1
|
Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 2022; 5:1402. [PMID: 36550367 PMCID: PMC9780212 DOI: 10.1038/s42003-022-04349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication and a promising class of biomarkers. Surface proteins of EVs play decisive roles in establishing a connection with recipient cells, and they are putative targets for diagnostic assays. Analysis of the surface proteins can thus both illuminate the biological functions of EVs and help identify potential biomarkers. We developed a strategy combining high-resolution mass spectrometry (HRMS) and proximity ligation assays (PLA) to first identify and then validate surface proteins discovered on EVs. We applied our workflow to investigate surface proteins of small EVs found in seminal fluid (SF-sEV). We identified 1,014 surface proteins and verified the presence of a subset of these on the surface of SF-sEVs. Our work demonstrates a general strategy for deep analysis of EVs' surface proteins across patients and pathological conditions, proceeding from unbiased screening by HRMS to ultra-sensitive targeted analyses via PLA.
Collapse
|
2
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 2022; 23:839. [PMID: 36536309 PMCID: PMC9764490 DOI: 10.1186/s12864-022-09076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.
Collapse
Affiliation(s)
- Charles Banliat
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Coline Mahé
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Valérie Labas
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Pixanim, INRAE, Tours University, CHU of Tours, Nouzilly, France
| | - Benoit Guyonnet
- Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Pascal Mermillod
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Marie Saint-Dizier
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| |
Collapse
|
3
|
Genetically-biased fertilization in APOBEC1 complementation factor (A1cf) mutant mice. Sci Rep 2022; 12:13599. [PMID: 35948620 PMCID: PMC9365768 DOI: 10.1038/s41598-022-17948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
Collapse
|
4
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
García-Vázquez FA, Moros-Nicolás C, López-Úbeda R, Rodríguez-Tobón E, Guillén-Martínez A, Ross JW, Luongo C, Matás C, Hernández-Caravaca I, Avilés M, Izquierdo-Rico MJ. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021; 11:12041. [PMID: 34103548 PMCID: PMC8187724 DOI: 10.1038/s41598-021-90810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence supports involvement of the acute phase protein haptoglobin in numerous events during mammalian reproduction. The present study represents an in-depth investigation of haptoglobin expression and secretion in the porcine oviduct and uterus, and assesses its effect on porcine in vitro embryo production. A systematic study was made of sows in different oestrous stages: late follicular, early luteal and late luteal stages. Relative haptoglobin mRNA abundance was quantified by RT-qPCR. In addition, expression of the protein was analysed by immunohistochemistry and the results were complemented by Western-blot and proteomic analyses of the oviductal and uterine fluids. In vitro porcine fertilization and embryo culture were carried out in the presence of haptoglobin. The results indicate that haptoglobin mRNA expression in the porcine oviduct and uterus is most abundant during the late luteal stage of the oestrous cycle. By means of Western blot and proteomic analyses haptoglobin presence was demonstrated in the oviduct epithelium and in the oviductal and uterine fluids in different stages of the oestrous cycle. The addition of haptoglobin during gamete co-incubation had no effect on sperm penetration, monospermy or efficiency rates; however, compared with the control group, blastocyst development was significantly improved when haptoglobin was present (haptoglobin: 64.50% vs. control: 37.83%; p < 0.05). In conclusion, the presence of haptoglobin in the oviduct and uterus of sows at different stages of the oestrous cycle suggests that it plays an important role in the reproduction process. The addition of haptoglobin during in vitro embryo production improved the blastocyst rates.
Collapse
Affiliation(s)
- Francisco A. García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carla Moros-Nicolás
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rebeca López-Úbeda
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ascensión Guillén-Martínez
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Jason W. Ross
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA USA
| | - Chiara Luongo
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carmen Matás
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Iván Hernández-Caravaca
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Manuel Avilés
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Mª José Izquierdo-Rico
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
6
|
Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology 2021; 162:6128831. [PMID: 33539521 PMCID: PMC7901659 DOI: 10.1210/endocr/bqab025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development. Most of the studies investigating implantation and decidualization processes in Ptgs2-/- mice employed embryo transfer into the uterus, thereby bypassing the mammalian oviduct. Consequently, an understanding of the mechanistic action as well as the regulation of PTGS2 and derived PGs in oviductal functions is far from complete. In this review, we aim to focus on the importance of PTGS2 and associated PGs signaling in the oviduct particularly in humans, farm animals, and laboratory rodents to provide a broad perspective to guide further research in this field. Specifically, we review the role of PTGS2-derived PGs in fertilization, embryo development, and transport. We focus on the actions of ovarian steroid hormones on PTGS2 regulation in the oviduct. Understanding of cellular PTGS2 function during early embryo development and transport in the oviduct will be an important step toward a better understanding of reproduction and may have potential implication in the assisted reproductive technology.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| |
Collapse
|
7
|
New Insights into the Mammalian Egg Zona Pellucida. Int J Mol Sci 2021; 22:ijms22063276. [PMID: 33806989 PMCID: PMC8005149 DOI: 10.3390/ijms22063276] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.
Collapse
|
8
|
Porcine oocyte preincubation in oviductal fluid flush before in vitro fertilization in the presence of oviductal epithelial cells improves monospermic zygote production. ZYGOTE 2021; 29:350-357. [PMID: 33685549 DOI: 10.1017/s0967199421000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was designed to evaluate the effect of the combination of oviduct fluid flush (OFF) and oviduct epithelial cells (OEC) in modulating the incidence of polyspermy in pigs. Therefore, for in vitro fertilization (IVF), oocyte and sperm were co-cultured in Tris-buffered medium (TBM) either supplemented with 10% OFF (OFFD group), or in the presence of a bovine OEC monolayer (OEC group), or the oocytes were exposed to OFF for 30 min before IVF (OFFB group), or in the presence of an OEC monolayer (OFFB + OEC group). Regardless of sperm concentration used (0.5, 1.5, and 4.5 × 105 cells/ml), supplementation of IVF medium with 10% OFF led to an increased (P < 0.05) monospermy rate, without alteration (P > 0.05) of the penetration rate in comparison with the control and OEC groups. When the IVF medium was supplemented with heparin, an overall increase (P < 0.05) of the final output of the IVF system in terms of zygotes with two pronuclei (2PN) was observed in the OFFD group, compared with the control and OEC groups, at a sperm concentration of 4.5 × 105 cells/ml. At this concentration, OFFB improved the monospermy rate but decreased the penetration rate, resulting in low efficiency of monospermic zygotes production. Despite this, no major effect was observed in the developmental competence of the presumed zygotes up to the blastocyst stage. The combination of OFFB with OEC improved the penetration rate, while maintaining the high monospermic rate induced by OFFB. In conclusion, the combination of treatment of oocytes by diluted OFF 30 min before IVF, followed by IVF in the presence of OEC, improved monospermic zygote production without reducing the penetration rate, when the IVF medium was supplemented with heparin.
