1
|
Polymorphisms and phenotypic analysis of cytochrome P450 2D6 in the Tibetan population. Gene 2013; 527:360-5. [DOI: 10.1016/j.gene.2013.03.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
|
2
|
|
3
|
Teh LK, Bertilsson L. Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 2011; 27:55-67. [PMID: 22185816 DOI: 10.2133/dmpk.dmpk-11-rv-121] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CYP2D6 has received intense attention since the beginning of the pharmacogenetic era in the 1970s. This is because of its involvement in the metabolism of more than 25% of the marketed drugs, the large geographical and inter-ethnic differences in the genetic polymorphism and possible drug-induced toxicity. Many interesting reviews have been published on CYP2D6 and this review aims to reinstate the importance of the genetic polymorphism of CYP2D6 in different populations as well as some clinical implications and important drug interactions.
Collapse
Affiliation(s)
- Lay Kek Teh
- Pharmacogenomics Centre PROMISE, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor DE, Malaysia.
| | | |
Collapse
|
4
|
Ismail R, Hussein A, Teh LK, Isa MN. CYP2D6 phenotypes among Malays in Malaysia. J Clin Pharm Ther 2008. [DOI: 10.1111/j.1365-2710.2000.00304.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Koseler A, Ilcol YO, Ulus IH. Frequency of Mutated Allele CYP2D6*4 in the Turkish Population. Pharmacology 2007; 79:203-6. [PMID: 17374963 DOI: 10.1159/000100959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 12/19/2006] [Indexed: 11/19/2022]
Abstract
The frequency of functionally important mutations and alleles of the gene coding for CYP2D6 shows wide ethnic variations. The present study aimed to determine the most common mutated allele CYP2D6*4 gene in a Turkish population of 100 unrelated subjects, by using real-time PCR with fluorescent probe. CYP2D6*4 allele was not detected in 62 subjects (62%). Among the remaining 38 subjects (38%), 4 (4%) were carriers of two *4 alleles, being homozygous for CYP2D6 and genotyped as CYP2D6*4/*4. 34 subjects (34%) were carriers of one *4 allele, being heterozygous for CYP2D6*4. The frequency of allele *4 was 0.21. These data indicate that 4% of the Turkish individuals living in the city of Bursa are carriers of two nonfunctional mutated alleles *4, being homozygous for CYP2D6*4. It is clinically important to be able to identify those individuals who are likely to have altered pharmacokinetics for CYP2D6 substrates in order to avoid adverse drug reactions.
Collapse
Affiliation(s)
- Aylin Koseler
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey.
| | | | | |
Collapse
|
6
|
Helsby NA, Watkins WM, Mberu E, Ward SA. Inter-individual variation in the metabolic activation of the antimalarial biguanides. ACTA ACUST UNITED AC 2005; 7:120-3. [PMID: 15463463 DOI: 10.1016/0169-4758(91)90171-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aryl-biguanides proguanil and chlorproguanil were developed as part of a collaborative programme between ICI and the Liverpool School of Tropical Medicine during the 1940s. The compounds were characterized by their absence of host toxicity. However, the rapid development of parasite resistance to the actions of these drugs and the development of the 4-aminoquinoline, chloroquine, severely limited their use. The subsequent widespread development of parasite resistance to chloroquine, together with the observations that the magnitude of dihydrofolate reductase inhibitor resistance (the site of action of the biguanides) developed to pyrimethamine is not directly correlated with biguanide resistance(1,2). has resulted in renewed interest in these drugs. In particular, proguanil is now the drug of choice for malaria prophylaxis, in combination with chloroquine; used in combination with a suitable sulphonamide, it may be of value in malaria therapy.
