1
|
Wang R, Yu Y, Yu W, Sun S, Lei Y, Li Y, Lu C, Zhai J, Bai F, Ren F, Huang J, Chen J. Roles of Probiotics, Prebiotics, and Postbiotics in B-cell mediated Immune Regulation. J Nutr 2024:S0022-3166(24)01178-7. [PMID: 39551357 DOI: 10.1016/j.tjnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024] Open
Abstract
Probiotics, prebiotics, and postbiotics can significantly influence B-cell-related diseases through their immunomodulatory effects. They enhance the immune system's function, particularly affecting B cells, which originate in the bone marrow and are crucial for antibody production and immune memory. These substances have therapeutic potential in managing allergies, autoimmune diseases, and inflammatory conditions by regulating the gut microbiota, strengthening epithelial barriers, and directly interacting with various components of the innate and adaptive immune systems. The review highlights the critical need for further research into the precise mechanisms through which probiotics, prebiotics, and postbiotics modulate B cells. Gaining this understanding could facilitate the development of more effective treatments for B-cell-related diseases by harnessing the immunomodulatory properties of these dietary components.
Collapse
Affiliation(s)
- R Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yf Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wr Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Sy Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ym Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yx Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Cx Lu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jn Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fr Bai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fz Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jq Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - J Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Corbee RJ. The effects of galacto-oligosaccharides on faecal parameters in healthy dogs and cats. Res Vet Sci 2024; 167:105116. [PMID: 38160491 DOI: 10.1016/j.rvsc.2023.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to evaluate the effects of galacto-oligosaccharides (GOS) on faecal parameters in healthy dogs and cats. To this end, 20 dogs and 20 Domestic shorthair cats were fed a commercially available adult dog food, or cat food, respectively, with either syrup containing GOS (at 1% w galacto-oligosaccharides/w formulated feed) on top (test group) or no topping (control group) for 56 days in a cross-over design. The study consisted of 2 periods of 24 days adaptation, followed by 4 days of collection of faeces. Faecal samples were tested for moisture, nitrogen, pH, macronutrients, enzymes, and fermentation products. The faecal microbiota were analysed by 16S rDNA profiling. It appeared that GOS have different effects in dogs compared to cats. In dogs, the addition of GOS resulted in increased carbohydrate fermentation (increase of acetic and butyric acid), whereas in cats GOS resulted in increased amino acid fermentation (increase of isovaleric acid). The α-diversity of the canine faecal microbiota was reduced by dietary GOS (Inverse Simpson Index, p = 0.063; Shannon index, p = 0.035) whereas the α-diversity of cat faecal microbiota was unaffected (Inverse Simpson Index, p = 0.539; Shannon index, p = 0.872). Lachnospiraceae spp. and Bifidobacterium spp. positively responded to GOS in both cats and dogs. Lactobacillus spp. and Enterobacteriaceae spp. positively responded to GOS in dogs. In both dogs and cats, GOS may therefore improve stool microbiota and result in the production of specific metabolites that are beneficial to gut health.
Collapse
Affiliation(s)
- Ronald Jan Corbee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
3
|
Pereira KHNP, Fuchs KDM, Mendonça JC, Xavier GM, Knupp FC, Lourenço MLG. Topics on maternal, fetal and neonatal immunology of dogs and cats. Vet Immunol Immunopathol 2023; 266:110678. [PMID: 38016336 DOI: 10.1016/j.vetimm.2023.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Birth and the first few weeks of age are critical periods of developing the immune system of puppies and kittens and adapting to an environment containing a variety of infectious agents. The survival rate during these periods depends mainly on the newborn's immune capacity to prevent and combat infections. Although most components of innate and adaptive immunity are present at birth, responses are slow and immature compared to adults. Due to immunological immaturity and the endotheliochorial placental structure, circulating concentrations of immunoglobulins in dogs and cats at birth are quite low. Thus, newborns need a prompt and immediate immune response, which is essentially provided by defense cells and maternal antibodies via colostrum. Failure to ingest colostrum is correlated with high mortality rates in the neonatal period. Concurrently, factors related to pregnant, such as pregnancy physiological immunosuppression and nutritional and health states, can directly influence newborn immunity and health. Therefore, understanding the maternal and neonatal immunological aspects, importance of colostrum, risk factors for failure to transfer passive immunity and colostrum substitute strategies are essential to ensure the survival of the litter.