Collapse
|
9
|
Alcântara-Neto AS, Fernandez-Rufete M, Corbin E, Tsikis G, Uzbekov R, Garanina AS, Coy P, Almiñana C, Mermillod P. Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation. Reprod Fertil Dev 2021; 32:409-418. [PMID: 31775998 DOI: 10.1071/rd19058] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
High polyspermy is one of the major limitations of porcine invitro fertilisation (IVF). The addition of oviductal fluid (OF) during IVF reduces polyspermy without decreasing the fertilisation rate. Because extracellular vesicles (EVs) have been described as important OF components, the aim of this study was to evaluate the effect of porcine oviductal EVs (poEVs) on IVF efficiency compared with porcine OF (fresh and lyophilised). OF was collected from abattoir oviducts by phosphate-buffered saline flush, and poEVs were isolated by serial ultracentrifugation. Four IVF treatments were conducted: poEVs (0.2mgmL-1), OF (10%), lyophilized and reconstituted pure OF (LOF; 1%) and IVF without supplementation (control). Penetration, monospermy and IVF efficiency were evaluated. Transmission electron microscopy showed an EVs population primarily composed of exosomes (83%; 30-150nm). Supplementation with poEVs during IVF increased monospermy compared with control (44% vs 17%) while maintaining an acceptable penetration rate (61% vs 78% respectively) in a similar way to OF and LOF. Western blotting revealed poEVs proteins involved in early reproductive events, including zona pellucida hardening. In conclusion, our finding show that poEVs are key components of porcine OF and may play roles in porcine fertilisation and polyspermy regulation, suggesting that supplementation with poEVs is a reliable strategy to decrease porcine polyspermy and improve invitro embryo production outcomes.
Collapse
Affiliation(s)
- A S Alcântara-Neto
- Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France
| | - M Fernandez-Rufete
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, IMIB-Arixaca, Spain
| | - E Corbin
- Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France
| | - G Tsikis
- Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France
| | - R Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 37000 Tours, France; and Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Leninskye gory 73, Moscow, Russian Federation
| | - A S Garanina
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 37000 Tours, France; and Present address: National University of Science and Technology 'MISiS', 119049, Moscow, Russian Federation
| | - P Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, IMIB-Arixaca, Spain
| | - C Almiñana
- Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France; and Present address: University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, Department of Farm Animals, VetSuisse Faculty, Zurich, Switzerland
| | - P Mermillod
- Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France; and Corresponding author:
| |
Collapse
|
10
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
11
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
12
|
Küçük N, Lopes JS, Soriano-Úbeda C, Hidalgo CO, Romar R, Gadea J. Effect of oviductal fluid on bull sperm functionality and fertility under non-capacitating and capacitating incubation conditions. Theriogenology 2020; 158:406-415. [PMID: 33038826 DOI: 10.1016/j.theriogenology.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022]
Abstract
This study investigated the effect of bovine oviductal fluid from late follicular (LF) and early luteal (EL) phases on bull sperm functionality under non-capacitating (NCAP) and capacitating (CAP) conditions. Frozen-thawed semen samples from five bulls were thawed and incubated (0, 1 or 2 h) in NCAP and CAP media supplemented with 1% bovine oviductal fluid (LF and EL groups) and in absence of fluid (C group). Motion parameters were assessed by CASA; sperm viability, acrosomal integrity and membrane lipid disorder parameters were evaluated by flow cytometry; and sperm DNA fragmentation was evaluated by the Comet assay. Finally, in vitro fertilization with sperm treated under CAP conditions was performed and further embryo culture results evaluated. In NCAP medium, addition of LF and EL fluid increased the total and progressive motility, and LF fluid improved the stability of sperm DNA. However, under CAP conditions addition of LF and EL fluid decreased some sperm motion parameters and some parameters of sperm DNA stability. Proportion of viable sperm cells with low lipid disorder was higher in NCAP than CAP medium and addition of LF fluid markedly increased the proportion of viable spermatozoa with high lipid disorder and acrosome alteration (spontaneous acrosome reaction). Under current conditions, incubation of bull sperm with oviductal fluid before insemination did not affect detrimentally the IVF results nor embryo development, being blastocyst rate similar between CAP-LF, CAP-EL and control groups. In conclusion, oviductal fluid positively influences sperm functionality and modulate in vitro capacitation.
Collapse
Affiliation(s)
- Niyazi Küçük
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain; Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, Aydın, Turkey.
| | - Jordana S Lopes
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Cristina Soriano-Úbeda
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Carlos Olegario Hidalgo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Gijón, E-33394, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
13
|
Banliat C, Tsikis G, Labas V, Teixeira-Gomes AP, Com E, Lavigne R, Pineau C, Guyonnet B, Mermillod P, Saint-Dizier M. Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct. Int J Mol Sci 2020; 21:ijms21020466. [PMID: 31940782 PMCID: PMC7013689 DOI: 10.3390/ijms21020466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Union Evolution, 35530 Noyal-sur-Vilaine, France;
| | - Guillaume Tsikis
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
- INRAE, UMR 1282 ISP, 37380 Nouzilly, France
| | - Emmanuelle Com
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Régis Lavigne
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | | | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Faculty of Sciences and Techniques, Department Agrosciences, University of Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|
14
|
Codognoto VM, Yamada PH, Schmith RA, Rydygier de Ruediger F, de Paula Freitas-Dell'Aqua C, de Souza FF, Brochine S, do Carmo LM, Vieira AF, Oba E. Cross comparison of seminal plasma proteins from cattle and buffalo (Bubalus bubalis). Reprod Domest Anim 2019; 55:81-92. [PMID: 31733131 DOI: 10.1111/rda.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate seminal plasma proteins from cattle and buffalo (Bubalus bubalis), to identify differences between related species. Sixteen buffaloes and 16 cattle between 30 and 60 months of age were used. Semen collection was performed by electroejaculation, followed by macroscopic and microscopic subjective analyses. After analysis, the samples were centrifuged at 800 g for 10 min, and the supernatant (seminal plasma) was recentrifuged at 10,000 g for 30 min at 4°C. The total protein concentration was determined by the Bradford method, and the proteins were digested in solution for mass spectrometry (nLC-MS/MS). Multivariate statistical analysis was used to evaluate the proteomics results by non-hierarchical clustering the considering exponentially modified protein abundance index (emPAI). Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used for clustering. Proteomics identified 78 proteins, and multivariate analysis showed 4 that were over-expressed in buffaloes (cystatin C, prosaposin, peptide YY and keratin type II cytoskeletal 5) and 9 in cattle (spermadhesin-1, seminal plasma protein PDC-109, ribonuclease 4, metalloproteinase inhibitor 2, acrosin inhibitor 1, seminal ribonuclease, C-type natriuretic peptide, angiogenin-1 and osteopontin). Among the proteins identified in seminal plasma, the C-type natriuretic peptide and metalloproteinase inhibitors were described for the first time in buffaloes. Some protease inhibitors were found over-expressed in buffaloes, and important proteins in seminal plasma of cattle were not identified or were found at lower expression levels in buffaloes, which can contribute to reproductive performance in this species.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Paulo Henrique Yamada
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Rúbia Alves Schmith
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila de Paula Freitas-Dell'Aqua
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Fabiana Ferreira de Souza
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzane Brochine
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Monteiro do Carmo
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Andressa Filaz Vieira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Eunice Oba
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
15
|
Massa E, Prez G, Zumoffen C, Morente C, Ghersevich S. S100 A9 is expressed and secreted by the oviduct epithelium, interacts with gametes and affects parameters of human sperm capacitation in vitro. J Cell Biochem 2019; 120:17662-17676. [PMID: 31131471 DOI: 10.1002/jcb.29033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/20/2023]
Abstract
Our previous findings demonstrate that some oviductal secretion proteins bind to gametes and affect sperm physiology and gamete interaction. One of these proteins possesses an estimated molecular weight of 14 kDa. The objective of this study was to isolate and identify this 14 kDa protein, to localize it in the human oviduct, to detect gamete binding sites for the protein, and to evaluate its effects on sperm capacitation parameters and gamete interaction. Explants from the human oviductal tissues of premenopausal women were cultured in the presence of [35 S]-Methionine-proteins ([35S]-Met-proteins). De novo synthesized secreted [35 S]-Met-proteins were isolated from the culture media by affinity chromatography using their sperm membrane binding ability and analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using liquid chromatography-tandem mass spectrometry peptide sequencing, human S100 A9 was identified as one of the isolated proteins from the 14 kDa protein band. S100 A9 was detected in oviduct epithelium and oviduct secretion using immunohistochemistry and a Western blot. S100 A9 binding to human oocytes and spermatozoa was assessed by indirect immunofluorescence. The acrosome reaction (AR) affected S100 A9 ability to bind sperm cells. The presence of S100 A9 significantly increased both the induced AR and the sperm protein tyrosine phosphorylation, with respect to controls. However, the protein did not affect sperm-zona pellucida interaction. Results indicate that S100 A9 is present in the human oviduct and that it modulates parameters of sperm capacitation in vitro. Hence, the protein might contribute to the regulation of the reproductive process in the oviductal microenvironment.
