this context, cryopreserved genetic resources are a promising option to reintroduce lost variants and to limit inbreeding. However, while the use of ancient genetic resources is more common in plant breeding, it is less documented in animals due to a longer generation interval, making it difficult to fill the gap in performance due to continuous selection. This study investigates one of the only concrete cases available in animals, for which cryopreserved semen from a bull born in 1977 in a lost lineage was introduced into the breeding scheme of a French local dairy cattle breed, the Abondance breed, more than 20 years later. RESULTS We found that this re-introduced bull was genetically distinct with respect to the current population and thus allowed part of the genetic diversity lost over time to be restored. The expected negative gap in milk production due to continuous selection was absorbed in a few years by preferential mating with elite cows. Moreover, the re-use of this bull more than two decades later did not increase the level of inbreeding, and even tended to reduce it by avoiding mating with relatives. Finally, the reintroduction of a bull from a lost lineage in the breeding scheme allowed for improved performance for reproductive abilities, a trait that was less subject to selection in the past. CONCLUSIONS The use of cryopreserved material is an efficient way to manage the genetic diversity of an animal population, by mitigating the effects of both inbreeding and strong selection. However, attention should be paid to mating of animals to limit the disadvantages associated with incorporating original genetic material, notably a discrepancy in the breeding values for selected traits or an increase in inbreeding. Therefore, careful characterization of the genetic resources available in cryobanks could help to ensure the sustainable management of populations, in particular local or small populations. These results could also be transferred to the conservation of wild threatened populations.
Collapse
Affiliation(s)
- Alicia Jacques
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Grégoire Leroy
- Food and Agriculture Organization, viale delle Terme de Caracalla, 00153, Rome, Italy
| | - Xavier Rognon
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Etienne Verrier
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Gwendal Restoux
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Genetic diversity, viability and conservation value of the global captive population of the Moroccan Royal lions. PLoS One 2021; 16:e0258714. [PMID: 34962925 PMCID: PMC8714086 DOI: 10.1371/journal.pone.0258714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
This study evaluates the diversity of the so-called ‘Moroccan Royal lions’ using genealogical information. Lions are no longer extant in North Africa, but the previous wild population was an important element of the now-recognised northern subspecies (Panthera leo leo) that ranged across West Africa, North Africa and the Middle East into India. The remaining captive population of ‘Moroccan Royal lions’ seems to be significantly endangered by the loss of diversity due to the effective population size decrease. The pedigree file of this captive lion population consisted of 454 individuals, while the reference population included 98 animals (47 males and 51 females). The completeness of the pedigree data significantly decreased with an increasing number of generations. The highest percentage of pedigree completeness (over 70%) was achieved in the first generation of the reference population. Pedigree-based parameters derived from the common ancestor and gene origin were used to estimate the state of diversity. In the reference population, the average inbreeding coefficient was 2.14%, while the individual increase in inbreeding over generations was 2.31%. Overall, the reference population showed lower average inbreeding and average relatedness compared with the pedigree file. The number of founders (47), the effective number of founders (24) and the effective number of ancestors (22) were estimated in the reference population. The effective population size of 14.02 individuals confirms the critically endangered status of the population and rapid loss of diversity in the future. Thus, continuous monitoring of the genetic diversity of the ‘Moroccan Royal lion’ group is required, especially for long-term conservation management purposes, as it would be an important captive group should further DNA studies establish an affinity to P. leo leo.