Collapse
Affiliation(s)
- N A Helsby
- Department of Pharmacology and Therapeutics, University of Liverpool, New Medical Building, Ashton Street, PO Box 147, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
7
|
Gan SH, Ismail R, Wan Adnan WA, Zulmi W, Kumaraswamy N, Larmie ET. Relationship between Type A and B personality and debrisoquine hydroxylation capacity. Br J Clin Pharmacol 2004; 57:785-9. [PMID: 15151524 PMCID: PMC1884512 DOI: 10.1111/j.1365-2125.2004.02076.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM A person with Type A personality is an 'aggressor' compared with the rarely harried Type B. Although debrisoquine hydroxylase (CYP2D6) capacity has been associated with personality, no study has specifically investigated its association with personality Type A and B. Therefore the aim of this research was to study the impact of CYP2D6 on Type A and B personality. METHODS Type A and B personality questionnaires were administered to 48 healthy patients undergoing elective orthopaedic surgery. After obtaining informed consent, patients were genotyped for the various CYP2D6 alleles by allele-specific polymerase chain reaction. Based on the genotypes, patients were grouped as extensive metabolizer (EM)1 (normal) (CYP2D6*1/*1), EM2 (intermediate) (CYP2D6*1/*4, CYP2D6*1/*5, CYP2D6*1/*9 and CYP2D6*1/*10) and EM3 (slow) (CYP2D6*4/*10, CYP2D6*5/*10, CYP2D6*10/*10 and CYP2D6*10/*17). Chi(2) was used to determine the relationship between the groups and personality types. RESULTS The percentages of patients who were of the EM1, EM2 and EM3 groups were 20.8%, 52.1% and 27.1%, respectively. There was a significant difference (P = 0.032) between the three groups in terms of personality type, in which EM1 showed a tendency to be of personality Type A while EM2 and EM3 tended to be of personality Type B. CONCLUSION The study suggests that there is a relationship between CYP2D6 activity and Type A and B personality.
Collapse
Affiliation(s)
- S H Gan
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | | | | | |
Collapse
|
8
|
Ismail R, Teh LK, Amir J, Alwi Z, Lopez CG. Genetic polymorphism of CYP2D6 in Chinese subjects in Malaysia. J Clin Pharm Ther 2003; 28:279-84. [PMID: 12911679 DOI: 10.1046/j.1365-2710.2003.00490.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although Malaysian Chinese share an origin with the mainland Chinese, their evolution has been influenced by intermarriages. With a gene such as CYP2D6, which is highly polymorphic, it is expected that the Malaysian Chinese would exhibit a polymorphism profile different from those of the Chinese populations in other geographical locations. OBJECTIVE To study the genotype distribution of CYP2D6 among the Chinese people in Malaysia. METHOD We obtained DNA from 236 Chinese individuals in Malaysia and used PCR-based methods to identify any common CYP2D6 alleles. RESULTS A total of 236 subjects were enrolled and were successfully genotyped. Malaysian Chinese were relatively heterogeneous in terms of their CYP2D6 genotypes with nine genotypes recorded. CYP2D6*4, *5, *9, *10 and *17 were detected with the most common genotype being *1/*10. No subject had genotypes that predicted poor metabolic activity. However, 40% showed genotypes (e.g. CYP2D6*10/*10, *17, *4 and *9 and *9/*9) that predicted an intermediate metabolizer phenotype. Another subject carried the defective CYP2D6*17 allele and six carried the defective CYP2D6*9 allele. Both these alleles have not been reported in other earlier Chinese studies. CONCLUSION This study revealed that, in terms of CYP2D6 polymorphism, Malaysian Chinese were a heterogeneous group of people. Although sharing some similarities with other Orientals, they also seemed to have some notable differences. The alleles CYP2D6*4, *5, *9, *10 and *17 were all detected. CYP2D6*3 was however absent.
Collapse
Affiliation(s)
- R Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | | | | | | |
Collapse
|
9
|
Shimizu T, Ochiai H, Asell F, Shimizu H, Saitoh R, Hama Y, Katada J, Hashimoto M, Matsui H, Taki K, Kaminuma T, Yamamoto M, Aida Y, Ohashi A, Ozawa N. Bioinformatics Research on Inter-racial Difference in Drug Metabolism I. Analysis on Frequencies of Mutant Alleles and Poor Metabolizers on CYP2D6 and CYP2C19. Drug Metab Pharmacokinet 2003; 18:48-70. [PMID: 15618719 DOI: 10.2133/dmpk.18.48] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. In the present study, the frequencies of mutant alleles and PMs in each race were analyzed based on information from published studies, considering the genetic polymorphisms of CYP2D6 and CYP2C19 as the causal factors of racial and inter-individual differences in pharmacokinetics. As a result, it was shown that there were racial differences in the frequencies of each mutant allele and PMs. The frequencies of PMs on CYP2D6 are 1.9% of Asians and 7.7% of Caucasians, and those of PMs on CYP2C19 are 15.8% of Asians and 2.2% of Caucasians. Based on the results, it was suggested that there would be racial differences in the frequencies of PM subjects whose blood concentrations might be higher for drugs metabolized by these enzymes. Additionally, it was suggested that enzyme activities would vary according to the number of functional alleles even in subjects judged to be extensive metabolizers (EMs). In the bridging study, genetic information regarding CYP2D6 and CYP2C19 of the subjects will help extrapolate foreign clinical data to a domestic population.
