1
|
Markova L, Cvetko E, Ugwoke CK, Horvat S, Umek N, Stopar Pintarič T. The Influence of Diabetic Peripheral Neuropathy on the Duration of Sciatic Nerve Block with 1.3% Liposomal Bupivacaine and 0.25% Bupivacaine Hydrochloride in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14091824. [PMID: 36145571 PMCID: PMC9502724 DOI: 10.3390/pharmaceutics14091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Little is known regarding the pharmacological properties of extended-release local anesthetics in the setting of diabetic peripheral neuropathy. We investigated and compared the duration of sciatic nerve block following administration of clinically relevant concentrations of liposomal bupivacaine (LB) and bupivacaine hydrochloride (BH) in diabetic mice with peripheral neuropathy. In this prospective, randomized, and double-blind study, twenty-four female C57BL/6J-OlaHsd mice were assigned to a streptozotocin-induced type 1 diabetes group and a control group without diabetes. The presence of peripheral neuropathy was established by assessing the duration of thermal latency of the plantar and tail-flick tests, following which both groups were subdivided into two subgroups in which 35 mg/kg of 1.31% LB and 7 mg/kg of 0.25% BH were respectively administered for sciatic nerve block. The average sensory block duration with BH was 106 min and 117.1 min in the control and diabetic groups, respectively. With LB, the average sensory block duration was 118 min in the control mice, while in mice with diabetic peripheral neuropathy, the average block duration was significantly longer and above the 270 min limit set in our study. Accordingly, sensory block duration was longer with LB compared to BH, and diabetic peripheral neuropathy significantly increased sciatic nerve block duration with LB.
Collapse
Affiliation(s)
- Liljana Markova
- Department of Anaesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Chiedozie Kenneth Ugwoke
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnology and Immunology, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Tatjana Stopar Pintarič
- Department of Anaesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova Ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Bavli Y, Rabie M, Fellig Y, Nevo Y, Barenholz Y. Liposomal Bupivacaine (Bupigel) Demonstrates Minimal Local Nerve Toxicity in a Rabbit Functional Model. Pharmaceutics 2021; 13:pharmaceutics13020185. [PMID: 33535418 PMCID: PMC7912710 DOI: 10.3390/pharmaceutics13020185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in vivo in mouse, rat, and pig models. In this study we assessed Bupigel neurotoxicity on rabbit sciatic nerve using histopathology and electrophysiologic testing. Sciatic nerves of both hind limbs were injected dropwise with different formulations. Nerve conduction studies and needle electromyography two weeks after perineural administration showed signs of neural damage after injection of free lidocaine and bupivacaine, while there was no sign of neural damage after injection with saline, demonstrating the validity of the method. This test also did not show evidence of motor or sensory nerve damage after injection with liposomal bupivacaine at a dose 10-times higher than free bupivacaine. Histologically, signs of neural damage could be observed with lidocaine. Nerves injected with Bupigel showed mild signs of inflammation and small residues of hydrogel in granulomas, indicating a long residence time of the hydrogel at the site of injection, but no histopathological signs of nerve damage. This demonstrated that early signs of neural damage were detected electrophysiologically, showing the usefulness and sensitivity of electrodiagnostic testing in detection of neural damage from new formulations.
Collapse
Affiliation(s)
- Yaelle Bavli
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Malcolm Rabie
- Institute of Neurology, Schneider Children’s Medical Center of Israel, Tel-Aviv University, Petach Tikva 4920235, Israel; (M.R.); (Y.N.)
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, Petach Tikva 4920235, Israel
| | - Yakov Fellig
- Department of Pathology, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Yoram Nevo
- Institute of Neurology, Schneider Children’s Medical Center of Israel, Tel-Aviv University, Petach Tikva 4920235, Israel; (M.R.); (Y.N.)