Collapse
Affiliation(s)
- Keylla Helena Nobre Pacífico Pereira
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Kárita da Mata Fuchs
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Júlia Cosenza Mendonça
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Gleice Mendes Xavier
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fabíola Cardoso Knupp
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maria Lucia Gomes Lourenço
- Veterinary Neonatology Research Group, Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
Neville MC. Lactation in domestic carnivores. Anim Front 2023; 13:71-76. [PMID: 37324213 PMCID: PMC10266744 DOI: 10.1093/af/vfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Margaret C Neville
- Department of Physiology and Biophysics, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, USA
| |
Collapse
|
5
|
Balouei F, Stefanon B, Sgorlon S, Sandri M. Factors Affecting Gut Microbiota of Puppies from Birth to Weaning. Animals (Basel) 2023; 13:ani13040578. [PMID: 36830365 PMCID: PMC9951692 DOI: 10.3390/ani13040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The review described the most important factors affecting the development of the intestinal microbiota in puppies from birth to weaning. The health and well-being of the microbiome in puppies is influenced by the type of parturition, the maternal microbiota, and the diet of the mother, directly or indirectly. The isolation of bacteria in dogs from the placenta, fetal fluids, and fetuses suggests that colonization could occur before birth, although this is still a matter of debate. Accordingly, newborn puppies could harbor bacteria that could be of maternal origin and that could influence microbial colonization later in life. However, the long-term impacts on health and the clinical significance of this transfer is not yet clear and needs to be investigated. The same maternal bacteria were found in puppies that were born vaginally and in those delivered via cesarean section. Potentially, the relationship between the type of parturition and the colonization of the microbiome will influence the occurrence of diseases, since it can modulate the gut microbiome during early life. In addition, puppies' gut microbiota becomes progressively more similar to adult dogs at weaning, as a consequence of the transition from milk to solid food that works together with behavioral factors. A number of researches have investigated the effects of diet on the gut microbiota of dogs, revealing that dietary interference may affect the microbial composition and activity through the production of short-chain fatty acids and vitamins. These compounds play a fundamental role during the development of the fetus and the initial growth of the puppy. The composition of the diet fed during pregnancy to the bitches is also an important factor to consider for the health of newborns. As far as it is known, the effects of the type of parturition, the maternal microbiota, and the diet on the microbial colonization and the long-term health of the dogs deserve further studies. Definitely, longitudinal studies with a larger number of dogs will be required to assess a causal link between microbiome composition in puppies and diseases in adult dogs.
Collapse
|
6
|
Rousseaux A, Brosseau C, Bodinier M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023; 15:nu15020269. [PMID: 36678140 PMCID: PMC9863037 DOI: 10.3390/nu15020269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Prebiotics, probiotics and synbiotics are known to have major beneficial effects on human health due to their ability to modify the composition and the function of the gut mucosa, the gut microbiota and the immune system. These components largely function in a healthy population throughout different periods of life to confer homeostasis. Indeed, they can modulate the composition of the gut microbiota by increasing bacteria strands that are beneficial for health, such as Firmicute and Bifidobacteria, and decreasing harmful bacteria, such as Enteroccocus. Their immunomodulation properties have been extensively studied in different innate cells (dendritic cells, macrophages, monocytes) and adaptive cells (Th, Treg, B cells). They can confer a protolerogenic environment but also modulate pro-inflammatory responses. Due to all these beneficial effects, these compounds have been investigated to prevent or to treat different diseases, such as cancer, diabetes, allergies, autoimmune diseases, etc. Regarding the literature, the effects of these components on dendritic cells, monocytes and T cells have been studied and presented in a number of reviews, but their impact on B-cell response has been less widely discussed. CONCLUSIONS For the first time, we propose here a review of the literature on the immunomodulation of B-lymphocytes response by prebiotics, probiotics and synbiotics, both in healthy conditions and in pathologies. DISCUSSION Promising studies have been performed in animal models, highlighting the potential of prebiotics, probiotics and synbiotics intake to treat or to prevent diseases associated with B-cell immunomodulation, but this needs to be validated in humans with a full characterization of B-cell subsets and not only the humoral response.
