1
|
DeLory T, Funderburk K, Miller K, Smith WZ, McPherson S, Pirk CW, Costa C, Teixeira ÉW, Dahle B, Rueppell O. Local Variation in Recombination Rates of the Honey Bee ( Apis mellifera) Genome among Samples from Six Disparate Populations. INSECTES SOCIAUX 2020; 67:127-138. [PMID: 33311731 PMCID: PMC7732154 DOI: 10.1007/s00040-019-00736-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.
Collapse
Affiliation(s)
- Timothy DeLory
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, USA
| | - Karen Funderburk
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Applied Mathematics for the Life & Social Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Katelyn Miller
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | | | - Samantha McPherson
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Current address: NCSU Department of Entomology & Plant Pathology, Campus Box 7613, 100 Derieux Place, Raleigh, NC, USA
| | - Christian W. Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, South Africa
| | - Cecilia Costa
- Consiglio per la Ricerca in Agricolturae l’Analisi dell’Economia Agraria, Via Po, 14 - 00198 Rome, Italy
| | - Érica Weinstein Teixeira
- Honey Bee Health Specialized Laboratory, Biological Institute, São Paulo State Agribusiness Technology Agency, Av. Prof. Manoel César Ribeiro, 1920, Pindamonhangaba, São Paulo 12411-010, Brazil
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Corresponding author: 312 Eberhart Bldg, 321 McIver Street, Greensboro NC 27403, USA. Phone: (+1) 336-2562591,
| |
Collapse
|
2
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
4
|
Tedman-Aucoin K, Agrawal AF. The effect of deleterious mutations and age on recombination in Drosophila melanogaster. Evolution 2011; 66:575-85. [PMID: 22276549 DOI: 10.1111/j.1558-5646.2011.01450.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At the population level, recombination mediates the efficiency with which selection can eliminate deleterious mutations. At the individual level, deleterious alleles may influence recombination, which would change the rate at which linkage disequilibrium is eroded and thereby alter the efficiency with which deleterious alleles are purged. Here, we test whether the presence of a deleterious allele on one autosome affects recombination on another autosome. We find that deleterious alleles not only alter the rate but also the pattern of recombination. However, there is little support that different deleterious alleles affect recombination in a consistent manner. Because we have detailed information on individual females across their lifetimes, we are able to examine how recombination patterns change with age and find that these patterns are also affected by the presence of deleterious alleles. The differences among genotypes or among age classes are large enough to add substantial noise to genetic mapping experiments that do not consider these sources of variation.
Collapse
Affiliation(s)
- Katherine Tedman-Aucoin
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | | |
Collapse
|
5
|
Abstract
A negative correlation between fitness and recombination rates seems to exist in various organisms. In this article we suggest that a correlation of that kind may play an important role in the evolution of complex traits. We study the effects of such fitness-associated recombination (FAR) in a simple two-locus deterministic model, as well as in a multi-loci NK rugged adaptive landscape. In both models studied, FAR results in faster adaptation and higher average population fitness, compared with uniform-rate recombination.
Collapse
Affiliation(s)
- L Hadany
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
6
|
Abstract
AbstractThe adaptive value of recombination remains something of a puzzle. One of the basic problems is that recombination not only creates new and advantageous genetic combinations, but also breaks down existing good ones. A negative correlation between the fitness of an individual and its recombination rate would result in prolonged integrity of fitter genetic combinations while enabling less fit ones to produce new combinations. Such a correlation could be mediated by various factors, including stress responses, age, or direct DNA damage. For haploid population models, we show that an allele for such fitness-associated recombination (FAR) can spread both in asexual populations and in populations reproducing sexually at any uniform recombination rate. FAR also carries an advantage for the population as a whole, resulting in a higher average fitness at mutation-selection balance. These results are demonstrated in populations adapting to new environments as well as in well-adapted populations coping with deleterious mutations. Current experimental results providing evidence for the existence of FAR in nature are discussed.
Collapse
Affiliation(s)
- Lilach Hadany
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|