Collapse
Affiliation(s)
- Estefanía Massa
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Gastón Prez
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Carlos Zumoffen
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Carlos Morente
- Biological Laboratory, Area of Reproduction, PROAR-Assisted Reproduction Program of Rosario, Rosario, Santa Fe, Argentina
| | - Sergio Ghersevich
- Area of Clinical Biochemistry, Department of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
16
|
Genes Encoding Mammalian Oviductal Proteins Involved in Fertilization are Subjected to Gene Death and Positive Selection. J Mol Evol 2018; 86:655-667. [PMID: 30456442 PMCID: PMC6267676 DOI: 10.1007/s00239-018-9878-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Oviductal proteins play an important role in mammalian fertilization, as proteins from seminal fluid. However, in contrast with the latter, their phylogenetic evolution has been poorly studied. Our objective was to study in 16 mammals the evolution of 16 genes that encode oviductal proteins involved in at least one of the following steps: (1) sperm–oviduct interaction, (2) acrosome reaction, and/or (3) sperm–zona pellucida interaction. Most genes were present in all studied mammals. However, some genes were lost along the evolution of mammals and found as pseudogenes: annexin A5 (ANXA5) and deleted in malignant brain tumor 1 (DMBT1) in tarsier; oviductin (OVGP1) in megabat; and probably progestagen-associated endometrial protein (PAEP) in tarsier, mouse, rat, rabbit, dolphin, and megabat; prostaglandin D2 synthase (PTGDS) in microbat; and plasminogen (PLG) in megabat. Four genes [ANXA1, ANXA4, ANXA5, and heat shock 70 kDa protein 5 (HSPA5)] showed branch-site positive selection, whereas for seven genes [ANXA2, lactotransferrin (LTF), OVGP1, PLG, S100 calcium-binding protein A11 (S100A11), Sperm adhesion molecule 1 (SPAM1), and osteopontin (SPP1)] branch-site model and model-site positive selection were observed. These results strongly suggest that genes encoding oviductal proteins that are known to be important for gamete fertilization are subjected to positive selection during evolution, as numerous genes encoding proteins from mammalian seminal fluid. This suggests that such a rapid evolution may have as a consequence that two isolated populations become separate species more rapidly.
Collapse
|
17
|
Bezerra MJB, Silva MB, Lobo CH, Vasconcelos FR, Lobo MD, Monteiro-Moreira ACO, Moreira RA, Machado-Neves M, Figueiredo JR, Moura AA. Gene and protein expression in the reproductive tract of Brazilian Somalis rams. Reprod Domest Anim 2018; 54:939-948. [PMID: 30246506 DOI: 10.1111/rda.13348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Brazilian Somalis is a locally-adapted breed of rams raised in tropical climate and native pastures. The present study was conducted to evaluate gene expression and proteome of the reproductive tract of such rams. Samples were collected from testes, epididymides, seminal vesicles and bulbourethral glands of four rams. Expression of clusterin (CLU), osteopontin (OPN) and prostaglandin D2 synthase (PGDS) genes were evaluated in all samples by real-time PCR. Shotgun proteomic analysis was performed using samples from the head, corpus and cauda epididymides and from all other structures as well. Gene ontology terms and protein interactions were obtained from UniProtKB databases and MetaCore v.6.8 platform. CLU trasncripts were detected in the testes, epididymides, seminal vesicles and bulbourethral glands of the Somalis rams. The initial region and body of the epididymis had the greatest CLU expression. OPN mRNA was localized in all tissues of the ram reproductive tract. PGDS mRNA was detected in the testes and epididymides. Lable-free mass spectrometry allowed the identification of 137 proteins in all samples. Proteins of the epididymis head mainly participate in cellular processes and response to stimulus, participating in catalityc activity and binding. Proteins of epididymis body acted as regulatory proteins and in cellular processes, with binding and catalytic activity. Cauda epididymis molecules were associated with cellular processes and regulation, with binding function and catalytic activity as well. Testis proteins were mainly linked to cell processes and response to stimuli, and had catalytic function. Seminal vesicle proteins were involved in regulation and mainly with binding functions. Most bulbourethral gland proteins participated in cellular processes. The present study is the first to evaluate the proteome and gene expressions in the reproductive tract of Brazilian Somalis rams. Such pieces of information bring significant cointribution for the understanding of the reproductive physiology of locally-adapted livestock.
