1
|
Soto-Heras S, Reinacher L, Wang B, Oh JE, Bunnell M, Park CJ, Hess RA, Ko CJ. Cryptorchidism and testicular cancer in the dog: unresolved questions and challenges in translating insights from human studies†. Biol Reprod 2024; 111:269-291. [PMID: 38738783 DOI: 10.1093/biolre/ioae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors in cryptorchid dogs and germ cell tumors in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Lindsey Reinacher
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
| | - Bensen Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ji Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Chan Jin Park
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rex A Hess
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - CheMyong Jay Ko
- Epivara, Inc., 2109 S. Oak Street, Suite 100A, Champaign, IL 61820, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
2
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
3
|
Maeda S, Yoshitake R, Chambers JK, Uchida K, Eto S, Ikeda N, Nakagawa T, Nishimura R, Goto-Koshino Y, Yonezawa T, Momoi Y. BRAF V595E Mutation Associates CCL17 Expression and Regulatory T Cell Recruitment in Urothelial Carcinoma of Dogs. Vet Pathol 2020; 58:971-980. [PMID: 33205710 DOI: 10.1177/0300985820967449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory T cells may serve as targets in cancer immunotherapy. A previous study showed that the chemokine CCL17 and the receptor CCR4 play roles in regulatory T cell recruitment in canine urothelial carcinoma. In this article, we show that the BRAFV595E mutation is associated with tumor-produced CCL17 and regulatory T cell infiltration in dogs with urothelial carcinoma. In comparison with healthy dogs, dogs with urothelial carcinoma showed increased CCL17 mRNA expression in the bladder and elevated CCL17 protein concentration in urine. Immunohistochemistry showed increased levels of Foxp3+ regulatory T cells in the tumor tissues of urothelial carcinoma. The density of Foxp3+ regulatory T cells was positively correlated with CCL17 concentration in urine, indicating that CCL17 is involved in regulatory T cell recruitment. Moreover, tumor-infiltrating regulatory T cells and urine CCL17 concentration were associated with poor prognosis in dogs with urothelial carcinoma. The number of tumor-infiltrating regulatory T cells, CCL17 mRNA expression, and urine CCL17 concentration in cases with BRAFV595E mutation were higher than those in cases with wild-type BRAF. In vitro, high CCL17 production was detected in a canine urothelial carcinoma cell line with BRAFV595E mutation but not in an urothelial carcinoma cell line with wild-type BRAF. Dabrafenib, a BRAF inhibitor, decreased CCL17 production in the cell line with BRAFV595E mutation. These results suggest that BRAFV595E mutation induced CCL17 production and contributed to regulatory T cell recruitment in canine urothelial carcinoma.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Shotaro Eto
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Yuko Goto-Koshino
- Molecular Diagnostic Laboratory, Veterinary Medical Center, 13143The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, 13143The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kim JH. Interleukin-8 in the Tumor Immune Niche: Lessons from Comparative Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:25-33. [PMID: 32060885 DOI: 10.1007/978-3-030-38315-2_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-8 is a chemokine that is essential for inflammation and angiogenesis. IL-8 expression is elevated in tumor cell lines and tissues, as well as in peripheral blood obtained from cancer patients. Primary works have attempted to determine the biological effect of IL-8 on tumor cells, including cell proliferation, survival, and migration. More recently, IL-8 has acquired considerable attention as an immune modulator in the context of certain tumor microenvironments (TME); specifically, it can support a niche that favors tumor progression and metastasis. Tumor-derived IL-8 stimulates inflammation by interacting with the microenvironmental constituents, including fibroblasts, endothelial cells, and immune cells. However, the tumor immune system is complex, and mechanisms that construct the immune phenotype remain incompletely characterized. Herein, we will (1) address a potential role of IL-8 in regulating gene expression to establish immune landscape in tumor. Then, we will (2) review IL-8 signaling in the maintenance of stem cells and regulation of hematopoietic progenitors. Finally, (3) IL-8 functions will be discussed in naturally occurring animal cancers that offer a clinically realistic model for translational research. This chapter will provide a new insight into the tumor immune niche and help us develop immunotherapies for cancers.