- Pediatric Neuromuscular Laboratory, Felsenstein Medical Research Center, Tel-Aviv University, Petach Tikva 4920235, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel;
- Correspondence:
| |
Collapse
|
3
|
Allen D, Zhou Y, Wilhelm A, Blum P. Intracellular G-actin targeting of peripheral sensory neurons by the multifunctional engineered protein C2C confers relief from inflammatory pain. Sci Rep 2020; 10:12789. [PMID: 32732905 PMCID: PMC7393082 DOI: 10.1038/s41598-020-69612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
The engineered multifunctional protein C2C was tested for control of sensory neuron activity by targeted G-actin modification. C2C consists of the heptameric oligomer, C2II-CI, and the monomeric ribosylase, C2I. C2C treatment of sensory neurons and SH-SY5Y cells in vitro remodeled actin and reduced calcium influx in a reversible manner. C2C prepared using fluorescently labeled C2I showed selective in vitro C2I delivery to primary sensory neurons but not motor neurons. Delivery was dependent on presence of both C2C subunits and blocked by receptor competition. Immunohistochemistry of mice treated subcutaneously with C2C showed colocalization of subunit C2I with CGRP-positive sensory neurons and fibers but not with ChAT-positive motor neurons and fibers. The significance of sensory neuron targeting was pursued subsequently by testing C2C activity in the formalin inflammatory mouse pain model. Subcutaneous C2C administration reduced pain-like behaviors by 90% relative to untreated controls 6 h post treatment and similarly to the opioid buprenorphene. C2C effects were dose dependent, equally potent in female and male animals and did not change gross motor function. One dose was effective in 2 h and lasted 1 week. Administration of C2I without C2II-CI did not reduce pain-like behavior indicating its intracellular delivery was required for behavioral effect.
Collapse
Affiliation(s)
- Derek Allen
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Audrey Wilhelm
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA.
| |
Collapse
|
4
|
Swain A, Nag DS, Sahu S, Samaddar DP. Adjuvants to local anesthetics: Current understanding and future trends. World J Clin Cases 2017; 5:307-323. [PMID: 28868303 PMCID: PMC5561500 DOI: 10.12998/wjcc.v5.i8.307] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/03/2017] [Accepted: 05/19/2017] [Indexed: 02/05/2023] Open
Abstract
Although beneficial in acute and chronic pain management, the use of local anaesthetics is limited by its duration of action and the dose dependent adverse effects on the cardiac and central nervous system. Adjuvants or additives are often used with local anaesthetics for its synergistic effect by prolonging the duration of sensory-motor block and limiting the cumulative dose requirement of local anaesthetics. The armamentarium of local anesthetic adjuvants have evolved over time from classical opioids to a wide array of drugs spanning several groups and varying mechanisms of action. A large array of opioids ranging from morphine, fentanyl and sufentanyl to hydromorphone, buprenorphine and tramadol has been used with varying success. However, their use has been limited by their adverse effect like respiratory depression, nausea, vomiting and pruritus, especially with its neuraxial use. Epinephrine potentiates the local anesthetics by its antinociceptive properties mediated by alpha-2 adrenoreceptor activation along with its vasoconstrictive properties limiting the systemic absorption of local anesthetics. Alpha 2 adrenoreceptor antagonists like clonidine and dexmedetomidine are one of the most widely used class of local anesthetic adjuvants. Other drugs like steroids (dexamethasone), anti-inflammatory agents (parecoxib and lornoxicam), midazolam, ketamine, magnesium sulfate and neostigmine have also been used with mixed success. The concern regarding the safety profile of these adjuvants is due to its potential neurotoxicity and neurological complications which necessitate further research in this direction. Current research is directed towards a search for agents and techniques which would prolong local anaesthetic action without its deleterious effects. This includes novel approaches like use of charged molecules to produce local anaesthetic action (tonicaine and n butyl tetracaine), new age delivery mechanisms for prolonged bioavailability (liposomal, microspheres and cyclodextrin systems) and further studies with other drugs (adenosine, neuromuscular blockers, dextrans).
Collapse
|
5
|
Antihyperalgesic effect by herpes vector-mediated knockdown of NaV1.7 sodium channels after skin incision. Neuroreport 2017; 28:661-665. [DOI: 10.1097/wnr.0000000000000814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zhang Y, Gong D, Zheng Q, Liu J, Zhang W. LC-MS/MS method for preclinical pharmacokinetic study of QX-OH, a novel long-acting local anesthetic, in sciatic nerve blockade in rats. J Pharm Biomed Anal 2017; 146:161-167. [PMID: 28881313 DOI: 10.1016/j.jpba.2017.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023]
Abstract
QX-OH, a new synthetic local anesthetic, produced concentration-dependent, reversible, and long-acting local anesthesia in animal models, with moderate local toxicity. As part of preclinical research for drug development, we developed and validated a method for the determination of QX-OH in the plasma, muscle, and sciatic nerve using liquid chromatography-mass spectrometry. After a simple protein precipitation procedure, analysis was performed on an Extend C18 column (100mm×3mm, 3.5μm) by isocratic elution with 0.05% formic acid/acetonitrile (78:22, v/v) at a flow rate of 0.3mL/min. A multiple-reaction monitoring mode at the transitions of m/z 279.1→102.1 for QX-OH and m/z 275.2→126.1 for an internal standard (ropivacaine hydrochloride) was used for the quantification, with a positive electrospray ionization interface. The approach was validated as per the U.S. Food and Drug Administration guidelines and successfully used in a pharmacokinetic study of QX-OH after a sciatic nerve block with 0.2mL of 35mM QX-OH. The results demonstrated that the new local anesthetic, QX-OH, had a high concentration in tissue, low systemic exposure, and long duration in the sciatic nerve.