Collapse
Affiliation(s)
| | - Mariana B Silva
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Carlos H Lobo
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Fábio R Vasconcelos
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marina D Lobo
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - Renato A Moreira
- School of Pharmacy, The University of Fortaleza, Fortaleza, Ceara, Brazil
| | | | - José R Figueiredo
- School of Veterinary Medicine, CearaState University, Fortaleza, Ceara, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
18
|
Zhang N, Mao W, Zhang Y, Huang N, Liu B, Gao L, Zhang S, Cao J. The prostaglandin E 2 receptor PTGER2 and prostaglandin F 2α receptor PTGFR mediate oviductal glycoprotein 1 expression in bovine oviductal epithelial cells. J Reprod Dev 2017; 64:101-108. [PMID: 29276208 PMCID: PMC5902897 DOI: 10.1262/jrd.2017-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Oviductal glycoprotein 1 (OVGP1), an oviductin, is involved in the maintenance of sperm viability and motility and contributes to sperm capacitation in the oviduct. In this study, the regulatory effects exerted by
prostaglandin E2 (PGE2) and F2α (PGF2α) on OVGP1 expression via their corresponding receptors in bovine oviductal epithelial cells (BOECs) were investigated. BOECs were
cultured in vitro, and their expression of receptors of PGE2 (PTGER1, PTGER2, PTGER3, and PTGER4) and PGF2α (PTGFR) was measured using RT-qPCR. Ca2+ concentration was
determined with a fluorescence-based method and cAMP was quantified by enzyme-linked immunosorbent assays to verify activation of PTGER2 and PTGFR by their corresponding agonists in these cells. OVGP1 mRNA and protein
expression was measured using RT-qPCR and western blotting, respectively, following PTGER2 and PTGFR agonist-induced activation. PTGER1, PTGER2, PTGER4, and PTGFR were found to be present in BOECs; however, PTGER3
expression was not detected. OVGP1 expression was significantly promoted by 10–6 M butaprost (a PTGER2 agonist) and decreased by 10–6 M fluprostenol (a PTGFR agonist). In addition, 3 μM H-89 (a PKA
inhibitor) and 3 μM U0126 (an ERK inhibitor) effectively inhibited PGE2-induced upregulation of OVGP1, and 5 μM chelerythrine chloride (a PKC inhibitor) and 3 μM U0126 negated OVGP1 downregulation by
PGF2α. In conclusion, this study demonstrates that OVGP1 expression in BOECs is enhanced by PGE2 via PTGER2-cAMP-PKA signaling, and reduced by PGF2α through the
PTGFR-Ca2+-PKC pathway.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Wei Mao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Ying Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Na Huang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bo Liu
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Long Gao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Shuangyi Zhang
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Jinshan Cao
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| |
Collapse
|
19
|
Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One 2017; 12:e0188105. [PMID: 29155854 PMCID: PMC5695823 DOI: 10.1371/journal.pone.0188105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.
Collapse
|
20
|
Gonçalves RF, Ferreira MS, de Oliveira DN, Canevarolo R, Achilles MA, D'Ercole DL, Bols PE, Visintin JA, Killian GJ, Catharino RR. Analysis and characterisation of bovine oocyte and embryo biomarkers by matrix-assisted desorption ionisation mass spectrometry imaging. Reprod Fertil Dev 2017; 28:293-301. [PMID: 25228254 DOI: 10.1071/rd14047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
In the field of 'single cell analysis', many classical strategies like immunofluorescence and electron microscopy are the primary techniques of choice. However, these methodologies are time consuming and do not permit direct identification of specific molecular classes, such as lipids. In the present study, a novel mass spectrometry-based analytical approach was applied to bovine oocytes and embryos. This new metabolomics-based application uses mass spectrometry imaging (MSI), efficient data processing and multivariate data analysis. Metabolic fingerprinting (MF) was applied to the analysis of unfertilised oocytes, 2-, 4- and 8-cell embryos and blastocysts. A semiquantitative strategy for sphingomyelin [SM (16:0)+Na](+) (m/z 725) and phosphatidylcholine [PC (32:0)+Na](+) (m/z 756) was developed, showing that lipid concentration was useful for selecting the best metabolic biomarkers. This study demonstrates that a combination of MF, MSI features and chemometric analysis can be applied to discriminate cell stages, characterising specific biomarkers and relating them to developmental pathways. This information furthers our understanding of fertilisation and preimplantation events during bovine embryo development.
Collapse
Affiliation(s)
- Roseli F Gonçalves
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, 05508-270, São Paulo, SP, Brazil
| | - Mónica S Ferreira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| | - Diogo N de Oliveira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| | - Rafael Canevarolo
- Brazilian Biosciences National Laboratory, National Energy and Material Research Center, Post Office box: 6192, 13083-877, Campinas, SP, Brazil
| | - Marcos A Achilles
- Achilles Genetics Ltda, Rua Padre de Toledo Leite, 20 - Centro, 17400-000, Garça, SP, Brazil
| | - Daniela L D'Ercole
- Achilles Genetics Ltda, Rua Padre de Toledo Leite, 20 - Centro, 17400-000, Garça, SP, Brazil
| | - Peter E Bols
- Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 Gebouw U 0.09, B-2610, Wilrijk, Belgium
| | - Jose A Visintin
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, 05508-270, São Paulo, SP, Brazil
| | - Gary J Killian
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building University Park, PA, 16802, USA
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 - Barão Geraldo, 13083-877, Campinas, SP, Brazil
| |
Collapse
|
21
|
Ferraz MAMM, Henning HHW, Costa PF, Malda J, Melchels FP, Wubbolts R, Stout TAE, Vos PLAM, Gadella BM. Improved bovine embryo production in an oviduct-on-a-chip system: prevention of poly-spermic fertilization and parthenogenic activation. LAB ON A CHIP 2017; 17:905-916. [PMID: 28194463 DOI: 10.1039/c6lc01566b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The oviduct provides the natural micro-environment for gamete interaction, fertilization and early embryo development in mammals, such as the cow. In conventional culture systems, bovine oviduct epithelial cells (BOEC) undergo a rapid loss of essential differentiated cell properties; we aimed to develop a more physiological in vitro oviduct culture system capable of supporting fertilization. U-shaped chambers were produced using stereo-lithography and mounted with polycarbonate membranes, which were used as culture inserts for primary BOECs. Cells were grown to confluence and cultured at an air-liquid interface for 4 to 6 weeks and subsequently either fixed for immune staining, incubated with sperm cells for live-cell imaging, or used in an oocyte penetration study. Confluent BOEC cultures maintained polarization and differentiation status for at least 6 weeks. When sperm and oocytes were introduced into the system, the BOECs supported oocyte penetration in the absence of artificial sperm capacitation factors while also preventing polyspermy and parthenogenic activation, both of which occur in classical in vitro fertilization systems. Moreover, this "oviduct-on-a-chip" allowed live imaging of sperm-oviduct epithelium binding and release. Taken together, we describe for the first time the use of 3D-printing as a step further on bio-mimicking the oviduct, with polarized and differentiated BOECs in a tubular shape that can be perfused or manipulated, which is suitable for live imaging and supports in vitro fertilization.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pedro F Costa
- Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands and Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - Ferry P Melchels
- Department of Orthopedics, Utrecht Medical Center, Utrecht, The Netherlands and Utrecht Biofabrication Facility, Utrecht Medical Center, Utrecht, The Netherlands
| | - R Wubbolts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. and Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. and Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Rego JPA, Martins JM, Wolf CA, van Tilburg M, Moreno F, Monteiro-Moreira AC, Moreira RA, Santos DO, Moura AA. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls1. J Anim Sci 2016; 94:5308-5320. [DOI: 10.2527/jas.2016-0811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Lamy J, Labas V, Harichaux G, Tsikis G, Mermillod P, Saint-Dizier M. Regulation of the bovine oviductal fluid proteome. Reproduction 2016; 152:629-644. [DOI: 10.1530/rep-16-0397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 01/20/2023]
Abstract
Our objective was to investigate the regulation of the proteome in the bovine oviductal fluid according to the stage of the oestrous cycle, to the side relative to ovulation and to local concentrations of steroid hormones. Luminal fluid samples from both oviducts were collected at four stages of the oestrous cycle: pre-ovulatory (Pre-ov), post-ovulatory (Post-ov), and mid- and late luteal phases from adult cyclic cows (18–25 cows/stage). The proteomes were assessed by nanoLC–MS/MS and quantified by label-free method. Totally, 482 proteins were identified including a limited number of proteins specific to one stage or one side. Proportions of differentially abundant proteins fluctuated from 10 to 24% between sides at one stage and from 4 to 20% among stages in a given side of ovulation. In oviductal fluids ipsilateral to ovulation, Annexin A1 was the most abundant protein at Pre-ov compared with Post-ov while numerous heat shock proteins were more abundant at Post-ov compared with Pre-ov. Among differentially abundant proteins, seven tended to be correlated with intra-oviductal concentrations of progesterone. A wide range of biological processes was evidenced for differentially abundant proteins, of which metabolic and cellular processes were predominant. This work identifies numerous new candidate proteins potentially interacting with the oocyte, spermatozoa and embryo to modulate fertilization and early embryo development.