Collapse
Affiliation(s)
- Jong-Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, MN, USA. .,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol 2019; 9:1185. [PMID: 31788448 PMCID: PMC6854022 DOI: 10.3389/fonc.2019.01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complex ecosystem in which tumor cells reside and interact, termed the tumor microenvironment (TME), encompasses all cells and components associated with a neoplasm that are not transformed cells. Interactions between tumor cells and the TME are complex and fluid, with each facet coercing the other, largely, into promoting tumor progression. While the TME in humans is relatively well-described, a compilation and comparison of the TME in our canine counterparts has not yet been described. As is the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated in laboratory animal models, although the current level of knowledge on similarities and differences in the TME between dogs and humans, and the practical implications of that information, require further investigation. This review summarizes some of the complexities of the human and mouse TME and interjects with what is known in the dog, relaying the information in the context of the temporo-spatial organization of the TME. To the authors' knowledge, the development of the TME over space and time has not been widely discussed, and a comprehensive review of the canine TME has not been done. The specific topics covered in this review include cellular invasion and interactions within the TME, metabolic derangements in the TME and vascular invasion, and the involvement of the TME in tumor spread and metastasis.
Collapse
Affiliation(s)
- Kendall L Langsten
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, NC, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Immune-Related Concepts in Biology and Treatment of Germ-Cell Tumors. Adv Urol 2018; 2018:3718165. [PMID: 29725351 PMCID: PMC5872660 DOI: 10.1155/2018/3718165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 12/22/2022] Open
Abstract
Germ-cell tumors (GCTs) are highly curable with chemotherapy. Salvage chemotherapy or surgery can cure a proportion of patients, but the ones failing these treatments will die of their disease in the young age. Immune checkpoint pathways are emerging as powerful targetable biomarkers, and a significant preclinical and clinical research is underway to widen our knowledge and expand the treatment possibilities with immune therapy. The concept of immune modulation that was currently adopted in many solid tumors is understudied in GCTs. Herein, we summarize the current knowledge of published literature discussing the immune mechanisms and immune therapy in GCTs.
Collapse
|
7
|
Sakai K, Maeda S, Yamada Y, Chambers JK, Uchida K, Nakayama H, Yonezawa T, Matsuki N. Association of tumour-infiltrating regulatory T cells with adverse outcomes in dogs with malignant tumours. Vet Comp Oncol 2018; 16:330-336. [DOI: 10.1111/vco.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Sakai
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - S. Maeda
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Y. Yamada
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - J. K. Chambers
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - K. Uchida
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - H. Nakayama
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - T. Yonezawa
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - N. Matsuki
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| |
Collapse
|
8
|
Density of tumor-infiltrating granzyme B-positive cells predicts favorable prognosis in dogs with transitional cell carcinoma. Vet Immunol Immunopathol 2017; 190:53-56. [PMID: 28778323 DOI: 10.1016/j.vetimm.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 11/20/2022]
Abstract
Although tumor-infiltrating lymphocytes (TILs) play a key role in anti-tumor immunity, their involvement in canine transitional cell carcinoma (TCC) is not well-documented. The objective of this study was to investigate the association between TIL number and prognosis in dogs with urinary bladder TCC. Immunohistochemical analysis of CD3 and granzyme B was performed using canine TCC (n=32) and normal bladder (n=10) tissues. The numbers of CD3+ and granzyme B+ cells located in peritumoral stroma of canine TCC were significantly higher than those in normal controls. In TCC cases, the number of CD3+ TILs was not significantly related to prognosis, whereas the abundant granzyme B+ TILs were associated with favorable outcome. Since granzyme B+ TILs were not associated with the tumor stage, the presence of granzyme B+ TILs may be an independent prognostic factor. These results suggest that granzyme B+ TILs play a role in anti-tumor immunity and inhibit tumor progression in canine TCC.
Collapse
|
9
|
A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4917387. [PMID: 28053982 PMCID: PMC5178344 DOI: 10.1155/2016/4917387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.
