1
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
2
|
Jokura K, Shibata D, Yamaguchi K, Shiba K, Makino Y, Shigenobu S, Inaba K. CTENO64 Is Required for Coordinated Paddling of Ciliary Comb Plate in Ctenophores. Curr Biol 2019; 29:3510-3516.e4. [DOI: 10.1016/j.cub.2019.08.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
|
3
|
Fromm B, Tosar JP, Aguilera F, Friedländer MR, Bachmann L, Hejnol A. Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha). Noncoding RNA 2019; 5:E19. [PMID: 30813358 PMCID: PMC6468455 DOI: 10.3390/ncrna5010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Gastrotrichs-'hairy bellies'-are microscopic free-living animals inhabiting marine and freshwater habitats. Based on morphological and early molecular analyses, gastrotrichs were placed close to nematodes, but recent phylogenomic analyses have suggested their close relationship to flatworms (Platyhelminthes) within Spiralia. Small non-coding RNA data on e.g., microRNAs (miRNAs) and PIWI-interacting RNAs (piRNA) may help to resolve this long-standing question. MiRNAs are short post-transcriptional gene regulators that together with piRNAs play key roles in development. In a 'multi-omics' approach we here used small-RNA sequencing, available transcriptome and genomic data to unravel the miRNA- and piRNA complements along with the RNAi (RNA interference) protein machinery of Lepidodermella squamata (Gastrotricha, Chaetonotida). We identified 52 miRNA genes representing 35 highly conserved miRNA families specific to Eumetazoa, Bilateria, Protostomia, and Spiralia, respectively, with overall high similarities to platyhelminth miRNA complements. In addition, we found four large piRNA clusters that also resemble flatworm piRNAs but not those earlier described for nematodes. Congruently, transcriptomic annotation revealed that the Lepidodermella protein machinery is highly similar to flatworms, too. Taken together, miRNA, piRNA, and protein data support a close relationship of gastrotrichs and flatworms.
Collapse
Affiliation(s)
- Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
- Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay.
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160_C, Concepción 3349001, Chile.
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway.
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | - Lutz Bachmann
- Research group Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, 0318 Oslo, Norway.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
4
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Bekkouche N, Worsaae K. Neuromuscular study of early branching Diuronotus aspetos (Paucitubulatina) yields insights into the evolution of organs systems in Gastrotricha. ZOOLOGICAL LETTERS 2016; 2:21. [PMID: 27688902 PMCID: PMC5034412 DOI: 10.1186/s40851-016-0054-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/17/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically understudied group. Here we test its phylogenetic position employing molecular data, and provide detailed descriptions of the muscular, nervous, and ciliary systems of Diuronotus aspetos, using immunohistochemistry and confocal laser scanning microscopy. RESULTS We confirm the proposed position of D. aspetos within Muselliferidae, and find this family to be the sister group to Xenotrichulidae. The muscular system, revealed by F-actin staining, shows a simple, but unique organization of the trunk musculature with a reduction to three pairs of longitudinal muscles and addition of up to five pairs of dorso-ventral muscles, versus the six longitudinal and two dorso-ventral pairs found in most Paucitubulatina. Using acetylated α-tubulin immunoreactivity, we describe the pharynx in detail, including new nervous structures, two pairs of sensory cilia, and a unique canal system. The central nervous system, as revealed by immunohistochemistry, shows the general pattern of Gastrotricha having a bilobed brain and a pair of ventro-longitudinal nerve cords. However, in addition are found an anterior nerve ring, several anterior longitudinal nerves, and four ventral commissures (pharyngeal, trunk, pre-anal, and terminal). Two pairs of protonephridia are documented, while other Paucitubulatina have one. Moreover, the precise arrangement of multiciliated cells is unraveled, yielding a pattern of possibly systematic importance. CONCLUSION Several neural structures of Diuronotus resemble those found in Xenotrichula (Xenotrichulidae) and may constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present study offers new insights into the evolution of organ systems and systematic importance of so-far neglected characters in Gastrotricha.