Collapse
|
5
|
Genetic Diversity and the Impact of the Breed Proportions of US Brown Swiss in German Brown Cattle. Animals (Basel) 2021; 11:ani11010152. [PMID: 33440788 PMCID: PMC7828010 DOI: 10.3390/ani11010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The main aim of modern breeding programs in dairy cows is to improve productivity, functional and health traits. The use of only a few top sires leads to more efficient milk production, but also it could lead to a decline in the gene pool, smaller effective population size and an increase of inbreeding. Deleterious effects of inbreeding in dairy cattle may reduce the benefits of the genetic gains. Due to this fact, it is important to monitor the genetic diversity in dairy cattle breeds. In this study, pedigree data were used to show the losses of genetic variability and its association with the heavy use of imported US Brown Swiss bulls and semen in the German Brown population. Strategies to decrease rate of inbreeding through sires with less relationships to the most important ancestors should be considered in future breeding strategies. Abstract Increase of inbreeding and loss of genetic diversity have large impact on farm animal genetic resources. Therefore, the aims of the present study were to analyse measures of genetic diversity as well as recent and ancestral inbreeding using pedigree data of the German Brown population, and to identify causes for loss of genetic diversity. The reference population included 922,333 German Brown animals born from 1990 to 2014. Pedigree depth and completeness reached an average number of complete equivalent generations of 6.24. Estimated effective population size for the German Brown reference population was about 112 with a declining trend from 141 to 95 for the birth years. Individual inbreeding coefficients increased from 0.013 to 0.036. Effective number of founders, ancestors and founder genomes of 63.6, 36.23 and 20.34 indicated unequal contributions to the reference population. Thirteen ancestors explained 50% of the genetic diversity. Higher breed proportions of US Brown Swiss were associated with higher levels of individual inbreeding. Ancestral inbreeding coefficients, which are indicative for exposure of ancestors to identical-by-descent alleles, increased with birth years but recent individual inbreeding was higher than ancestral inbreeding. Given the increase of inbreeding and decline of effective population size, measures to decrease rate of inbreeding and increase effective population size through employment of a larger number of sires are advisable.
Collapse
|
6
|
Animal board invited review: OneARK: Strengthening the links between animal production science and animal ecology. Animal 2020; 15:100053. [PMID: 33515992 DOI: 10.1016/j.animal.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.
Collapse
|
7
|
Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis. Animals (Basel) 2020; 10:ani10111990. [PMID: 33138106 PMCID: PMC7692864 DOI: 10.3390/ani10111990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The conservation and maintenance of genetic diversity is one of the priorities of the Convention of Biological Diversity and is included in the United Nations (UN’s) Sustainable Development Goals. The evaluation of the genetic variability of a breed is fundamental for its future use in a sustainable way, being indispensable to outline a successful conservation or improvement strategy. Preserving genetic diversity in a population is one of the main objectives for a breed conservation program. Nevertheless, the correct management of genetic diversity is also essential for the adaptation of a population to a new environment, production system or genetic improvement. For the purpose of population monitoring, assessing changes in genetic variability and genetic erosion in animal populations, many methodologies based on pedigree analyses of inbreeding and relationships, and on the probability of genetic origin from different herds, founders and ancestors, have been used. This study presents several genetic diversity indicators in a Portuguese native cattle breed, Mertolenga, assessed by pedigree analysis, and demonstrates the usefulness of these indicators and how they can be used in the genetic management of a breed. Abstract The Mertolenga beef cattle, currently with 27,000 breeding females in Portugal, is the largest Portuguese native breed, despite some variation in the breeding stock over the last years. The purpose of this study was to estimate parameters related to the population structure and genetic diversity and to investigate the major factors affecting genetic erosion in the breed, based on the pedigree herdbook information collected since the 1950s, including records on 221,567 animals from 425 herds. The mean generation intervals were 6.4 years for sires and 7.1 years for dams, respectively. The rate of inbreeding per year was 0.183% ± 0.020% and the correspondent effective population size was 38.83. In the reference population (35,017 calves born between 2015 and 2019), the average inbreeding and relatedness were 8.82% ± 10% and 2.05% ± 1.26%, respectively. The mean relationship among animals from the same and from different herds was 29.25% ± 9.36% and 1.87% ± 1.53%, respectively. The estimates for the effective number of founders, ancestors, founding herds and herds supplying sires were 87.9, 59.4, 21.4 and 73.5, respectively. Although the situation of the Mertolenga breed is not alarming, these results indicate the need to adopt measures to maintain the genetic variability of the population.