Collapse
Affiliation(s)
- YuJun Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - DeYing Gong
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - QingShan Zheng
- Center for Drug Clinical Research, Shanghai University of Chinese Medicine, Shanghai 201203, PR China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - WenSheng Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
7
|
Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X, Wang K. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation. Biomed Pharmacother 2017; 89:689-695. [PMID: 28267672 DOI: 10.1016/j.biopha.2017.01.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE There is a compelling need for prolonged local anesthetic that would be used for analgesia with a single administration. However, due to the low molecular weight of local anesthetics (LA) (lidocaine, bupivacaine, procaine, dibucaine, etc), they present fast systemic absorption. METHODS The aim of the present study was to develop and evaluate bupivacaine lipid-polymer hybrid nanoparticles (BVC LPNs), and compared with BVC loaded PLGA nanoparticles (BVC NPs). Their morphology, particle size, zeta potential and drug loading capacity were evaluated. In vitro release study, stability and cytotoxicity were studied. In vivo evaluation of anesthetic effects was performed on animal models. RESULTS A facile nanoprecipitation and self-assembly method was optimized to obtain BVC LPNs, composed of PLGA, lecithin and DSPE-PEG2000, of ∼175nm particle size. Compared to BVC NPs, BVC LPNs exhibited prolonged in vitro release in phosphate-buffered saline (pH=7.4). Further, BVC LPNs displayed enhanced in vitro stability in 10% FBS and lower cytotoxicity (the concentration of BVC ranging from 1.0μM to 20μM). In addition, BVC LPNs exhibited significantly prolonged analgesic duration. CONCLUSION These results demonstrate that the LPNs could function as promising drug delivery system for overcoming the drawbacks of poor stability and rapid drug leakage, and prolonging the anesthetic effect with slight toxicity.
Collapse
Affiliation(s)
- Pengju Ma
- Department of Anesthesiology, Anqiu People's Hospital, Anqiu 262100, Shandong Province, China
| | - Ting Li
- Delivery Room, People's Hospital of Anqiu, Anqiu 262100, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China.
| | - Suzhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yingui Sun
- Department of Anesthesiology, Weifang Medical University, Weifang 261042, Shandong Province, China
| | - Xiugui Sheng
- Department of Gynecological Tumor, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Kaiguo Wang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| |
Collapse
|
8
|
Ginosar Y, Haroutounian S, Kagan L, Naveh M, Aharon A, Davidson EM. Proliposomal Ropivacaine Oil: Pharmacokinetic and Pharmacodynamic Data After Subcutaneous Administration in Volunteers. Anesth Analg 2016; 122:1673-80. [PMID: 27057798 DOI: 10.1213/ane.0000000000001217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Slow-release liposomal formulations of local anesthetics prolong plasma redistribution and reduce peak plasma drug concentration, allowing safer administration of larger doses and further prolonging sensory effects. However, their clinical applicability is limited by expensive manufacture and liposomal leakage. Previously, we described the simple preparation of a novel proliposomal ropivacaine oil that produces multilamellar liposomal vesicles on exposure to aqueous media and that has a shelf-life of >2 years at room temperature. In this study, we present both pharmacodynamic and pharmacokinetic data in healthy volunteers after subcutaneous injection of this novel proliposomal preparation of ropivacaine. METHODS In the pharmacodynamic phase of this study, 15 volunteers received 3 separate subcutaneous injections of 2.5 mL containing 1 of the following drugs: proliposomal 4% ropivacaine, plain 0.5% ropivacaine, and the ropivacaine-free proliposomal vehicle. Drugs were administered into the lower back, and their location was randomized and blinded; a separate area was used as an uninjected, open control. Experimental sensory assessment was made at repeated intervals over 72 hours using both pinprick sensation and experimental heat pain tolerance (assessed using quantitative sensory testing). In a separate pharmacokinetic phase of this study, 9 volunteers received subcutaneous injections of 2.5 mL of either proliposomal 4% ropivacaine (n = 6) or plain 0.5% ropivacaine (n = 3); these participants had plasma ropivacaine concentrations assessed at repeated intervals over 72 hours. RESULTS The mean ± SE duration of pinprick anesthesia after proliposomal