Collapse
Affiliation(s)
- Nicolas Bekkouche
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH. Illuminating the Base of the Annelid Tree Using Transcriptomics. Mol Biol Evol 2014; 31:1391-401. [DOI: 10.1093/molbev/msu080] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Müller CHG, Rieger V, Perez Y, Harzsch S. Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0211-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
CAPA MARIA, PARAPAR JULIO, HUTCHINGS PAT. Phylogeny of Oweniidae (Polychaeta) based on morphological data and taxonomic revision of Australian fauna. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2012.00850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Gonobobleva E, Maldonado M. Choanocyte ultrastructure in Halisarca dujardini (Demospongiae, Halisarcida). J Morphol 2009; 270:615-27. [PMID: 19107941 DOI: 10.1002/jmor.10709] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding poriferan choanocyte ultrastructure is crucial if we are to unravel the steps of a putative evolutionary transition between choanoflagellate protists and early metazoans. Surprisingly, some aspects of choanocyte cytology still remain little investigated. This study of choanocyte ultrastructure in the halisarcid demosponge Halisarca dujardini revealed a combination of minor and major distinctive traits, some of them unknown in Porifera so far. Most significant features were 1) an asymmetrical periflagellar sleeve, 2) a battery of specialized intercellular junctions at the lateral cell surface complemented with an array of lateral interdigitations between adjacent choanocytes that provides a particular sealing system of the choanoderm, and 3) a unique, unexpectedly complex, basal apparatus. The basal apparatus consists of a basal body provided with a small basal foot and an intricate transverse skeleton of microtubules. An accessory centriole, which is not perpendicular to the basal body, is about 45 degrees . In addition, a system of short striated rootlets (periodicity = 50-60 nm) arises from the proximal edge of the basal body and runs longitudinally to contact the nuclear apex. This is the first flagellar rootlet system ever found in a choanocyte. The accessory centriole, the rootlet system, and the nuclear apex are all encircled by a large Golgi apparatus, adding another distinctive feature to the choanocyte cytology. The set of distinct features discovered in the choanocyte of H. dujardini indicates that the ultrastructure of the poriferan choanocyte may vary substantially between sponge groups. It is necessary to improve understanding of such variation, as the cytological features of choanocytes are often coded as characters both for formulation of hypotheses on the origin of animals and inference of phylogenetic relationships at the base of the metazoan tree.
Collapse
Affiliation(s)
- Elisaveta Gonobobleva
- Department of Embryology, Biological Faculty, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia.
| | | |
Collapse
|
11
|
Rieger RM, Mainitz M. Comparative fine structure study of the body wall in Gnathostomulida and their phylogenetic position between Platyhelminthes and Aschelminthes. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1977.tb00530.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Rieger GE, Rieger RM. Comparative fine structure study of the Gastrotrich cuticle and aspects of cuticle evolution within the Aschelminthes1. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1977.tb00533.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Bartolomaeus T, Ax P. Protonephridia and Metanephridia - their relation within the Bilateria. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1992.tb00388.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
|
16
|
|
17
|
Kieneke A, Riemann O, Ahlrichs WH. Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. ZOOL SCR 2008. [DOI: 10.1111/j.1463-6409.2008.00334.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
LITTLEWOOD DTJ, ROHDE K, CLOUGH KA. The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1999.tb01918.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Westheide W. On the love of detail and the search for grand connections: a tribute to Reinhard Rieger, 10th May 1943 to 11th October 2006. ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Liesenjohann T, Neuhaus B, Schmidt-Rhaesa A. Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques. J Morphol 2006; 267:897-908. [PMID: 16739161 DOI: 10.1002/jmor.10419] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha.