Collapse
|
8
|
Bohórquez MD, Ordoñez D, Suárez CF, Vicente B, Vieira C, López-Abán J, Muro A, Ordóñez I, Patarroyo MA. Major Histocompatibility Complex Class II (DRB3) Genetic Diversity in Spanish Morucha and Colombian Normande Cattle Compared to Taurine and Zebu Populations. Front Genet 2020; 10:1293. [PMID: 31998362 PMCID: PMC6965167 DOI: 10.3389/fgene.2019.01293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/25/2019] [Indexed: 11/13/2022] Open
Abstract
Bovine leukocyte antigens (BoLA) have been used as disease markers and immunological traits in cattle due to their primary role in pathogen recognition by the immune system. A higher MHC allele diversity in a population will allow presenting a broader peptide repertoire. However, loss of overall diversity due to domestication process can decrease a population's peptide repertoire. Within the context of zebu and taurine cattle populations, BoLA-DRB3 genetic diversity in Spanish Morucha and Colombian Normande cattle was analyzed and an approach to estimate functional diversity was performed. Sequence-based typing was used for identifying 29, 23, 27, and 28 alleles in Spanish Morucha, Nariño-, Boyacá-, and Cundinamarca-Normande cattle, respectively. These breeds had remarkably low heterozygosity levels and the Hardy-Weinberg principle revealed significant heterozygote deficiency. FST and DA genetic distance showed that Colombian Normande populations had greater variability than other phenotypically homogeneous breeds, such as Holstein. It was also found that Spanish Morucha cattle were strongly differentiated from other cattle breeds. Spanish Morucha had greater divergence in the peptide-binding region regarding other cattle breeds. However, peptide-binding region covariation indicated that the potential peptide repertoire seemed equivalent among cattle breeds. Despite the genetic divergence observed, the extent of the potential peptide repertoire in the cattle populations studied appears to be similar and thus their pathogen recognition potential should be equivalent, suggesting that functional diversity might persist in the face of bottlenecks imposed by domestication and breeding.
Collapse
Affiliation(s)
- Michel David Bohórquez
- Microbiology Postgraduate Programme, Universidad Nacional de Colombia, Bogotá, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Diego Ordoñez
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Carlos Fernando Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Carmen Vieira
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Iván Ordóñez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
9
|
de Araujo Neto FR, Vieira DA, Santos DJDA, Pessoa MC, Borquis RRA, de Oliveira HN, Marques LFA. Population structure of Simmental beef cattle using pedigree analysis. Trop Anim Health Prod 2019; 52:1513-1517. [PMID: 31838716 DOI: 10.1007/s11250-019-02102-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to estimate parameters related to the population structure and genetic diversity in the Simental breed based on the pedigree information of 77,553 animals. The individual coefficients of inbreeding and average relatedness, number of complete generations, coefficient of change of inbreeding, effective size, effective number of founders, number of ancestors and generation interval were calculated. Using the Simmental cattle information, the mean inbreeding and average relatedness coefficients were 1.49% and 0.99%, respectively. The effective number of founders and ancestors was 163 and 132, respectively, and the effective population size was 48.03. Despite the relatively small inbreeding coefficient, some of the estimated population parameters indicated the need to adopt measures to maintain the genetic variability of the population.
Collapse
Affiliation(s)
| | - Dheynne Alves Vieira
- Instituto Federal Goiano, Campus Rio Verde, km1, Cx. Postal 66, Rio Verde, Goiás, 75900-000, Brazil
| | - Daniel Jordan de Abreu Santos
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil
| | | | | | - Henrique Nunes de Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luiz Fernando Aarão Marques
- Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, 29500-000, Brazil
| |
Collapse
|
10
|
Abstract
Conservation of animal genetic resources requires regular monitoring and interventions to maintain population size and manage genetic variability. This study uses genealogical information to evaluate the impact of conservation measures in Europe, using (i) data from the Domestic Animal Diversity Information System (DAD-IS) and (ii) a posteriori assessment of the impact of various conservation measures on the genetic variability of 17 at-risk breeds with a wide range of interventions. Analysis of data from DAD-IS showed that 68% of national breed populations reported to receive financial support showed increasing demographic trends, v. 51% for those that did not. The majority of the 17 at-risk breeds have increased their numbers of registered animals over the last 20 years, but the changes in genetic variability per breed have not always matched the trend in population size. These differences in trends observed in the different metrics might be explained by the tensions between interventions to maintain genetic variability, and development initiatives which lead to intensification of selection.