Collapse
|
24
|
Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM. Designing 3-Dimensional In Vitro Oviduct Culture Systems to Study Mammalian Fertilization and Embryo Production. Ann Biomed Eng 2016; 45:1731-1744. [PMID: 27844174 PMCID: PMC5489612 DOI: 10.1007/s10439-016-1760-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022]
Abstract
The oviduct was long considered a largely passive conduit for gametes and embryos. However, an increasing number of studies into oviduct physiology have demonstrated that it specifically and significantly influences gamete interaction, fertilization and early embryo development. While oviduct epithelial cell (OEC) function has been examined during maintenance in conventional tissue culture dishes, cells seeded into these two-dimensional (2-D) conditions suffer a rapid loss of differentiated OEC characteristics, such as ciliation and secretory activity. Recently, three-dimensional (3-D) cell culture systems have been developed that make use of cell inserts to create basolateral and apical medium compartments with a confluent epithelial cell layer at the interface. Using such 3-D culture systems, OECs can be triggered to redevelop typical differentiated cell properties and levels of tissue organization can be developed that are not possible in a 2-D culture. 3-D culture systems can be further refined using new micro-engineering techniques (including microfluidics and 3-D printing) which can be used to produce ‘organs-on-chips’, i.e. live 3-D cultures that bio-mimic the oviduct. In this review, concepts for designing bio-mimic 3-D oviduct cultures are presented. The increased possibilities and concomitant challenges when trying to more closely investigate oviduct physiology, gamete activation, fertilization and embryo production are discussed.
Collapse
Affiliation(s)
- Marcia A M M Ferraz
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Heiko H W Henning
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Tom A E Stout
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584CM,, Utrecht, The Netherlands
| | - Peter L A M Vos
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584CM, Utrecht, The Netherlands. .,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 79, 3584CM, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Batista RITP, Moro LN, Corbin E, Alminana C, Souza-Fabjan JMG, de Figueirêdo Freitas VJ, Mermillod P. Combination of oviduct fluid and heparin to improve monospermic zygotes production during porcine in vitro fertilization. Theriogenology 2016; 86:495-502. [DOI: 10.1016/j.theriogenology.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
|
26
|
Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Yamamoto Y, Yoshimoto Y, Woclawek-Potocka I. Lysophosphatidic Acid Synthesis and its Receptors' Expression in the Bovine Oviduct During the Oestrous Cycle. Reprod Domest Anim 2016; 51:541-9. [PMID: 27335048 DOI: 10.1111/rda.12717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a naturally occurring simple phospholipid which in the bovine reproductive system can be produced in the endometrium, corpus luteum, ovarian follicle and embryo. In this study, we examined the possibility that LPA receptors are expressed, and LPA synthesized, in the bovine oviduct. We found that the concentration of LPA was highest in infundibulum in the follicular phase of the oestrous cycle and was relatively high during the early-luteal phase in all examined parts of the oviduct. We also documented that LPA synthesis engages both available pathways for LPA production. The autotaxin (ATX) protein expression was significantly higher in the infundibulum compared to the isthmus during the follicular phase of the oestrous cycle. During the early-luteal phase of the oestrous cycle, ATX and phospholipase A2 (PLA2) protein expression was highest in ampulla, although the expression of LPARs was not as dynamic as LPA concentration in the oviduct tissue, and we presume that in the bovine oviduct, the most abundantly expressed receptor is LPAR2. In conclusion, our results indicate that the bovine oviduct is a site of LPA synthesis and a target for LPA action in the bovine reproductive tract. We documented that LPAR2 is the most abundantly expressed in the bovine oviduct. We hypothesize that in the bovine oviduct, LPA may be involved in the transport of gametes, fertilization and cellular signalling between the oviduct and cumulus-oocyte complex.
Collapse
Affiliation(s)
- E Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - K Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - D Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - I Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Y Yamamoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Y Yoshimoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - I Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
27
|
Desantis S, Accogli G, Silvestre F, Binetti F, Cox SN, Roscino M, Caira M, Lacalandra GM. Glycan profile of oviductal isthmus epithelium in normal and superovulated ewes. Theriogenology 2016; 85:1192-202. [DOI: 10.1016/j.theriogenology.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
|
28
|
Soleilhavoup C, Riou C, Tsikis G, Labas V, Harichaux G, Kohnke P, Reynaud K, de Graaf SP, Gerard N, Druart X. Proteomes of the Female Genital Tract During the Oestrous Cycle. Mol Cell Proteomics 2016; 15:93-108. [PMID: 26518761 PMCID: PMC4762522 DOI: 10.1074/mcp.m115.052332] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2015] [Indexed: 01/01/2023] Open
Abstract
The female genital tract includes several anatomical regions whose luminal fluids successively interact with gametes and embryos and are involved in the fertilisation and development processes. The luminal fluids from the inner cervix, the uterus and the oviduct were collected along the oestrous cycle at oestrus (Day 0 of the cycle) and during the luteal phase (Day 10) from adult cyclic ewes. The proteomes were assessed by GeLC-MS/MS and quantified by spectral counting. A set of 940 proteins were identified including 291 proteins differentially present along the cycle in one or several regions. The global analysis of the fluid proteomes revealed a general pattern of endocrine regulation of the tract, with the cervix and the oviduct showing an increased differential proteins abundance mainly at oestrus while the uterus showed an increased abundance mainly during the luteal phase. The proteins more abundant at oestrus included several families such as the heat shock proteins (HSP), the mucins, the complement cascade proteins and several redox enzymes. Other proteins known for their interaction with gametes such as oviductin (OVGP), osteopontin, HSPA8, and the spermadhesin AWN were also overexpressed at oestrus. The proteins more abundant during the luteal phase were associated with the immune system such as ceruloplasmin, lactoferrin, DMBT1, or PIGR, and also with tissue remodeling such as galectin 3 binding protein, alkaline phosphatase, CD9, or fibulin. Several proteins differentially abundant between estrus and the luteal phase, such as myosin 9 and fibronectin, were also validated by immunohistochemistry. The potential roles in sperm transit and uterine receptivity of the proteins differentially regulated along the cycle in the female genital tract are discussed.