Collapse
|
22
|
Parapar J. The generaMyriocheleandMyrioglobula(Polychaeta, Oweniidae) in Icelandic waters with the revision of type material ofMyriochele heeriMalmgren, 1867, and the description of a new species. J NAT HIST 2006. [DOI: 10.1080/00222930600711758] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Sorensen MV, Sterrer W, Giribet G. Gnathostomulid phylogeny inferred from a combined approach of four molecular loci and morphology. Cladistics 2006; 22:32-58. [DOI: 10.1111/j.1096-0031.2006.00085.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Ruppert EE. Key characters uniting hemichordates and chordates: homologies or homoplasies? CAN J ZOOL 2005. [DOI: 10.1139/z04-158] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four chordate characters — dorsal hollow nerve cord, notochord, gill slits, and endostyle — are compared morphologically, molecularly, and functionally with similar structures in hemichordates to assess their putative homologies. The dorsal hollow nerve cord and enteropneust neurocord are probably homoplasies. The neurocord (= collar cord) may be an autapomorphy of Enteropneusta that innervates a unique pair of muscles, the perihemal coelomic muscles. Despite the apparent lack of organ-level homology, chordates and enteropneusts share a common pattern of neurulation that preserves a "contact innervation" between neuro- and myo-epithelia, which may be the primitive deuterostome pattern of neuromuscular innervation. The chordate notochord and hemichordate stomochord are probably homoplasies. Other potential notochord antecedents in hemichordates are examined, but no clear homolog is identified. The comparative morphology of notochords suggests that the "stack-of-coins" developmental stage, retained into adulthood only by cephalochordates, is the plesiomorphic notochord form. Hemichordate and chordate gill slits are probably homologs, but only at the level of simple ciliated circular or oval pores, lacking a skeleton, as occur in adults of Cephalodiscus spp., developmentally in some enteropneusts, and in many urochordates. Functional morphology, I125-binding experiments, and genetic data suggest that endostylar function may reside in the entire pharyngeal lining of Enteropneusta and is not restricted to a specialized midline structure as in chordates. A cladistic analysis of Deuterostomia, based partly on homologs discussed in this paper, indicates a sister-taxon relationship between Urochordata and Vertebrata, with Cephalochordata as the plesiomorphic clade.
Collapse
|
25
|
ERESKOVSKY ALEXANDERV, TOKINA DARIAB. Morphology and fine structure of the swimming larvae ofIrcinia oros(Porifera, Demospongiae, Dictyoceratida). INVERTEBR REPROD DEV 2004. [DOI: 10.1080/07924259.2004.9652583] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Lundin K, Schander C. Epidermal ciliary ultrastructure of adult and larval sipunculids (Sipunculida). ACTA ZOOL-STOCKHOLM 2003. [DOI: 10.1046/j.1463-6395.2003.00136.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
|
28
|
Todaro MA, Littlewood DTJ, Balsamo M, Herniou EA, Cassanelli S, Manicardi G, Wirz A, Tongiorgi P. The Interrelationships of the Gastrotricha Using Nuclear Small rRNA Subunit Sequence Data, with an Interpretation Based on Morphology. ZOOL ANZ 2003. [DOI: 10.1078/0044-5231-00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
|
30
|
Abstract
A new microscopic aschelminth-like animal, Limnognathia maerski nov. gen. et sp., is described from a cold spring at Disko Island, West Greenland, and assigned to Micrognathozoa nov. class. It has a complex of jaws in its pharynx, and the ultrastructure of the main jaws is similar to that of the jaws of advanced scleroperalian gnathostomulids. However, other jaw elements appear also to have characteristics of the trophi of Rotifera. Jaw-like structures are found in other protostome taxa as well-for instance, in proboscises of kalyptorhynch platyhelminths, in dorvilleid polychaetes and aplacophoran mollusks-but studies of their ultrastructure show that none of these jaws is homologous with jaws found in Gnathostomulida, Rotifera, and Micrognathozoa. The latter three groups have recently been joined into the monophylum Gnathifera Ahlrichs, 1995, an interpretation supported by the presence of jaw elements with cuticular rods with osmiophilic cores in all three groups. Such tubular structures are found in the fulcrum of all Rotifera and in several cuticular sclerites of both Gnathostomulida and Micrognathozoa. The gross morphology of the pharyngeal apparatus is similar in the three groups. It consists of a ventral pharyngeal bulb and a dorsal pharyngeal lumen. The absence of pharyngeal ciliation cannot be used as an autapomorphy in the ground pattern of the Gnathifera because the Micrognathozoa has the plesiomorphic alternative with a ciliated pharyngeal epithelium. The body of Limnognathia maerski nov. gen. et sp. consists of a head, thorax, and abdomen. The dorsal and lateral epidermis have plates formed by an intracellular matrix, as in Rotifera and Acanthocephala; however, the epidermis is not syncytial. The ventral epidermis lacks internal plates, but has a cuticular oral plate without ciliary structures. Two ventral rows of multiciliated cells form a locomotory organ. These ciliated cells resemble the ciliophores present in some interstitial annelids. An adhesive ciliated pad is located ventrally close to a caudal plate. As in many marine interstitial animals-e.g., gnathostomulids, gastrotrichs, and polychaetes-a special form of tactile bristles or sensoria is found on the body. Two pairs of protonephridia with unicellular terminal cells are found in the trunk; this unicellular condition may be the plesiomorphic condition in Bilateria. Only specimens with the female reproductive system have been found, indicating that all adult animals are parthenogenetic females. We suggest that 1) jaws of Gnathostomulida, Rotifera, and the new taxon, Micrognathozoa, are homologous structures; 2) Rotifera (including Acanthocephala) and the new group might be sister groups, while Gnathostomulida could be the sister-group to this assemblage; and 3) the similarities to certain gastrotrichs and interstitial polychaetes are convergent.