Collapse
|
11
|
Wellmann R, Bennewitz J. Key Genetic Parameters for Population Management. Front Genet 2019; 10:667. [PMID: 31475027 PMCID: PMC6707806 DOI: 10.3389/fgene.2019.00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Population management has the primary task of maximizing the long-term competitiveness of a breed. Breeds compete with each other for being able to supply consumer demands at low costs and also for funds from conservation programs. The competition for consumer preference is won by breeds with high genetic gain for total merit who maintained a sufficiently high genetic diversity, whereas the competition for funds is won by breeds with high conservation value. The conservation value of a breed could be improved by increasing its contribution to the gene pool of the species. This may include the recovery of its original genetic background and the maintenance of a high genetic diversity at native haplotype segments. The primary objective of a breeding program depends on the genetic state of the population and its intended usage. In this paper, we review the key genetic parameters that are relevant for population management, compare the methods for estimating them, derive the formulas for predicting their value at a future time, and clarify their usage in various types of breeding programs that differ in their main objectives. These key parameters are kinships, native kinships, breeding values, Mendelian sampling variances, native contributions, and mutational effects. Population management currently experiences a transition from using pedigree-based estimates to marker-based estimates, which improves the accuracies of these estimates and thereby increases response to selection. In addition, improved measures of the factors that determine the competitiveness of a breed and utilize auxiliary parameters, such as Mendelian sampling variances, mutational effects, and native kinships, enable to improve further upon historic recommendations for genetic population management.
Collapse
Affiliation(s)
- Robin Wellmann
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Animal Genetics and Breeding, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs. G3-GENES GENOMES GENETICS 2018; 8:113-121. [PMID: 29133511 PMCID: PMC5765340 DOI: 10.1534/g3.117.1117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genomic selection (GS) is commonly used in livestock and increasingly in plant breeding. Relying on phenotypes and genotypes of a reference population, GS allows performance prediction for young individuals having only genotypes. This is expected to achieve fast high genetic gain but with a potential loss of genetic diversity. Existing methods to conserve genetic diversity depend mostly on the choice of the breeding individuals. In this study, we propose a modification of the reference population composition to mitigate diversity loss. Since the high cost of phenotyping is the limiting factor for GS, our findings are of major economic interest. This study aims to answer the following questions: how would decisions on the reference population affect the breeding population, and how to best select individuals to update the reference population and balance maximizing genetic gain and minimizing loss of genetic diversity? We investigated three updating strategies for the reference population: random, truncation, and optimal contribution (OC) strategies. OC maximizes genetic merit for a fixed loss of genetic diversity. A French Montbéliarde dairy cattle population with 50K SNP chip genotypes and simulations over 10 generations were used to compare these different strategies using milk production as the trait of interest. Candidates were selected to update the reference population. Prediction bias and both genetic merit and diversity were measured. Changes in the reference population composition slightly affected the breeding population. Optimal contribution strategy appeared to be an acceptable compromise to maintain both genetic gain and diversity in the reference and the breeding populations.