and plain ropivacaine administration lasted 28.8 ± 6.0 and 15.9 ± 3.5 hours, respectively (mean difference, 16.8 hours; 95% confidence interval, 10.0-23.7; P = 0.001). For experimental heat pain, the anesthesia duration was approximately 36 and 12 hours, respectively, with mean ± SE area under the curve of the normalized heat pain tolerance over time 55.0 ± 28.8 Δ°C·min for proliposomal ropivacaine and 9.6 ± 26.0 Δ°C·min for plain ropivacaine (mean difference, 64.6 Δ°C·min; 95% confidence interval, 10.2-119.0; P = 0.036). In the pharmacokinetic study, there was no significant difference in peak plasma concentration in the proliposomal ropivacaine group (164 ± 43 ng/mL compared with 100 ± 41 ng/mL in the plain ropivacaine group; P = 0.07) despite an 8-fold increase in ropivacaine dose in the proliposomal group. The 99% upper prediction limit for peak plasma concentrations (351 ng/mL proliposomal; 279 ng/mL plain) was well below the putative toxic plasma concentration for both groups. The mean ± SE terminal half-life and area under the curve for proliposomal ropivacaine versus plain ropivacaine were 13.8 ± 3.6 hours vs 5.9 ± 2.3 hours (P = 0.011) and 5090 ± 1476 h·ng/mL vs 593 ± 168 h·ng/mL (P = 0.0014), respectively. CONCLUSIONS The prolonged pharmacodynamic effect of proliposomal ropivacaine, together with its delayed elimination and prolonged redistribution to plasma, is compatible to depot-related slow-release and similar to the performance of other liposomal local anesthetics. The advantage of the proliposomal oil is its ease of preparation and its extended shelf-stability at room temperature.
Collapse
Affiliation(s)
- Yehuda Ginosar
- From the *Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; †Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; ‡Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Jersey; §Painreform Ltd., Israel; and ∥R&D Integrative Solutions, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Zorzetto L, Brambilla P, Marcello E, Bloise N, De Gregori M, Cobianchi L, Peloso A, Allegri M, Visai L, Petrini P. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine 2016; 11:2695-709. [PMID: 27354799 PMCID: PMC4907738 DOI: 10.2147/ijn.s99028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release.
Collapse
Affiliation(s)
- Laura Zorzetto
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Paola Brambilla
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Elena Marcello
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
| | - Manuela De Gregori
- Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Peloso
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Düzlü AÜ, Günaydın B, Şüküroğlu MK, Değim İT. Release Pattern of Liposomal Bupivacaine in Artificial Cerebrospinal Fluid. Turk J Anaesthesiol Reanim 2016; 44:1-6. [PMID: 27366547 DOI: 10.5152/tjar.2016.02438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE We aimed to compare the possible controlled release profile of multilamellar liposomal bupivacaine formulations with non-liposomal forms in artificial cerebrospinal fluid (CSF) under in vitro conditions. METHODS Liposome formulations were prepared using a dry-film hydration method. Then, an artificial CSF-buffered solution was prepared. Bupivacaine base with liposomal bupivacaine base, bupivacaine HCl with liposomal bupivacaine HCl and bupivacaine HCl were added in a Franz diffusion cell. These solutions were kept in a hot water bath for 24 h. The samples were taken at 0.5, 1, 3, 6, 12 and 24 h (1st series of experiment). Solutions of bupivacaine base with liposomal bupivacaine base and bupivacaine HCl with liposomal bupivacaine HCl were centrifuged to obtain liposomal bupivacaine base and liposomal bupivacaine HCl. Afterwards, liposomal bupivacaine base and liposomal bupivacaine HCl were added in a Franz diffusion cell. After keeping these solutions in a hot water bath for 24 h as well, the samples were taken at the same time intervals (2(nd) series of experiment). All samples (54 from the 1st experiment and 36 from the 2(nd) experiment) were analysed with high-performance liquid chromatography and ultra-performance liquid chromatography and their chromatograms were obtained. RESULTS After obtaining calibration curves for bupivacaine base and HCl, release patterns of these formulations were plotted. A markedly controlled slow-release pattern was observed for multilamellar liposomal bupivacaine than for non-liposomal bupivacaine in artificial CSF. CONCLUSION Demonstration of controlled slow-release profile for mutilamellar liposomal bupivacaine in artificial CSF in vitro might support intrathecal use of liposomal bupivacaine in vivo in animal studies.
