1
|
Shen Q, Yang H, Li Y, Li S, Chen K, Wang H, Wang H, Ma J. Rapid determination of antiviral drugs in yellow catfish (Pelteobagrus fulvidraco) using graphene/silica nanospheres (G/KCC-1) based pipette tip solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123097. [PMID: 35007897 DOI: 10.1016/j.jchromb.2022.123097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/25/2021] [Accepted: 01/01/2022] [Indexed: 11/19/2022]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) is commonly contaminated by protease inhibitors because of the illegal use of antiviral drugs in aquaculture, so the determination of antiviral drugs is essential in food safety supervision. In this study, a novel sorbent, graphene and silica nanospheres composite (G/KCC-1), was synthesized for pipette-tip-based solid-phase extraction (PT-SPE) and purification of ritonavir, saquinavir, and indinavir in yellow catfish, followed by ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) analysis. The wrinkly structure of G/KCC-1 with center-radial nanowrinkles enlarged the surface area and increased the capacity of absorbing the target analyte. With the proposed G/KCC-1 based PT-SPE UPLC-MS/MS method, the pH of sample solution, aspirating/dispensing cycles for extraction and elution were optimized to be 4.0, 25, and 10 respectively, and the eluting solvent was methanol/ammonia (95:5, v/v) with 0.02 M sodium chloride. This new method was further validated to be linear (correlation coefficient R2, 0.9993-0.9996), sensitive (limit of detection, LOD ≤ 0.8 ng mL-1), accurate (89.3-114.2%), and precise (relative standard deviation, RSD ≤ 6.23%). These results indicated that the proposed method is qualified in bioanalytical method validation and meets the requirements for detecting illegally used antiviral drugs in yellow catfish. The demonstrated G/KCC-1 based PT-SPE UPLC-MS/MS method is a potential analytical method in food and drug administration.
Collapse
Affiliation(s)
- Qing Shen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Yunyan Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Shiyan Li
- Zhejiang Fishery Technical Extension Center, Hangzhou, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Haixing Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jianfeng Ma
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Gilannejad N, Paykan Heyrati F, Dorafshan S, Martos-Sitcha JA, Yúfera M, Martínez-Rodríguez G. Molecular basis of the digestive functionality in developing Persian sturgeon (Acipenser persicus) larvae: additional clues for its phylogenetic status. J Comp Physiol B 2019; 189:367-383. [DOI: 10.1007/s00360-019-01215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
3
|
Chen Q, Zhao H, Huang Y, Cao J, Wang G, Sun Y, Li Y. Effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish ( Pelteobagrus fulvidraco). ACTA ACUST UNITED AC 2016; 2:204-210. [PMID: 29767042 PMCID: PMC5941038 DOI: 10.1016/j.aninu.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
This experiment was conducted to investigate the effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish (Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets (42% protein and 9% lipid) were formulated to contain graded levels of arginine (2.44%, 2.64%, 2.81%, 3.01% and 3.23% of diet), by supplementing L-Arginine HCl. Seven hundred juvenile yellow catfish with an initial average body weight of 1.13 ± 0.02 g were randomly divided into 5 groups with 4 replicates of 35 fish each and each group was fed one of the diets. After 56 d feeding, fish were exposed to 100 mg/L of ammonia-nitrogen for 72 h. The results showed that weight gain (WG) and specific growth rate (SGR) in 2.64% and 2.81% groups were significantly higher than those in 3.23% group (P < 0.05). The feed conversation ratio (FCR) in 2.64%, 2.81% and 3.01% groups was significantly decreased when compared with 3.23% group. The protein efficiency ratio (PER) in 2.64% group was significantly higher than that in 2.44% and 3.23% groups (P < 0.05). The condition factor (CF) of fish was significantly higher in 2.81% group than that in 2.44% group (P < 0.05). Dietary arginine levels had no significant effect on hepatosomatic index (HSI), viscerosomatic index (VSI), and whole-body dry matter, crude protein, crude lipid, ash contents, as well as serum total protein (TP), triglyceride (TG), glucose (GLU), urea nitrogen (UN) contents and aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities (P > 0.05). After the fish were challenged to ammonia-nitrogen for 72 h, their cumulative mortality rate in 2.81% group was significantly lower than that in 2.44% group (P < 0.05). The results suggested that dietary arginine level at 2.81% could optimize anti-ammonia-nitrogen stress ability of juvenile yellow catfish and a level of 3.23% arginine seemed to depress the growth performance of fish and decreased their tolerance to the ammonia-nitrogen stress under current study. A quadratic regression analysis based on WG indicated that the optimal dietary arginine requirement of juvenile yellow catfish was estimated to be 2.74% of the diet (6.45% of dietary protein) under current culture conditions.
Collapse
Affiliation(s)
- Qiming Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Hongxia Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yanhua Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Junming Cao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Corresponding author.
| | - Guoxia Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yuping Sun
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yongjuan Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
4
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
5
|
Gomes AS, Kamisaka Y, Harboe T, Power DM, Rønnestad I. Functional modifications associated with gastrointestinal tract organogenesis during metamorphosis in Atlantic halibut (Hippoglossus hippoglossus). BMC DEVELOPMENTAL BIOLOGY 2014; 14:11. [PMID: 24552353 PMCID: PMC3940299 DOI: 10.1186/1471-213x-14-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. RESULTS Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and β subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. CONCLUSIONS The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.
Collapse
Affiliation(s)
- Ana S Gomes
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Yuko Kamisaka
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Aquaculture Research Station, NO-5392 Storebø, Norway
| | - Deborah M Power
- Comparative and Molecular Endocrinology Group, Centre for Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Po. Box 7803, NO-5020 Bergen, Norway
| |
Collapse
|
6
|
Yúfera M, Moyano FJ, Astola A, Pousão-Ferreira P, Martínez-Rodríguez G. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS One 2012; 7:e33687. [PMID: 22448266 PMCID: PMC3309002 DOI: 10.1371/journal.pone.0033687] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/15/2012] [Indexed: 12/26/2022] Open
Abstract
Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.
Collapse
Affiliation(s)
- Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC). Apartado Oficial, Puerto Real, Cadiz, Spain.
| | | | | | | | | |
Collapse
|