Collapse
|
13
|
Sarmiento DR, Tullo E, Rizzi R. Pedigree-based analysis of genetic variability in the registered Normande cattle breed in Colombia. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetic variability and structure of the population were studied in 7949 registered Normande cattle in Colombia. The pedigree was deep with 18 traced generations, but there were some incomplete genealogical information for the cattle born in the more distant past. The average number of complete and equivalent complete generations was 2.42 and 5.21, respectively. The average pedigree completeness index for five generations was 0.62, which increased over time, and a significant difference between sexes was found (males: 0.82 ± 0.11; females: 0.62 ± 0.38). The average generation interval was 7.57 years. The number of founders, effective founders, ancestors, and founder genomes were 575, 115, 47, and 22.22, respectively, which suggests that an unequal use of founders and a random loss of alleles from founders occurred over time. The level of inbreeding was 0.019 and increased to 0.023, when the inbreeding coefficient was calculated by assigning inbreeding of contemporaries to founders. These levels of inbreeding lead to an effective population size of 138.5 and 117.9 and to a 0.36% and 0.42% rate of inbreeding, respectively. Out of 267 herds with more than five registered breeding animals, only one nucleus herd was present, whereas 117 and 119 were classified as multiplier and commercial herds, respectively. About 92% of calves were sired by French bulls; but the use of Colombian bulls for breeding is increasing. The Colombian Normande breed is at an acceptable level of genetic variability, although some losses of founder alleles have occurred. As the level of inbreeding has been increasing, inbreeding and mating strategies should be monitored in order to maintain the genetic diversity of the breed.
Collapse
|
14
|
Bernardes P, Grossi D, Savegnago R, Buzanskas M, Ramos S, Romanzini E, Guidolin D, Bezerra L, Lôbo R, Munari D. Population structure of Tabapuã beef cattle using pedigree analysis. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Hannachi M, Tichit M. Does biotechnological innovation require organizational innovation? Learning from the cattle breeding industry in France. Anim Front 2016. [DOI: 10.2527/af.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Assessing the risk status of livestock breeds: a multi-indicator method applied to 178 French local breeds belonging to ten species. ACTA ACUST UNITED AC 2015. [DOI: 10.1017/s2078633615000260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryBreed risk status assessment methods are key components of country-based early warning and response systems. In this study, a multi-indicator method was developed to assess the risk status of livestock populations. Six indicators were used: (i) the current number of breeding females; (ii) the change in the number of breeding females over the last 5 years or generations (depending on the species); (iii) percentage of cross-breeding; (iv) effective population size; (v) breeders organization and technical support; and (vi) socio-economic context. To make these indicators comparable, observed values were converted into scores on a six-point scale (from 0 = no threat to 5 = maximum threat); a specific conversion method was used for each indicator. For each breed, the different scores were analysed graphically and an overall score was calculated by averaging the six separate indicator scores. This approach was applied to 178 French local breeds, belonging to ten different species: horse, donkey, goat, pig, chicken, turkey, goose and Pekin duck. A large percentage of local breeds were found to be at risk to be lost for farming, although the results were species dependent. All local equine and pig breeds, as well as almost all local poultry breeds appeared to be endangered. About 80 percent of local goat and cattle breeds, and half local sheep breeds were also found to be at risk. The usefulness of this method with regards to conservation strategies and public policy is discussed.