Collapse
|
10
|
Gan SH, Ismail R, Wan Adnan WA, Wan Z. Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects. J Pharm Biomed Anal 2002; 30:189-195. [PMID: 12191703 DOI: 10.1016/s0731-7085(02)00214-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to investigate the influence of the CYP2D6*10 allele on the disposition of tramadol hydrochloride in Malaysian subjects. A single dose of 100 mg tramadol was given intravenously to 30 healthy orthopaedic patients undergoing various elective surgeries. After having obtained written informed consents, patients were genotyped for CYP2D6*10: the most common CYP2D6 allele among Asians by means of allele-specific polymerase chain reaction. The presence of other mutations (CYP2D6*1, *3, *4, *5, *9 and *17) was also investigated. Tramadol was extracted from 1 ml serum with an n-hexane: ethylacetate combination (4:1) after alkalinisation with ammonia (pH 10.6). Serum concentrations were measured by means of high-performance liquid chromatography. The pharmacokinetics of tramadol was studied during the 24 h after the dose. As among other Asians, the allele frequency for CYP2D6*10 among Malaysians was high (0.43). Subjects who were homozygous for CYP2D6*10 had significantly (P=0.046) longer mean serum half-life of tramadol than subjects of the normal or the heterozygous group (Kruskal-Wallis test). When patients were screened for the presence of other alleles, the pharmacokinetic parameter values were better explained. CYP2D6 activity may play a main role in determining tramadol pharmacokinetics. The CYP2D6*10 allele particularly was associated with higher serum levels of tramadol compared with the CYP2D6*1 allele. However, genotyping for CYP2D6*10 alone is not sufficient to explain tramadol disposition.
Collapse
Affiliation(s)
- S H Gan
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | |
Collapse
|
11
|
Ji L, Pan S, Marti-Jaun J, Hänseler E, Rentsch K, Hersberger M. Single-Step Assays to Analyze CYP2D6 Gene Polymorphisms in Asians: Allele Frequencies and a Novel *14B Allele in Mainland Chinese. Clin Chem 2002. [DOI: 10.1093/clinchem/48.7.983] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractBackground: Cytochrome P450-dependent monooxygenase 2D6 (CYP2D6) activity can be estimated by investigating the metabolism of model drugs or by genotyping the most common CYP2D6 alleles. For Caucasians, the CYP2D6 allele frequencies are well investigated, and single-step assays are available for genotyping, whereas allele analysis in mainland Chinese is limited.Methods: Two tetra-primer assays and one allele-specific amplification assay were developed to easily genotype the CYP2D6 alleles *8, *10, and *14 previously detected in Asians. Applying these assays in combination with established single-tube assays, we analyzed 223 DNA samples from Chinese volunteers for the CYP2D6 alleles *3, *4, *5, *6, *8, *10, and *14 and for duplication of CYP2D6.Results: Six different alleles were detected in mainland Chinese. The most frequent mutant allele was the intermediate metabolizer allele, CYP2D6*10, with a prevalence of 51.3%, followed by the poor metabolizer alleles CYP2D6*5 (7.2%) and a novel variant of CYP2D6*14. This novel *14B allele (2.0%) differs from the *14 allele by the absence of the C188T substitution and by the additional G1749C substitution. Furthermore, six duplication alleles of CYP2D6 were detected, including one duplication of the *10 allele (*10X2).Conclusions: The CYP2D6 allele frequencies in mainland Chinese shows some genetic diversity compared with Chinese from other regions: a novel *14B allele, a slightly higher frequency of the *5 allele, and a slightly lower frequency of the *10 allele than in most other Chinese populations.