Collapse
Affiliation(s)
- R M Kristensen
- Department of Invertebrate Zoology, Zoological Museum, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
31
|
Abstract
A new microscopic aschelminth-like animal, Limnognathia maerski nov. gen. et sp., is described from a cold spring at Disko Island, West Greenland, and assigned to Micrognathozoa nov. class. It has a complex of jaws in its pharynx, and the ultrastructure of the main jaws is similar to that of the jaws of advanced scleroperalian gnathostomulids. However, other jaw elements appear also to have characteristics of the trophi of Rotifera. Jaw-like structures are found in other protostome taxa as well-for instance, in proboscises of kalyptorhynch platyhelminths, in dorvilleid polychaetes and aplacophoran mollusks-but studies of their ultrastructure show that none of these jaws is homologous with jaws found in Gnathostomulida, Rotifera, and Micrognathozoa. The latter three groups have recently been joined into the monophylum Gnathifera Ahlrichs, 1995, an interpretation supported by the presence of jaw elements with cuticular rods with osmiophilic cores in all three groups. Such tubular structures are found in the fulcrum of all Rotifera and in several cuticular sclerites of both Gnathostomulida and Micrognathozoa. The gross morphology of the pharyngeal apparatus is similar in the three groups. It consists of a ventral pharyngeal bulb and a dorsal pharyngeal lumen. The absence of pharyngeal ciliation cannot be used as an autapomorphy in the ground pattern of the Gnathifera because the Micrognathozoa has the plesiomorphic alternative with a ciliated pharyngeal epithelium. The body of Limnognathia maerski nov. gen. et sp. consists of a head, thorax, and abdomen. The dorsal and lateral epidermis have plates formed by an intracellular matrix, as in Rotifera and Acanthocephala; however, the epidermis is not syncytial. The ventral epidermis lacks internal plates, but has a cuticular oral plate without ciliary structures. Two ventral rows of multiciliated cells form a locomotory organ. These ciliated cells resemble the ciliophores present in some interstitial annelids. An adhesive ciliated pad is located ventrally close to a caudal plate. As in many marine interstitial animals-e.g., gnathostomulids, gastrotrichs, and polychaetes-a special form of tactile bristles or sensoria is found on the body. Two pairs of protonephridia with unicellular terminal cells are found in the trunk; this unicellular condition may be the plesiomorphic condition in Bilateria. Only specimens with the female reproductive system have been found, indicating that all adult animals are parthenogenetic females. We suggest that 1) jaws of Gnathostomulida, Rotifera, and the new taxon, Micrognathozoa, are homologous structures; 2) Rotifera (including Acanthocephala) and the new group might be sister groups, while Gnathostomulida could be the sister-group to this assemblage; and 3) the similarities to certain gastrotrichs and interstitial polychaetes are convergent.