Collapse
|
17
|
Dezetter C, Leclerc H, Mattalia S, Barbat A, Boichard D, Ducrocq V. Inbreeding and crossbreeding parameters for production and fertility traits in Holstein, Montbéliarde, and Normande cows. J Dairy Sci 2015; 98:4904-13. [DOI: 10.3168/jds.2014-8386] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 03/26/2015] [Indexed: 11/19/2022]
|
18
|
Tixier-Boichard M, Verrier E, Rognon X, Zerjal T. Farm animal genetic and genomic resources from an agroecological perspective. Front Genet 2015; 6:153. [PMID: 25983741 PMCID: PMC4415434 DOI: 10.3389/fgene.2015.00153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/05/2015] [Indexed: 01/16/2023] Open
Affiliation(s)
| | - Etienne Verrier
- GABI, INRA, AgroParisTech, Université Paris-Saclay Paris, France
| | - Xavier Rognon
- GABI, INRA, AgroParisTech, Université Paris-Saclay Paris, France
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay Paris, France
| |
Collapse
|
19
|
Loberg A, Dürr JW, Fikse WF, Jorjani H, Crooks L. Estimates of genetic variance and variance of predicted genetic merits using pedigree or genomic relationship matrices in six Brown Swiss cattle populations for different traits. J Anim Breed Genet 2015; 132:376-85. [PMID: 25727736 DOI: 10.1111/jbg.12142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
Abstract
The amount of variance captured in genetic estimations may depend on whether a pedigree-based or genomic relationship matrix is used. The purpose of this study was to investigate the genetic variance as well as the variance of predicted genetic merits (PGM) using pedigree-based or genomic relationship matrices in Brown Swiss cattle. We examined a range of traits in six populations amounting to 173 population-trait combinations. A main aim was to determine how using different relationship matrices affect variance estimation. We calculated ratios between different types of estimates and analysed the impact of trait heritability and population size. The genetic variances estimated by REML using a genomic relationship matrix were always smaller than the variances that were similarly estimated using a pedigree-based relationship matrix. The variances from the genomic relationship matrix became closer to estimates from a pedigree relationship matrix as heritability and population size increased. In contrast, variances of predicted genetic merits obtained using a genomic relationship matrix were mostly larger than variances of genetic merit predicted using pedigree-based relationship matrix. The ratio of the genomic to pedigree-based PGM variances decreased as heritability and population size rose. The increased variance among predicted genetic merits is important for animal breeding because this is one of the factors influencing genetic progress.
Collapse
Affiliation(s)
- A Loberg
- Department of Animal Breeding and Genetics, SLU, Uppsala, SE, Sweden
| | - J W Dürr
- Department of Animal Breeding and Genetics, SLU, Uppsala, SE, Sweden.,Interbull Centre, SE, Uppsala
| | - W F Fikse
- Department of Animal Breeding and Genetics, SLU, Uppsala, SE, Sweden
| | - H Jorjani
- Department of Animal Breeding and Genetics, SLU, Uppsala, SE, Sweden.,Interbull Centre, SE, Uppsala
| | - L Crooks
- Sheffield Diagnostic Genetics Service, UK
| |
Collapse
|
20
|
Cortés O, Sevane N, Baro J, Cañón J. Pedigree analysis of a highly fragmented population, the Lidia cattle breed. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Boison S, Neves H, Pérez O’Brien A, Utsunomiya Y, Carvalheiro R, da Silva M, Sölkner J, Garcia J. Imputation of non-genotyped individuals using genotyped progeny in Nellore, a Bos indicus cattle breed. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Santana M, Pereira R, Bignardi A, El Faro L, Tonhati H, Albuquerque L. History, structure, and genetic diversity of Brazilian Gir cattle. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Pirault P, Danvy S, Verrier E, Leroy G. Genetic structure and gene flows within horses: a genealogical study at the french population scale. PLoS One 2013; 8:e61544. [PMID: 23630596 PMCID: PMC3632587 DOI: 10.1371/journal.pone.0061544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/11/2013] [Indexed: 11/21/2022] Open
Abstract
Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.
Collapse
Affiliation(s)
- Pauline Pirault
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Sophy Danvy
- Institut Français du Cheval et de l'Equitation, Le Pin au Haras, France
| | - Etienne Verrier
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
| | - Grégoire Leroy
- AgroParisTech, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
24
|
Leroy G, Mary-Huard T, Verrier E, Danvy S, Charvolin E, Danchin-Burge C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet Sel Evol 2013; 45:1. [PMID: 23281913 PMCID: PMC3599586 DOI: 10.1186/1297-9686-45-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/30/2012] [Indexed: 11/21/2022] Open
Abstract
Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied.
Collapse
Affiliation(s)
- Grégoire Leroy
- AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, 16 rue Claude Bernard, F-75321, Paris 05, France.
| | | | | | | | | | | |
Collapse
|