Collapse
|
10
|
Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors. Vet Immunol Immunopathol 2016; 178:1-9. [DOI: 10.1016/j.vetimm.2016.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/02/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
|
11
|
Maeda S, Ohno K, Fujiwara-Igarashi A, Uchida K, Tsujimoto H. Changes in Foxp3-Positive Regulatory T Cell Number in the Intestine of Dogs With Idiopathic Inflammatory Bowel Disease and Intestinal Lymphoma. Vet Pathol 2015; 53:102-12. [PMID: 26173451 DOI: 10.1177/0300985815591081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although regulatory T cells (Tregs) play an integral role in immunologic tolerance and the maintenance of intestinal homeostasis, their involvement in canine gastrointestinal diseases, including idiopathic inflammatory bowel disease (IBD) and intestinal lymphoma, remains unclear. Here we show altered numbers of forkhead box P3 (Foxp3)-positive Tregs in the intestine of dogs with IBD and intestinal lymphoma. IBD was diagnosed in 48 dogs; small cell intestinal lymphoma was diagnosed in 46 dogs; large cell intestinal lymphoma was diagnosed in 30 dogs; and 25 healthy beagles were used as normal controls. Foxp3-positive Tregs in the duodenal mucosa were examined by immunohistochemistry and immunofluorescence. Duodenal expression of interleukin-10 mRNA was quantified by real-time reverse transcription polymerase chain reaction. The number of Foxp3-positive lamina propria cells and the expression of interleukin-10 mRNA were significantly lower in dogs with IBD than in healthy dogs and dogs with intestinal lymphoma. The number of Foxp3-positive intraepithelial cells was higher in dogs with small cell intestinal lymphoma. Some large cell intestinal lymphoma cases had high numbers of Foxp3-positive cells, but the increase was not statistically significant. Double-labeling immunofluorescence showed that CD3-positive granzyme B-negative helper T cells expressed Foxp3. In small cell intestinal lymphoma cases, the overall survival of dogs with a high Treg density was significantly worse than that of dogs with a normal Treg density. These results suggest that a change in the number of Foxp3-positive Tregs contributes to the pathogenesis of canine IBD and intestinal lymphoma by disrupting mucosal tolerance and suppressing antitumor immunity, respectively.
Collapse
Affiliation(s)
- S Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - A Fujiwara-Igarashi
- Department of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - K Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
CD4+FOXP3+ cells produce IL-10 in the spleens of dogs with visceral leishmaniasis. Vet Parasitol 2014; 202:313-8. [PMID: 24703254 DOI: 10.1016/j.vetpar.2014.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022]
Abstract
Visceral Leishmaniasis (VL) is caused by intracellular parasites of the genus Leishmania that affect humans and several animal species. Dogs are one of the main urban reservoirs of the parasite and play a central role in the transmission cycle to humans via sandflies. Studies concerning the immune response in dogs with VL have demonstrated that protective immunity is associated with cellular immune response, while disease progression is associated with humoral response and IL-10 and TGF-β production. The study aimed to evaluate IL-10 and TGF-β production by regulatory T (Treg) cells in the blood and spleen of dogs naturally infected by Leishmania spp. and correlate this with parasite load. Five healthy dogs and 29 dogs with proven infection were selected for the study group. Real-time PCR was used to quantify parasite load and confirm infection by Leishmania spp. Treg cells producing IL-10 and TGF-β were quantified using flow cytometry. An increase in IL-10 production by Treg cells was verified in the spleen of dogs naturally infected by Leishmania spp. Concurrently, a decrease in the total number of T cells in these dogs was verified compared with healthy dogs. No association was determined between parasite load and the percentage of spleen Treg cells producing IL-10 and TGF-β. These findings suggest that Treg cells are an important source of IL-10 in the spleen, participating in immune response modulation, while the reduced percentage of these cells in infected dogs could be attributed to persistent immune activation.
Collapse
|
13
|
A role for T-lymphocytes in human breast cancer and in canine mammary tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:130894. [PMID: 24672781 PMCID: PMC3929510 DOI: 10.1155/2014/130894] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022]
Abstract
Chronic inflammation in the tumor microenvironment has a prominent role in carcinogenesis and benefits the proliferation and survival of malignant cells, promoting angiogenesis and metastasis. Mammary tumors are frequently infiltrated by a heterogeneous population of immune cells where T-lymphocytes have a great importance. Interestingly, similar inflammatory cell infiltrates, cytokine and chemokine expression in humans and canine mammary tumors were recently described. However, in both species, despite all the scientific evidences that appoint for a significant role of T-lymphocytes, a definitive conclusion concerning the effectiveness of T-cell dependent immune mechanisms has not been achieved yet. In the present review, we describe similarities between human breast cancer and canine mammary tumors regarding tumor T-lymphocyte infiltration, such as relationship of TILs and mammary tumors malignancy, association of ratio CD4+/ CD8+ T-cells with low survival rates, promotion of tumor progression by Th2 cells actions, and association of great amounts of Treg cells with poor prognostic factors. This apparent parallelism together with the fact that dogs develop spontaneous tumors in the context of a natural immune system highlight the dog as a possible useful biological model for studies in human breast cancer immunology.
Collapse
|