Collapse
Affiliation(s)
- Ling Ji
- Institute of Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Clinical Medical Laboratory, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Republic of China
| | - Shixiu Pan
- Clinical Medical Laboratory, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Republic of China
| | - Jacqueline Marti-Jaun
- Institute of Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Edgar Hänseler
- Institute of Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Katharina Rentsch
- Institute of Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Martin Hersberger
- Institute of Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
12
|
Teh LK, Ismail R, Yusoff R, Hussein A, Isa MN, Rahman AR. Heterogeneity of the CYP2D6 gene among Malays in Malaysia. J Clin Pharm Ther 2001; 26:205-11. [PMID: 11422605 DOI: 10.1046/j.1365-2710.2001.00347.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Although Malays shared an origin with Chinese, their evolution saw substantial divergences. Phenotyping studies suggested that they differed in CYP2D6 polymorphism, with higher PM prevalence but lesser right-shift for debrisoquine MRs. OBJECTIVE To study the genotype distribution of CYP2D6 among the Malays in Malaysia. METHOD We obtained DNA from 107 Malays and used PCR to determine common CYP2D6 alleles. RESULT CYP2D6*1 occurred at a frequency of 36.0%, duplicated gene, 0.93%, CYP2D6*4, 2.8%, CYP2D6*5, 5.1%, CYP2D6*9, 3.3%, CYP2D6*10, 49.5% and CYP2D6*17, 0.5%. The findings of CYP2D6*17 and CYP2D6*9 were novel for Asia. The frequency for CYP2D6*10 was lower than in other Asian races. The most frequent genotypes were CYP2D6*1/*10 at 39.3%. Two subjects had genotypes that predicted PM phenotype, 35% showed genotypes that predicted intermediate metabolizers and one subject had a genotype that predicted ultra-rapid metabolism. CONCLUSION The genetic polymorphism of CYP2D6 in Malays is different from Chinese and Far Eastern races. They may be intermediate between East Asians and Caucasians in CYP2D6 activity. Further study in relation to the evolution of races and disease prevalence may help to identify the contributions of the polymorphism in alleged susceptibility to diseases apart from delineating its contributions to ethnic differences in the pharmacology of CYP2D6 drugs.
Collapse
Affiliation(s)
- L K Teh
- Department of Pharmacy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND Although they originated from China, Malays have undergone a lot of intermarriages. A study suggested that CYP2D6 poor metabolism (PM) phenotype was more common in Malays compared to Chinese. CYP2D6 is highly polymorphic and is involved in the metabolism of many drugs and has been implicated in some environmentally-induced diseases. It is therefore useful to further study this polymorphism in Malays. OBJECTIVE To study debrisoquine metabolism phenotypes in healthy Malay volunteers. METHOD We administered debrisoquine to 51 Malays and used HPLC to measure urinary debrisoquine and 4-hydroxy debrisoquine to calculate debrisoquine metabolic ratios (MR). RESULTS Debrisoquine MR varied widely and with probit analysis we were able to identify population subsets. Although the frequency distribution for the MR showed a right shift, the shift was less than that reported for the Chinese population. We also found 2 poor metabolizers and one ultra rapid metaboliser in the population. CONCLUSION The genetic polymorphism of debrisoquine in Malays differs from that in the Chinese. Both their PM prevalence and their MR distribution suggest that they are intermediate between Europeans and Chinese in relation to this polymorphism. Studies to compare CYP2D6 genotypes between them and related races would be useful to further define these differences.
Collapse
Affiliation(s)
- R Ismail
- Department of Pharmacology, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia.
| | | | | | | |
Collapse
|
14
|
Abstract
Response to drugs can vary between individuals and between different ethnic populations. The biological (age, gender, disease and genetics), cultural and environmental factors which contribute to these variations are considered in this review. The most important aspect is the genetic variability between individuals in their ability to metabolize drugs due to expression of 'polymorphic' enzymes. Polymorphism enables division of individuals within a given population into at least two groups, poor metabolisers (PMs) and extensive metabolisers (EMs) of certain drugs. The two most extensively studied genetic polymorphisms are those involving cytochrome P450 2D6 (CYP2D6) and CYP2C19. CYP2D6 metabolizes a number of antidepressants, antipsychotics, beta-adrenoceptor blockers, and antiarrhythmic drugs. About 7% of Caucasians and 1% of Asians are PMs of CYP2D6 substrates. CYP2C19 enzyme participates in the metabolism of omeprazole, propranolol and psychotropic drugs such as hexobarbital, diazepam, citalopram, imipramine, clomipramine and amitriptyline. The incidence of PMs of CYP2C19 substrates is much higher in Asians (15-30%) than in Caucasians (3-6%). Variations in metabolism of psychotropic drugs result in variations in their pharmacokinetic parameters. This may lead to clinically significant intra- and inter-ethnic differences in pharmacological responses. Such variations are discussed in this review. Differential receptor-mediated response may play a role in ethnic differences in responses to antipsychotics and tricyclic antidepressants, but such pharmacodynamic factors remain to be systematically investigated. The results of studies of ethnic differences in response to psychopharmacotherapy appear to be discrepant, most probably due to limitations of study design, small sample size, inadequately defined study sample, and lack of control of confounding factors. The clinical value of understanding pharmacogenetics is in its use to optimize therapeutic efficacy, to prevent toxicity of those drugs whose metabolism is catalysed by polymorphic isoenzymes, and to contribute to the rational design of new drugs. Finally, applications and impact of pharmacogenetics in the field of psychopharmacotherapy are discussed.