Collapse
|
7
|
Gaillard V, Chastant S, England G, Forman O, German AJ, Suchodolski JS, Villaverde C, Chavatte-Palmer P, Péron F. Environmental risk factors in puppies and kittens for developing chronic disorders in adulthood: A call for research on developmental programming. Front Vet Sci 2022; 9:944821. [PMID: 36619947 PMCID: PMC9816871 DOI: 10.3389/fvets.2022.944821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.
Collapse
Affiliation(s)
- Virginie Gaillard
- Research and Development Center, Royal Canin, Aimargues, France,*Correspondence: Virginie Gaillard ✉
| | - Sylvie Chastant
- NeoCare, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Gary England
- School of Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Forman
- Wisdom Panel, Kinship, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Alexander J. German
- Institute of Life Course and Medical Sciences of Small Animal Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Franck Péron
- Research and Development Center, Royal Canin, Aimargues, France
| |
Collapse
|
8
|
Alonge S, Aiudi GG, Lacalandra GM, Leoci R, Melandri M. Pre- and Probiotics to Increase the Immune Power of Colostrum in Dogs. Front Vet Sci 2020; 7:570414. [PMID: 33240949 PMCID: PMC7681242 DOI: 10.3389/fvets.2020.570414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Wide differences in Ig concentration in canine colostrum have been reported. Thus, some litters can be at risk of passive immune transfer failure. Present study evaluated if supplementation with MOS, FOS, E. faecium and L. acidophilus along pregnancy increases colostrum quality. Twenty Great Dane bitches were divided into 4 groups. Control group (CG) received standard diet, only. Diet was supplemented with pre- and probiotics in other 3 study groups during: the last (1WG), last 2 (2WG), and last 4 (4WG) weeks of pregnancy, until parturition. Serum samples were collected at estrous (T0), supplementation beginning (T1), and parturition (T2). Colostrum was collected at C-section end. The IgG, IgM, and IgA were assayed on both matrices. In serum, IgG were higher at T0 than at parturition in all study groups and they significantly lowered from T0 to T1 in all groups. In colostrum, IgG and IgM were significantly higher in 4WG, while IgA already increased in 2WG group. Four-week pre- and probiotic supplementation resulted in the best immune properties of colostrum, as by the higher IgG, IgM, and IgA colostrum levels found in 4WG. Further studies would verify the exact mechanisms involved: pre-partum IgG mammary accumulation and B-cells GALT proliferation and mammary transfer. Further trials would verify whether these beneficial effects of pre- and probiotics on colostrum also lead to improved clinical conditions and immunological functions of newborns and puppies.