Collapse
Affiliation(s)
- R M Kristensen
- Department of Invertebrate Zoology, Zoological Museum, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
32
|
Abstract
A new hypothesis for the evolution of Bilateria is presented. It is based on a reinterpretation of the morphological characters shared by protostomes and deuterostomes, which, when taken together with developmental processes shared by the two lineages, lead to the inescapable conclusion that the last common ancestor of Bilateria was complex. It possessed a head, a segmented trunk, and a tail. The segmented trunk was further divided into two sections. A dorsal brain innervated one or more sensory cells, which included photoreceptors. "Appendages" or outgrowths were present. The bilaterian ancestor also possessed serially repeated "segments" that were expressed ontogenetically as blocks of mesoderm or somites with adjoining fields of ectoderm or neuroectoderm. It displayed serially repeated gonads (gonocoels), each with a gonoduct and gonopore to the exterior, and serially repeated "coeloms" with connections to both the gut and the exterior (gill slits and pores). Podocytes, some of which were serially repeated in the trunk, formed sites of ultrafiltration. In addition, the bilaterian ancestor had unsegmented coeloms and a contractile blood vessel or "heart" formed by coelomic myoepithelial cells. These cells and their underlying basement membrane confine the hemocoelic fluid, or blood, in the connective tissue compartment. A possible scenario to account for this particular suite of characters is one in which a colony of organisms with a cnidarian grade of organization became individuated into a new entity with a bilaterian grade of organization. The transformation postulated encompassed three major transitions in the evolution of animals. These transitions included the origins of Metazoa, Eumetazoa, and Bilateria and involved the successive development of poriferan, cnidarian, and bilaterian grades of organization. Two models are presented for the sponge-to-cnidarian transition. In both models the loss of a flow-through pattern of water circulation in poriferans and the establishment of a single opening and epithelia sensu stricto in cnidarians are considered crucial events. In the model offered for the cnidarian-to-bilaterian transition, the last common ancestor of Eumetazoa is considered to have had a colonial, cnidarian-grade of organization. The ancestral cnidarian body plan would have been similar to that exhibited by pennatulacean anthozoans. It is postulated that a colonial organization could have provided a preadaptive framework for the evolution of the complex and modularized body plan of the triploblastic ancestor of Bilateria. Thus, one can explore the possibility that problematica such as ctenophores, the Ediacaran biota, archaeocyaths, and Yunnanozoon reflect the fact that complexity originated early and involved the evolution of a macroscopic compartmented ancestor. Bilaterian complexity can be understood in terms of Beklemishev "cycles" of duplication and colony individuation. Two such cycles appear to have transpired in the early evolution of Metazoa. The first gave rise to a multicellular organism with a sponge grade of organization and the second to the modularized ancestor of Bilateria. The latter episode may have been favored by the ecological conditions in the late Proterozoic. Whatever its cause, the individuation of a cnidarian-grade colony furnishes a possible explanation for the rapid diversification of bilaterians in the late Vendian and Cambrian. The creation of a complex yet versatile prototype, which could be rapidly modified by selection into a profusion of body plans, is postulated to have affected the timing, mode, and extent of the "Cambrian explosion." During the radiations, selective loss or simplification may have been as creative a force as innovation. Finally, colony individuation may have been a unique historical event that imprinted the development of bilaterians as the zootype and phylotypic stage. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- R A Dewel
- Department of Biology, Appalachian State University, Boone, NC 28606, USA.
| |
Collapse
|
33
|
Wirz A, Pucciarelli S, Miceli C, Tongiorgi P, Balsamo M. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene. Mol Phylogenet Evol 1999; 13:314-8. [PMID: 10603259 DOI: 10.1006/mpev.1999.0650] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded.
Collapse
Affiliation(s)
- A Wirz
- Dipartimento di Biologia Animale, Università di Modena, via Università, 4, Modena, I-41100, Italy
| | | | | | | | | |
Collapse
|
34
|
BOURY-ESNAULT NICOLE, EFREMOVA SOFIA, BÉZAC CHANTAL, VACELET JEAN. Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera. INVERTEBR REPROD DEV 1999. [DOI: 10.1080/07924259.1999.9652385] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Frick JE, Ruppert EE. Primordial germ cells and oocytes of Branchiostoma virginiae (Cephalochordata, Acrania) are flagellated epithelial cells: relationship between epithelial and primary egg polarity. ZYGOTE 1997; 5:139-51. [PMID: 9276511 DOI: 10.1017/s0967199400003816] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Primordial germ cells (PGCs) are described from the gonad of c. 2 cm juvenile Branchiostoma virginiae; early oocytes (c. 10 microm) and enlarging, previtellogenic oocytes (c. 35 microm) are described from the ovary of c. 5 cm adults. The germinal epithelium of the juvenile gonad and adult ovary is composed of both germinal and somatic cells. In the juvenile, somatic cells retain contact with the basal lamina of the germinal epithelium though their perikarya may be displaced towards the lumen; the germinal epithelium is, therefore, a simple but pseudostratified epithelium. In the adult ovary, somatic cells may lose contact with the basal lamina and the epithelium appears to become stratified. PGCs and oocytes are identified as germ cells by the presence of nuage. PGCs and oocytes are polarised epithelial cells. They rest on a basal lamina, extend apically towards a lumen, form adhering junctions with neighbouring cells, and exhibit apical-basal polarity. PGCs and early oocytes have an apical flagellum with an associated basal body, accessory centriole, and one or more striated rootlet fibres. The flagellum is surrounded by a collar of microvilli. Once oocytes begin to enlarge and bulge basally into the connective tissue layer, the flagellum is lost, but the basal bodies and ciliary rootlets are present at the apex of 35 microm oocytes. Similarities of the oogenic pattern in cephalochordates and echinoderms indicate that the establishment of egg polarity in deuterostomes is influenced by the polarity of the germinal epithelium.