Collapse
Affiliation(s)
- N Poolsup
- Centre for Evidence-Based Pharmacotherapy, Aston University, Birmingham, U.K
| | | | | |
Collapse
|
15
|
Prows DR, Prows CA. Optimizing drug therapy based on genetic differences: implications for the clinical setting. AACN CLINICAL ISSUES 1998; 9:499-512; quiz 618-20. [PMID: 9855860 DOI: 10.1097/00044067-199811000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Differences in drug responses due to gene alterations are rapidly being identified. Gene alterations may inhibit the function of an enzyme so that an active drug accumulates, causing adverse reactions with normal doses. Alternatively, gene alterations may accelerate enzymatic function so that an active drug is rapidly eliminated, causing subtherapeutic responses to normal doses. Mutations and polymorphisms have been identified that affect a person's response to many currently prescribed medications including cardiovascular, anti-infective, chemotherapeutic, psychiatric, and analgesic drugs. The potential exists for drug therapy to be optimized by selecting medication and doses based on a person's genotype rather than by trial and error. In the near future, advanced practice nurses in the acute care setting may be expected to order, provide patient education about, and explain results of genetic tests before initiating a specific drug therapy. Advanced practice nurses must be knowledgeable about what genetic tests are analyzing and their benefits, limitations, and risks.
Collapse
Affiliation(s)
- D R Prows
- University of Cincinnati Medical College, Department of Environmental Health, Ohio, USA
| | | |
Collapse
|
16
|
Linder MW, Prough RA, Valdes R. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin Chem 1997. [DOI: 10.1093/clinchem/43.2.254] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractPharmacogenetics is the study of the linkage between an individual’s genotype and that individual’s ability to metabolize a foreign compound. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Phenotypes exhibiting poor and ultraextensive metabolism result from genetic variance (polymorphism) of enzymes involved in metabolism. Thus, in pharmacogenetic studies one applies genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual’s drug metabolism phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic efficiency. More than 25 commonly prescribed medicines are metabolized by the cytochrome P-4502D6 (CYP2D6) isoenzyme, and polymorphism of the CYP2D6 gene affects the therapeutic management of up to 17% of individuals in some ethnic groups. In this review, we summarize and update information concerning drug-metabolizing genotypes with emphasis on CYP2D6 genotyping techniques that can be applied by the clinical laboratory for linking human genetics to therapeutic management.
Collapse
Affiliation(s)
| | - Russell A Prough
- Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292
| | - Roland Valdes
- Departments of Pathology and
- Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292
| |
Collapse
|
17
|
Abstract
OBJECTIVES This study aimed to determine the prevalence of smoking among Chinese with schizophrenia, and to determine if smokers and nonsmokers differ in their age of onset of illness and neuroleptic requirement. METHOD One hundred and ninety-five patients were assessed by a single rater using the Brief Psychiatric Rating Scale (BPRS) and the Simpson-Angus Scale. Other historical, demographic and treatment variables were recorded from case records and interviews with patients and family members. RESULTS A higher rate of smoking was found in patients with schizophrenia than in the general population. There was no significant difference between the smokers and non-smokers in their respective neuroleptic dosages and extrapyramidal side-effects but the smokers had a significantly higher BPRS score. CONCLUSIONS Racial difference is proposed to account for this discrepancy from other Western studies. The contribution of nicotine towards aggravating schizophrenic symptoms is also considered.