Collapse
Affiliation(s)
- Clement Soleilhavoup
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Cindy Riou
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Guillaume Tsikis
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Valerie Labas
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Gregoire Harichaux
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Philippa Kohnke
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Karine Reynaud
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; ‡‡Alfort Veterinary School, 94700 Maisons Alfort, France
| | - Simon P de Graaf
- §§Faculty of Veterinary Science, The University of Sydney NSW 2006, Australia
| | - Nadine Gerard
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Xavier Druart
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France;
| |
Collapse
|
29
|
Schmaltz-Panneau B, Locatelli Y, Uzbekova S, Perreau C, Mermillod P. Bovine Oviduct Epithelial Cells Dedifferentiate Partly in Culture, While Maintaining their Ability to Improve Early Embryo Development Rate and Quality. Reprod Domest Anim 2015; 50:719-29. [DOI: 10.1111/rda.12556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/17/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B Schmaltz-Panneau
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - Y Locatelli
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
- Parc de la Haute Touche; Muséum National d'Histoire Naturelle; Obterre France
| | - S Uzbekova
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - C Perreau
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| | - P Mermillod
- UMR7247; Physiologie de la Reproduction et des Comportements; INRA; Nouzilly France
| |
Collapse
|
30
|
Desantis S, Accogli G, Silvestre F, Binetti F, Caira M, Lacalandra GM. Modifications of carbohydrate residues in the sheep oviductal ampulla after superovulation. Theriogenology 2015; 83:943-52. [PMID: 25601578 DOI: 10.1016/j.theriogenology.2014.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/17/2023]
Abstract
Epithelium of oviductal ampulla was studied in normal and in superovulated sheep using morphologic analysis and lectin glycohistochemistry. The lining epithelium consisted of two types of cells, ciliated and nonciliated cells. Unlike superovulated samples, the nonciliated cells from control ewes showed apical protrusions indicating an apocrine secretory activity. The ciliated cells showed lectin-binding sites mainly at the level of the cilia which bound all the used lectins except Peanut agglutinin, suggesting the lack of glycans terminating with Galβ1,3GalNAc. In superovulated specimens, the ciliated cells with high mannosylated glycans Concanavalin A (Con A) and GlcNAc and GalNac termini Griffonia simplicifolia agglutinin II (GSA II) and Dolicurus biflorus agglutinin (DBA) decreased. The luminal surface of nonciliated cells showed all investigated sugar residues in controls, whereas it was lacking in high mannosylated (Con A) and terminal GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 sequence (DBA) in superovulated ewes. Apical protrusions from control ampullae nonciliated cells showed glycans containing mannose, GlcNac, GalNAc, galactose, and α2,3-linked sialic acid (Con A, KOH-sialidase- Wheat germ agglutnin [WGA], GSA II, SBA, Griffonia simplicifolia agglutinin-isolectin B4 [GSA I-B4], Maackia amurensis agglutinin II [MAL II]). The supranuclear cytoplasm of nonciliated cells expressed terminal GlcNAc (GSA II) in all specimens, also O-linked glycans (mucin-type glycans) with GalNAc and sialic acid termini (Helix pomatia agglutinin [HPA] and MAL II) in control animals, and also N-linked glycans with fucose, galactose, lactosamine, and α2,3-linked sialic acid termini (Ulex europaeus agglutinin I [UEA I], GSA I-B4, Ricinus communis agglutinin120 [RCA120], and Sambucus nigra agglutinin [SNA] ) in superovulated ewes. These results report for the first time that the superovulation treatment affects the secretory activity and the glycan pattern of the epithelium lining the sheep oviductal ampulla.
Collapse
Affiliation(s)
- S Desantis
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy.
| | - G Accogli
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - F Silvestre
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - F Binetti
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - M Caira
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| | - G M Lacalandra
- Department of Emergency and Organ Transplantation (DETO), Veterinary Clinics and Animal Productions Section, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Avilés M, Coy P, Rizos D. The oviduct: A key organ for the success of early reproductive events. Anim Front 2015. [DOI: 10.2527/af.2015-0005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, IMIB-Arrixaca, Murcia, Murcia, Spain
| | - Dimitrios Rizos
- Departamento de Reproducción Animal, INIA, Ctra. de la Coruña Km. 5,9 - 28040 Madrid, Spain
| |
Collapse
|
32
|
Abstract
Experimental evidence from the last 30 years supports the fact that the oviduct is involved in the modulation of the reproductive process in eutherian mammals. Oviductal secretion contains molecules that contribute to regulation of gamete function, gamete interaction, and the early stages of embryo development. The oviductal environment would act as a sperm reservoir, maintaining sperm viability, and modulating the subpopulation of spermatozoa that initiates the capacitation process. It could also contribute to prevent the premature acrosome reaction and to reduce polyspermy. Many studies have reported the beneficial effects of the oviductal environment on fertilization and on the first stages of embryo development. Some oviductal factors have been identified in different mammalian species. The effects of oviductal secretion on the reproductive process could be thought to result from the dynamic combined action (inhibitory or stimulatory) of multiple factors present in the oviductal lumen at different stages of the ovulatory cycle and in the presence of gametes or embryos. It could be hypothesized that the absence of a given molecule would not affect fertility as its action could be compensated by another factor with similar functions. However, any alteration in this balance could affect certain events of the reproductive process and could perhaps impair fertility. Thus, the complexity of the reproductive process warrants a continuous research effort to unveil the mechanisms and factors behind its regulation in the oviductal microenvironment.
Collapse
|
33
|
Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mouse. ZYGOTE 2014; 23:622-30. [DOI: 10.1017/s0967199414000483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryOsteopontin (OPN) is a multifunctional phosphoprotein that is detected in various tissues, including male and female reproductive tracts. In this study, we evaluated OPN expression in mouse oviducts during the estrus cycle, and at days 1–5 of pregnancy and pseudopregnancy by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The mice oocytes, sperm and embryos were treated with different concentrations of anti-OPN antibody in vitro to detect the function of OPN in fertilization and preimplantation embryo development. OPN mRNA and protein expression in mouse oviducts were cyclic dependent throughout the estrous cycle, which was highest at estrous and lowest at diestrous. Such a phenomenon was consistent with the change in estrogen level in mice. The expression levels of OPN in mice oviduct of normal pregnancy and pseudopregnancy were significantly different, which indicated that OPN expression in mouse oviducts was depend on estrogen and preimplantation embryo. Furthermore, anti-OPN antibody treatment could reduce the rates of fertilization, cleavage and blastocyst formation in vitro in a dose-dependent way. Overall, our results indicated that the expression of OPN in mouse oviducts during the estrous cycle and early pregnancy is likely regulated by estrogen and the embryo, and OPN may play a vital role in oocyte fertilization and preimplantation embryo development.
