Murphy KT, Aughey RJ, Petersen AC, Clark SA, Goodman C, Hawley JA, Cameron-Smith D, Snow RJ, McKenna MJ. Effects of endurance training status and sex differences on Na+,K+-pump mRNA expression, content and maximal activity in human skeletal muscle.
Acta Physiol (Oxf) 2007;
189:259-69. [PMID:
17305706 DOI:
10.1111/j.1748-1716.2006.01635.x]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM
This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity.
METHODS
Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump alpha1, alpha2, alpha3, beta1, beta2 and beta3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase).
RESULTS
ETM demonstrated lower alpha1, alpha3, beta2 and beta3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P<0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P<0.03). RAM demonstrated a 230% and 364% higher alpha3 and beta3 mRNA expression than RAF, respectively (P<0.05), but no significant sex differences were found for alpha1, alpha2, beta1 or beta2 mRNA, [3H]-ouabain binding or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r=0.31, P<0.02) and between incremental exercise VO2(peak)) and both [3H]-ouabain binding (r=0.33, P<0.01) and 3-O-MFPase activity (r=0.28, P<0.03).
CONCLUSIONS
Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.
Collapse