Collapse
Affiliation(s)
- J E Frick
- Department of Biological Sciences, Clemson University, South Carolina 29634-1903, USA.
| | | |
Collapse
|
36
|
|
37
|
|
38
|
Meyer K, Bartolomaeus T. Ultrastructure and formation of the hooked setae in Owenia fusiformis delle Chiaje, 1842: implications for annelid phylogeny. CAN J ZOOL 1996. [DOI: 10.1139/z96-243] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several members of the Annelida bear apically curved or hooked setae that are aligned in a transverse row inside the neuropodial rim. Based on the hypothesis that these specific setae characterize a monophyletic group within the Annelida, the structure and development of the hooked seta in Owenia fusiformis are analysed and compared with data from other annelids with such setae. The neuropodial hooks of O. fusiformis are arranged in multiple transversal rows or setal patches on each side of the body from the fourth setiger onwards. The setae are curved distally and consist of two identical spines lying side by side at the same level. Their tips generally point ventrofrontally. Within each patch, the setae lie inside a setal follicle that consists of a basal chaetoblast, at least one follicle cell, and varying numbers of epidermal cells. Each setal patch is basally surrounded by an extracellular matrix that is continuous with the subepidermal basal lamina. An additional discontinuous extracellular matrix lies between the epidermis and the follicle cells. It is of functional significance for the attachment of the epidermal cells and seems to be related to the special organization of the setal patches, because it is absent in juveniles; they have single neuropodial rows of hooked setae per segment. New setae are formed at the dorsal and caudal edges of each patch, whereas the degeneration of setae is observed at the frontal edge of each patch. Microvilli project from the apex of the chaetoblast into canals within the fully differentiated setae. These canals remain when the microvilli are withdrawn from the seta during formation. Each hook is formed by a single large microvillus. The results of the present paper substantiate the hypothesis of a homology of the hooked setae in the Oweniida and other Annelida. These results and data from the literature support the hypothesis that the Oweniida is the sister-group of a monophylum which consists of the Terebellida, Pogonophora, and Sabellida.
Collapse
|
39
|
Montalvo S, Junoy J, Roldán C, García-Corrales P. Ultrastructural study of sensory cells of the proboscidial glandular epithelium of Riseriellus occultus (Nemertea, Heteronemertea). J Morphol 1996; 229:83-96. [PMID: 29852637 DOI: 10.1002/(sici)1097-4687(199607)229:1<83::aid-jmor5>3.0.co;2-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Only one sensory cell type has been observed within the glandular epithelium of the proboscis in the heteronemertine Riseriellus occultus. These bipolar cells are abundant and scattered singly throughout the proboscis length. The apical surface of each dendrite bears a single cilium enclosed by a ring of six to eight prominent microvilli. The cilium has the typical 9×2 + 2 axoneme arrangement and is equipped with a cross-striated vertical rootlet extending from the basal body. No accessory centriole or horizontal rootlet was observed. Large, modified microvilli (stereovilli) surrounding the cilium are joined together by a system of fine filaments derived from the glycocalyx. Each microvillus contains a bundle of actin-like filaments which anchor on the indented inner surface of a dense, apical ring situated beneath the level of the ciliary basal body. The tip of the cilium is expanded and modified to form a bulb-like structure which lies above the level where the surrounding microvilli terminate. In the region where the cilium emerges from the microvillar cone, the membrane of the microvillar apices makes contact with a corresponding portion of the ciliary membrane. At this level microvilli and cilium are apparently firmly linked by junctional systems resembling adherens junctions. The results suggest that these sensory cells may be mechanoreceptors. © 1996 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Sagrario Montalvo
- Department of Animal Biology, University of Alcalá de Henares, E-28871, Alcalá de Henares, Madrid, Spain
| | - Juan Junoy