Collapse
|
34
|
Rego J, Crisp J, Moura A, Nouwens A, Li Y, Venus B, Corbet N, Corbet D, Burns B, Boe-Hansen G, McGowan M. Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim Reprod Sci 2014; 148:1-17. [DOI: 10.1016/j.anireprosci.2014.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
|
35
|
Santos EAA, Sousa PC, Martins JAM, Moreira RA, Monteiro-Moreira ACO, Moreno FBMB, Oliveira MF, Moura AA, Silva AR. Protein profile of the seminal plasma of collared peccaries (Pecari tajacu Linnaeus, 1758). Reproduction 2014; 147:753-64. [PMID: 24516176 DOI: 10.1530/rep-13-0220] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was conducted to characterize the major proteins of the peccary seminal plasma, based on the semen samples collected from nine adult and reproductively sound animals. Our approach included the use of two-dimensional electrophoresis followed by Coomassie blue staining and analysis of polypeptide maps with PDQuest Software (Bio-Rad). Proteins were identified by tandem mass spectrometry (LC-MS/MS). We detected 179 protein spots per gel and 98 spots were identified by mass spectrometry, corresponding to 23 different proteins. The combined intensity of those spots accounted for 56.2±6% of the intensities of all spots and 60.9% of the intensities of spots presented in every protein map. Protein spots identified as clusterin represented 19.7±8.3% of the integrated optical densities of all spots detected in the seminal plasma maps. There was a negative association (r=-0.87; P<0.05) between the intensity of a clusterin spot and the percentage of sperm with functional membrane. Spermadhesin porcine seminal plasma protein 1 and bodhesin 2 comprised 5.4±1.9 and 8.8±3.9% of the total intensity of all spots respectively. Many proteins appeared in a polymorphic pattern, such as clusterin (27 spots), epididymal secretory glutathione peroxidase (ten spots), inter-α-trypsin inhibitor (12 spots), and IgG-binding protein (ten spots), among others. In conclusion, we presently describe the major seminal plasma proteome of the peccary, which exhibits a distinct high expression of clusterin isoforms. Knowledge of wild species reproductive biology is crucial for an understanding of their survival strategies and adaptation in a changing environment.
Collapse
Affiliation(s)
- E A A Santos
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - P C Sousa
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - J A M Martins
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - R A Moreira
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - A C O Monteiro-Moreira
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - F B M B Moreno
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - M F Oliveira
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - A A Moura
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| | - A R Silva
- Laboratory of Animal Germplasm ConservationFederal University of the Semi-arid, BR 110, Km 47, Bairro Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, BrazilDepartment of Animal ScienceFederal University of Ceará, 60021-970 Fortaleza, BrazilSchool of PharmacyUniversity of Fortaleza, 60811-905 Fortaleza, Brazil
| |
Collapse
|
36
|
de Souza-Fabjan JMG, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, Freitas VJDF, Mermillod P. In vitro production of small ruminant embryos: late improvements and further research. Theriogenology 2014; 81:1149-62. [PMID: 24650929 DOI: 10.1016/j.theriogenology.2014.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/28/2014] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo-derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination.
Collapse
Affiliation(s)
- Joanna Maria Gonçalves de Souza-Fabjan
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Faculty of Veterinary, Laboratory of Physiology and Control of Reproduction (LFCR), State University of Ceará, Fortaleza, Ceara, Brazil.
| | - Barbara Panneau
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Nicolas Duffard
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve de la Haute Touche, Obterre, France
| | - Yann Locatelli
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve de la Haute Touche, Obterre, France
| | - José Ricardo de Figueiredo
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceara, Brazil
| | | | - Pascal Mermillod
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
37
|
Al Darwich A, Perreau C, Tsikis G, Coudert E, Touzé JL, Briant E, Beckers JF, Mermillod P, Guignot F. Effect of different culture systems on adipocyte differentiation-related protein (ADRP) in bovine embryos. Anim Reprod Sci 2014; 145:105-13. [PMID: 24560670 DOI: 10.1016/j.anireprosci.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/04/2023]
Abstract
Bovine embryos cultured in serum-containing media abnormally accumulate lipid droplets, compared to their in vivo counterparts. The objective of this study was to investigate the effect of different culture systems on the mRNA expression and on the quantification and localisation of adipocyte differentiation-related protein (ADRP), a protein associated with lipid accumulation in bovine blastocysts. Two experiments were independently performed for ADRP mRNA expression analysis. In experiment A, blastocysts were produced in modified synthetic oviduct fluid (mSOF)+10% foetal calf serum (FCS), in coculture (bovine oviduct epithelial cells, Boec) and in ewe oviducts, whereas in experiment B, they were produced in mSOF+10μM docosahexaenoic acid (DHA) and in vivo. Control groups were also performed. ADRP mRNA expression was downregulated in the Boec, ewe oviduct and in vivo groups compared to the 10% FCS or DHA groups, respectively. Moreover, the expression of this protein was downregulated in the Boec group compared to the control group (P<0.05). A third experiment (experiment C) was performed to quantify and localise ADRP protein. Boec, in vivo and control groups were tested. After immunofluorescence staining followed by confocal microscopy analysis, embryonic ADRP was clearly localised around lipid droplets, indicating that ADRP is also a lipid droplet coat protein in bovine embryos. In conclusion, our results demonstrate that bovine embryos at the blastocyst stage expressed ADRP mRNA and protein, and that the embryonic culture system modified this expression.
Collapse
Affiliation(s)
- A Al Darwich
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - C Perreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - G Tsikis
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - E Coudert
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - J L Touzé
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - E Briant
- INRA, UEPAO, F-37380 Nouzilly, France
| | - J F Beckers
- Université de Liège, Faculté de Médecine Vétérinaire, Physiologie de la Reproduction, B4000 Liège, Belgium
| | - P Mermillod
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - F Guignot
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
38
|
Ferreira MS, de Oliveira DN, Gonçalves RF, Catharino RR. Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI). Anal Chim Acta 2014; 807:96-102. [DOI: 10.1016/j.aca.2013.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 11/16/2022]
|
39
|
Besenfelder U, Havlicek V, Brem G. Role of the oviduct in early embryo development. Reprod Domest Anim 2013; 47 Suppl 4:156-63. [PMID: 22827365 DOI: 10.1111/j.1439-0531.2012.02070.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the role of the oviduct in early embryo development, which has to fulfil many aligned and well-tuned tasks during early embryogenesis. The oviductal lining is subjected to dynamic changes to timely accomplish gamete transport, fertilization and embryo development and to deliver a competent and healthy conceptus to the endometrium which can implant and develop to term. Although knowledge about the role of the oviduct is limited, we know that embryos are very sensitive to the environment in which they develop. The success of in vitro embryo production techniques demonstrates that it is possible to bypass the oviduct during early development and, to a certain extent, replicate the conditions in vitro. However, comparative studies show that embryos developed in vivo are superior to their in vitro produced counterparts, underlining our relatively poor knowledge of the biology of the oviduct. Oviduct activity is orchestrated by various factors, depending on cyclic dynamics, which crucially affect the success of tubal transfer and/or (re-)collection of embryos in embryo transfer studies. This paper reviews data which demonstrate that in vivo culture of embryos in the bovine oviduct is a useful tool for the assessment of embryos developed under various conditions (e.g. superovulation vs single ovulation, lactating dairy cows vs non-lactating cows). It is concluded that more work in the field of early embryo development within the oviduct would contribute to improved ART protocols leading to healthy pregnancies and offspring.