Collapse
Affiliation(s)
| | - Giulio Guido Aiudi
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | | - Raffaella Leoci
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
9
|
Melandri M, Aiudi GG, Caira M, Alonge S. A Biotic Support During Pregnancy to Strengthen the Gastrointestinal Performance in Puppies. Front Vet Sci 2020; 7:417. [PMID: 32851009 PMCID: PMC7417339 DOI: 10.3389/fvets.2020.00417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Up to 60% of neonates can be affected by gastroenteritis due to specific pathogens or aspecific polymicrobial interactions. The present study evaluated if a dietary supplementation with MOS, FOS, E. faecium and L. acidophilus in pregnancy may reduce gastroenteritis in puppies. Fifteen Great Danes were divided in 3 groups. The control group (CG) ate a standard diet. In 2 study groups, the diet was supplemented with pre- and probiotics during the last (1WG) and the last 4 pregnancy weeks (4WG). Up to 9 weeks, puppies were checked daily to identify first- or second- presentation gastroenteritis. Data were processed by χ2 (P < 0.05). First-presentation gastroenteritis was more frequent in CG than in 1WG than in 4WG. Second-presentation gastroenteritis was more frequent in CG than in 1 and 4WG. Puppies from pre- and probiotics supplemented bitches were less prone to gastroenteritis. 1 or 4WG equally reduced second-presentation gastroenteritis in puppies, but 4WG was better than 1WG on first-presentation gastroenteritis. By entero-mammary link, supplemented bitches produced higher immune quality colostrum, thus puppies faced immunitary challenges better; moreover, maternal microbiota, positively altered by supplementation, was transferred to newborns, becoming more resistant to gastroenteritis. This information can be useful in clinical practice with the goal of preventing gastroenteritis in puppies and reducing its prevalence and severity.
Collapse
Affiliation(s)
| | - Giulio Guido Aiudi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Michele Caira
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
10
|
Immunomodulating effect of a seaweed extract from Ulva armoricana in pig: Specific IgG and total IgA in colostrum, milk, and blood. Vet Anim Sci 2019; 7:100051. [PMID: 32734073 PMCID: PMC7386684 DOI: 10.1016/j.vas.2019.100051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 11/23/2022] Open
Abstract
MSP extract increased IgG anti-Bordetella titers with the highest dosage. Improved IgG anti-Bordetella transudation from the blood to the colostrum. MSP extract increased total IgA titers in the milk, 7 days after farrowing.
The transfer of passive immunity from sows to piglets can be improved through the administration of immuno-stimulating products before farrowing. This study evaluated the immuno-stimulating effect of an algal sulfated polysaccharide extract (MSP extract) from the green algae Ulva armoricana when administrated orally to sows at the end of gestation. Four diets were tested: Control (no MSP extract), MSP1 (2 g/day of MSP extract), MSP2 (8 g/day), and MSP3 (16 g/day). The experimental diets were provided in two periods: before the last atrophic rhinitis vaccine booster, and a week before farrowing. Anti-Bordetella IgG antibodies were recorded in blood, colostrum, and milk, and total IgA were measured in colostrum and milk. Titer kinetics between the blood sampled before farrowing and colostrum displayed an increase in specific IgG for MSP3. Moreover, the MSP2 diet increased the level of total IgA in milk compared to the control group. Although the immuno-stimulating effect of MSP extract on piglet performance was not concurrent across the different supplementation levels, the present study supports the use of natural algae extract (MSP) as an immunomodulating solution in swine production.
Collapse
|
11
|
Pinna C, Biagi G. The Utilisation of Prebiotics and Synbiotics in Dogs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Samal L, Behura N. Prebiotics: An Emerging Nutritional Approach for Improving Gut Health of Livestock and Poultry. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.724.739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015; 2015:289267. [PMID: 25961072 PMCID: PMC4417592 DOI: 10.1155/2015/289267] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
|
14
|
Franco-Robles E, López MG. Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015. [PMID: 25961072 DOI: 10.1155/2015/289367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as "ROS scavengers" that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
Affiliation(s)
- Elena Franco-Robles
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| |
Collapse
|
15
|