Collapse
Affiliation(s)
- S A Chong
- Institute of Mental Health, Singapore
| | | |
Collapse
|
18
|
Wanwimolruk S, Thou MR, Woods DJ. Evidence for the polymorphic oxidation of debrisoquine and proguanil in a Khmer (Cambodian) population. Br J Clin Pharmacol 1995; 40:166-9. [PMID: 8562301 PMCID: PMC1365178 DOI: 10.1111/j.1365-2125.1995.tb05772.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The frequency distributions of the urinary metabolic ratios of debrisoquine and proguanil were measured in a population of unrelated Khmers. Out of 98 Khmer subjects studied, two were identified as poor metabolisers of debrisoquine when a metabolic ratio of 12.6 was used as the cut off point. This represents a prevalence of debrisoquine poor metabolisers of 2.1% (95% confidence interval 0.25-7.3%) which is similar to other Asian populations. Based on the distribution of the ratio of proguanil to cycloguanil excreted in urine, and using an antimode value of 10, the prevalence of poor metabolisers of proguanil in a Khmer population was estimated to be 18.4% (95% confidence interval 10.9-28.1%). The frequency of poor metabolisers of proguanil in Khmers was higher than that described for Caucasian populations, but similar to most reported results in Asian populations.
Collapse
Affiliation(s)
- S Wanwimolruk
- School of Pharmacy, University of Otago, New Zealand
| | | | | |
Collapse
|
19
|
Abstract
Genetic polymorphisms of drug metabolizing enzymes are well recognized. This review presents molecular mechanisms, ontogeny and clinical implications of genetically determined intersubject variation in some of these enzymes. Included are the polymorphic enzymes N-acetyl transferase, cytochromes P4502D6 and 2C, which have been well described in humans. Information regarding other Phase I and Phase II polymorphic pathways, such as glutathione and methyl conjugation and alcohol and acetaldehyde oxidation continues to increase and are also discussed. Genetic factors effecting enzyme activity are frequently important determinants of the disposition of drugs and their efficacy and toxicity. In addition, associations between genetic differences in these enzymes and susceptibility to carcinogens and teratogens have been reported. Ultimately, the application of knowledge regarding these genetic factors of enzyme activity may guide medical therapy and minimize xenobiotic-induced disease.
Collapse
Affiliation(s)
- D G May
- Department of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit 48201
| |
Collapse
|
20
|
Abstract
Substantial differences in the pharmacogenetics of debrisoquine hydroxylation exist between Caucasians and Chinese populations. Among Chinese, not only is the frequency of the poor metabolizer phenotype low, the contribution of the 29B mutation in the CYP2D6 gene is insignificant. By contrast the frequency of D6-J is very common (approximately 0.6) and is clearly related to the activity of debrisoquine hydroxylase. Its presence however, does not predict the poor metabolizer phenotype. The D6-C mutation was also not detectable in our population.
Collapse
Affiliation(s)
- E J Lee
- Department of Pharmacology, National University of Singapore
| | | |
Collapse
|
21
|
Wanwimolruk S, Patamasucon P, Lee EJ. Evidence for the polymorphic oxidation of debrisoquine in the Thai population. Br J Clin Pharmacol 1990; 29:244-7. [PMID: 2306417 PMCID: PMC1380091 DOI: 10.1111/j.1365-2125.1990.tb03627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Debrisoquine polymorphism has been studied extensively in Caucasian populations. The prevalence of the poor metaboliser phenotype is 3-10% in European and American Caucasian populations but appears to be very low in Asian populations. This study was carried out to determine the metabolic oxidation status in 173 Thai subjects. Phenotyping was performed using the metabolic ratio (MR) calculated as the 0-8 h urinary output of debrisoquine/0-8 h urinary output of 4-hydroxydebrisoquine after oral administration of 10 mg debrisoquine hemisulphate. Two subjects (1.2%) were phenotyped as poor metabolisers; they had MR values of 13.17 and 92.04. The incidence of the poor metaboliser phenotype of debrisoquine oxidation of 1.2% seems to be lower in the Thai population compared with that in various Caucasian populations.
Collapse
Affiliation(s)
- S Wanwimolruk
- Department of Pharmacology, Prince of Songkla University, Hand-Yai, Thailand
| | | | | |
Collapse
|