Collapse
Affiliation(s)
- U Besenfelder
- Reproduction Centre Wieselburg, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| | | | | |
Collapse
|
40
|
Byrne K, Leahy T, McCulloch R, Colgrave ML, Holland MK. Comprehensive mapping of the bull sperm surface proteome. Proteomics 2012; 12:3559-79. [DOI: 10.1002/pmic.201200133] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/23/2012] [Accepted: 09/10/2012] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Russell McCulloch
- CSIRO Food Futures National Research Flagship; Division of Livestock Industries; Queensland Biosciences Precinct; St. Lucia; Queensland; Australia
| | | | | |
Collapse
|
41
|
Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144:649-60. [PMID: 23028122 DOI: 10.1530/rep-12-0279] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The oviduct or Fallopian tube is the anatomical region where every new life begins in mammalian species. After a long journey, the spermatozoa meet the oocyte in the specific site of the oviduct named ampulla and fertilization takes place. The successful fertilization depends on several biological processes that occur in the oviduct some hours before this rendezvous and affect both gametes. Estrogen and progesterone, released from the ovary, orchestrate a series of changes by genomic and nongenomic pathways in the oviductal epithelium affecting gene expression, proteome, and secretion of its cells into the fluid bathing the oviductal lumen. In addition, new regulatory molecules are being discovered playing important roles in oviductal physiology and fertilization. The present review tries to describe these processes, building a comprehensive map of the physiology of the oviduct, to better understand the importance of this organ in reproduction. With this purpose, gamete transport, sperm and oocyte changes in the oviductal environment, and other interactions between gametes and oviduct are discussed in light of recent publications in the field.
Collapse
Affiliation(s)
- P Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, Campus de Espinardo, Murcia 30071, Spain.
| | | | | | | |
Collapse
|
42
|
Goudet G. Fertilisation in the horse and paracrine signalling in the oviduct. Reprod Fertil Dev 2012; 23:941-51. [PMID: 22127000 DOI: 10.1071/rd10285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/04/2011] [Indexed: 01/09/2023] Open
Abstract
The mammalian oviduct plays a crucial role in the preparation of gametes for fertilisation (transport and final maturation) and fertilisation itself. An increasing number of studies offers a comprehensive overview of the functions of the oviduct and its secretions, but this topic has had limited investigation in the horse. Limited data are available on the final oocyte maturation in the equine oviduct. However, in vitro and in vivo systems have been established to analyse the influence of equine oviduct epithelial cells (OEC) during maturation on the potential of oocytes for fertilisation and development. Most studies focus on the role of the oviduct in equine sperm function, such as spermatozoa transport, attachment to oviduct epithelium, viability, motility and capacitation. Moreover, some possible candidate molecules for sperm-oviducal interactions have been identified in the horse. Finally, the low efficiency of conventional in vitro fertilisation and the in vivo fertilisation of equine oocytes transferred into the oviduct of an inseminated mare predicted an influence of oviduct in equine fertilisation. Actually, in vivo and in vitro experiments demonstrated a role of the oviduct in equine fertilisation. Moreover, recent studies showed a beneficial effect of homologous and heterologous OEC on equine in vitro fertilisation, and some candidate molecules have been studied.
Collapse
Affiliation(s)
- Ghylène Goudet
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| |
Collapse
|
43
|
Rego JPA, Souza CEA, Oliveira JTA, Domont G, Gozzo FC, Moura AAA. WITHDRAWN: Major proteins from the seminal plasma of adult Santa Ines rams. Anim Reprod Sci 2011:S0378-4320(11)00138-2. [PMID: 21628085 DOI: 10.1016/j.anireprosci.2011.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- João Paulo A Rego
- Department of Animal Science, Federal University of Ceará, 60021-970 Fortaleza, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Hanaue M, Miwa N, Uebi T, Fukuda Y, Katagiri Y, Takamatsu K. Characterization of S100A11, a suppressive factor of fertilization, in the mouse female reproductive tract. Mol Reprod Dev 2011; 78:91-103. [DOI: 10.1002/mrd.21273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/15/2010] [Indexed: 12/15/2022]
|
45
|
Moura AA, Souza CE, Stanley BA, Chapman DA, Killian GJ. Proteomics of cauda epididymal fluid from mature Holstein bulls. J Proteomics 2010; 73:2006-20. [DOI: 10.1016/j.jprot.2010.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/03/2010] [Accepted: 06/15/2010] [Indexed: 11/28/2022]
|
46
|
Velazquez M, Parrilla I, Van Soom A, Verberckmoes S, Kues W, Niemann H. Sampling techniques for oviductal and uterine luminal fluid in cattle. Theriogenology 2010; 73:758-67. [DOI: 10.1016/j.theriogenology.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Accepted: 04/28/2009] [Indexed: 01/06/2023]
|
47
|
Mugnier S, Kervella M, Douet C, Canepa S, Pascal G, Deleuze S, Duchamp G, Monget P, Goudet G. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod Biol Endocrinol 2009; 7:129. [PMID: 19925651 PMCID: PMC2785818 DOI: 10.1186/1477-7827-7-129] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 11/19/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. METHODS & RESULTS In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates. CONCLUSION Our study shows a beneficial effect of homologous and heterologous oviduct cells on equine IVF rates, though the rates remain low. Furthers studies are necessary to identify the proteins involved. We showed that the surface plasmon resonance technique is efficient and powerful to analyze molecular interactions during fertilization.
Collapse
Affiliation(s)
- Sylvie Mugnier
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Morgane Kervella
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Cécile Douet
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Sylvie Canepa
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Géraldine Pascal
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Stefan Deleuze
- Faculté de Médecine Vétérinaire, Département des Sciences Cliniques - Clinique Equine, Université de Liège, B-4000 Liège, Belgium
| | - Guy Duchamp
- INRA, UE1297 Unité Expérimentale de Physiologie Animale de l'Orfrasière, F-37380 Nouzilly, France
| | - Philippe Monget
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| | - Ghylène Goudet
- INRA, UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR6175, F-37380 Nouzilly, France
- Université François Rabelais de Tours, F-37041 Tours, France
- Haras Nationaux, F-37380 Nouzilly, France
| |
Collapse
|
48
|
Gonçalves R, Barnabe V, Killian G. Pre-treatment of cattle sperm and/or oocyte with antibody to lipocalin type prostaglandin D synthase inhibits in vitro fertilization and increases sperm–oocyte binding. Anim Reprod Sci 2008; 106:188-93. [DOI: 10.1016/j.anireprosci.2007.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 12/21/2007] [Indexed: 12/25/2022]
|