- Department of Animal Biology, University of Alcalá de Henares, E-28871, Alcalá de Henares, Madrid, Spain
| | - Carmen Roldán
- Department of Animal Biology I, Faculty of Biology, University Complutense, E-28040, Madrid, Spain
| | - Pedro García-Corrales
- Department of Animal Biology, University of Alcalá de Henares, E-28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
40
|
Woollacott RM, Pinto RL. Flagellar basal apparatus and its utility in phylogenetic analyses of the porifera. J Morphol 1995; 226:247-265. [DOI: 10.1002/jmor.1052260302] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Raikova EV. Occurrence and Ultrastructure of Collar Cells in the Stomach Gastrodermis ofPolypodium hydriformeUssov (Cnidaria). ACTA ZOOL-STOCKHOLM 1995. [DOI: 10.1111/j.1463-6395.1995.tb00977.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Reunov AA, Hodgson AN. Ultrastructure of the spermatozoa of five species of South African bivalves (Mollusca), and an examination of early spermatogenesis. J Morphol 1994; 219:275-283. [DOI: 10.1002/jmor.1052190307] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Cifrian B, García-Corrales P, Martínez-Alos S. Intracytoplasmic ciliary elements in epidermal cells of Syndesmis echinorum and Paravortex cardii (Platyhelminthes, Dalyellioida). J Morphol 1992; 213:147-57. [PMID: 1518068 DOI: 10.1002/jmor.1052130202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidermal cells of Syndesmis echinorum and Paravortex cardii contain many intracytoplasmic ciliary components: clusters of centrioles disorganized and incomplete short axonemes composed of loosely organized microtubules of irregular lengths, fully formed axonemes though some with fewer than nine doublets, and ciliary rootlets. Furthermore, conspicuous dense granules are found in solitary groups in the cytoplasm. Clusters of dense granules are also closely associated with Golgi complexes and developing axonemal microtubules. Since the dense granules decrease in number as the axonemes increase, it is likely that the granules are involved in the formation of axonemal microtubules. Ciliary elements are especially abundant in epidermal cells of Paravortex cardii embryos, some of them resembling those previously described by several authors in differentiating ciliated cells engaged in centriologenesis and ciliogenesis. Attention has been focused on the relative proportion and position of these elements, as well as the different morphology and several assembling states that they exhibit in epidermal cells of adult S. echinorum and adults and embryos of P. cardii. A functional interpretation of some of the findings is given, which allows us to suggest a sequence of ciliogenetic events that occur in epidermal cells of both species.
Collapse
Affiliation(s)
- B Cifrian
- Department of Animal Biology, University of Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
44
|
Martinez A, Lopez J, Villaro AC, Sesma P. Choanocyte-like cells in the digestive system of the starfishMarthasterias glacialis (Echinodermata). J Morphol 1991; 208:215-225. [DOI: 10.1002/jmor.1052080207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Balser EJ, Ruppert EE. Structure, Ultrastructure, and Function of the Preoral Heart-Kidney inSaccoglossus kowalevskii(Hemichordata, Enteropneusta) Including New Data on the Stomochord. ACTA ZOOL-STOCKHOLM 1990. [DOI: 10.1111/j.1463-6395.1990.tb01082.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Schuchert P, Rieger RM. Ultrastructural Observations on the Dwarf Male ofBonellia viridis(Echiura). ACTA ZOOL-STOCKHOLM 1990. [DOI: 10.1111/j.1463-6395.1990.tb01175.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
|
48
|
Bartolomaeus T. Ultrastructure and development of the nephridia in Anaitides mucosa (Annelida, Polychaeta). ZOOMORPHOLOGY 1989. [DOI: 10.1007/bf00312180] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Nielsen C. Structure and Function of Metazoan Ciliary Bands and Their Phylogenetic Significance. ACTA ZOOL-STOCKHOLM 1987. [DOI: 10.1111/j.1463-6395.1987.tb00892.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Burt MD. Early morphogenesis in the platyhelminthes with special reference to egg development and development of cestode larvae. Int J Parasitol 1987; 17:241-53. [PMID: 3294636 DOI: 10.1016/0020-7519(87)90047-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|