Vogt L, Meyer D, Pullens G, Faas M, Smelt M, Venema K, Ramasamy U, Schols HA, De Vos P. Immunological Properties of Inulin-Type Fructans. Crit Rev Food Sci Nutr 2014; 55:414-36. [DOI: 10.1080/10408398.2012.656772] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Le Bourgot C, Ferret-Bernard S, Le Normand L, Savary G, Menendez-Aparicio E, Blat S, Appert-Bossard E, Respondek F, Le Huërou-Luron I. Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets. PLoS One 2014; 9:e107508. [PMID: 25238157 PMCID: PMC4169551 DOI: 10.1371/journal.pone.0107508] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023] Open
Abstract
Peripartum nutrition is crucial for developing the immune system of neonates. We hypothesized that maternal short-chain fructooligosaccharide (scFOS) supplementation could accelerate the development of intestinal immunity in offspring. Thirty-four sows received a standard or a scFOS supplemented diet (10 g scFOS/d) for the last 4 weeks of gestation and the 4 weeks of lactation. Colostrum and milk immunoglobulins (Ig) and TGFβ1 concentrations were evaluated on the day of delivery and at d 6 and d 21 postpartum. Piglet intestinal structure, the immunologic features of jejunal and ileal Peyer's patches, and mesenteric lymph node cells were analysed at postnatal d 21. Short-chain fatty acid concentrations were measured over time in the intestinal contents of suckling and weaned piglets. Colostral IgA (P<0.05) significantly increased because of scFOS and TGFβ1 concentrations tended to improve (P<0.1). IFNγ secretion by stimulated Peyer's patch and mesenteric lymph node cells, and secretory IgA production by unstimulated Peyer's patch cells were increased (P<0.05) in postnatal d 21 scFOS piglets. These differences were associated with a higher proportion of activated CD25+CD4α+ T cells among the CD4+ helper T lymphocytes (P<0.05) as assessed by flow cytometry. IFNγ secretion was positively correlated with the population of activated T lymphocytes (P<0.05). Total short-chain fatty acids were unchanged between groups during lactation but were higher in caecal contents of d 90 scFOS piglets (P<0.05); specifically propionate, butyrate and valerate. In conclusion, we demonstrated that maternal scFOS supplementation modified the intestinal immune functions in piglets in association with increased colostral immunity. Such results underline the key role of maternal nutrition in supporting the postnatal development of mucosal immunity.
Collapse
|
17
|
Abstract
This article discusses pediatric nutrition in puppies and kittens. Supplementation of basic nutrients such as fat, protein, minerals, vitamins, and essential fatty acids of the bitch is essential for the proper growth and development of puppies during the lactation period. Milk replacers are compared for use in puppies and kittens. Supplements such as colostrum and probiotics for promotion of a healthy immune system and prevention or treatment of stress-induced and weaning diarrhea are also discussed.
Collapse
Affiliation(s)
- Deborah S Greco
- Nestle Purina PetCare, One Checkerboard Square, St. Louis, MO 63164, USA.
| |
Collapse
|
18
|
Butt MS, Sultan MT. Selected Functional Foods for Potential in Disease Treatment and Their Regulatory Issues. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2010.551313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Abstract
Beta2-1 fructans are carbohydrate molecules with prebiotic properties. Through resistance to digestion in the upper gastrointestinal tract, they reach the colon intact, where they selectively stimulate the growth and/or activity of beneficial members of the gut microbiota. Through this modification of the intestinal microbiota, and by additional mechanisms, beta2-1 fructans may have beneficial effects upon immune function, ability to combat infection, and inflammatory processes and conditions. In this paper, we have collated, summarised and evaluated studies investigating these areas. Twenty-one studies in laboratory animals suggest that some aspects of innate and adaptive immunity of the gut and the systemic immune systems are modified by beta2-1 fructans. In man, two studies in children and nine studies in adults indicate that the adaptive immune system may be modified by beta2-1 fructans. Thirteen studies in animal models of intestinal infections conclude a beneficial effect of beta2-1 fructans. Ten trials involving infants and children have mostly reported benefits on infectious outcomes; in fifteen adult trials, little effect was generally seen, although in specific situations, certain beta2-1 fructans may be beneficial. Ten studies in animal models show benefit of beta2-1 fructans with regard to intestinal inflammation. Human studies report some benefits regarding inflammatory bowel disease (four positive studies) and atopic dermatitis (one positive study), but findings in irritable bowel syndrome are inconsistent. Therefore, overall the results indicate that beta2-1 fructans are able to modulate some aspects of immune function, to improve the host's ability to respond successfully to certain intestinal infections, and to modify some inflammatory conditions.
Collapse
|
20
|
|