Collapse
Affiliation(s)
- Ayşe Ünal Düzlü
- Department of Anesthesiology and Reanimation, Gazi University School of Medicine, Ankara, Turkey
| | - Berrin Günaydın
- Department of Anesthesiology and Reanimation, Gazi University School of Medicine, Ankara, Turkey
| | - Murat Kadir Şüküroğlu
- Department of Pharmaceutical Chemistry, Gazi University School of Pharmacy, Ankara, Turkey
| | - İsmail Tuncer Değim
- Department of Pharmaceutical Technology, Gazi University School of Pharmacy, Ankara, Turkey
| |
Collapse
|
11
|
McAlvin JB, Kohane DS. Prolonged Duration Local Anesthesia. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Cohen R, Steiner A, Kanaan H, Barenholz Y. Chemical and physical characterization of remotely loaded bupivacaine liposomes: comparison between large multivesicular vesicles and small unilamellar vesicles. J Mater Chem B 2013; 1:4619-4627. [PMID: 32261205 DOI: 10.1039/c3tb20609b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large multivesicular liposomes (LMVV) remotely loaded with bupivacaine (Bupisome) were previously demonstrated to be a stable, long-acting local anesthetic. We demonstrate that this is not the case for small unilamellar vesicles (SUV) of the same lipid composition also remotely loaded with bupivacaine. We show that the trapped volume in LMVV is 21-fold higher and the drug-to-lipid mole ratio is 10-fold higher than in SUV. Cryo-transmission electron micrographs and differential interference contrast microscopy show that there are no bupivacaine crystals inside LMVV and SUV. The thermotropic characterization studied by DSC demonstrates that the drug interacts with the liposome membrane, which, together with the above results on the drug-to-lipid ratio, explains the small in vitro drug release from the SUV and large (but <100%) release from the LMVV after 24 h at 37 °C. The absence of analgesia in mice treated locally with SUV loaded with bupivacaine compared with prolonged analgesia from LMVV correlates well with the in vitro results. The study indicates that in LMVV and SUV, part of the bupivacaine is associated with the liposomal membrane, which is poorly available for analgesia. The membrane fraction is very high in SUV and much smaller in LMVV. The much larger trapped volume of the LMVV explains the higher drug availability and better analgesia of LMVV.
Collapse
Affiliation(s)
- Rivka Cohen
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
13
|
Prolonged analgesia from Bupisome and Bupigel formulations: From design and fabrication to improved stability. J Control Release 2012; 160:346-52. [DOI: 10.1016/j.jconrel.2011.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/18/2011] [Accepted: 12/21/2012] [Indexed: 11/23/2022]
|
14
|
Weiniger CF, Golovanevski L, Domb AJ, Ickowicz D. Extended release formulations for local anaesthetic agents. Anaesthesia 2012; 67:906-16. [PMID: 22607613 DOI: 10.1111/j.1365-2044.2012.07168.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systemic toxicity through overdose of local anaesthetic agents is a real concern. By encapsulating local anaesthetics in biodegradable carriers to produce a system for prolonged release, their duration of action can be extended. This encapsulation should also improve the safety profile of the local anaesthetic as it is released at a slower rate. Work with naturally occurring local anaestheticss has also shown promise in the area of reducing systemic and neurotoxicity. Extended duration local anaesthetic formulations in current development or clinical use include liposomes, hydrophobic based polymer particles such as Poly(lactic-co-glycolic acid) microspheres, pasty injectable and solid polymers like Poly(sebacic-co-ricinoleic acid) P(SA:RA) and their combination with synthetic and natural local anaesthetic. Their duration of action, rationale and limitations are reviewed. Direct comparison of the different agents is limited by their chemical properties, the drug doses encapsulated and the details of in vivo models described.
Collapse
Affiliation(s)
- C F Weiniger
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Centre, Jerusalem, Israel.
| | | | | | | |
Collapse
|
15
|
Weiniger CF, Golovanevski M, Sokolsky-Papkov M, Domb AJ. Review of prolonged local anesthetic action. Expert Opin Drug Deliv 2010; 7:737-52. [PMID: 20408748 DOI: 10.1517/17425241003767383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Pain following surgery is often treated by local anesthetic agents. Duration of the analgesia can be extended safely following administration of encapsulated large doses of local anesthetic agents. AREAS COVERED IN THIS REVIEW This review considers formulations used for encapsulation of local anesthetic agents for prolonged anesthesia effect. All studies describing encapsulation of a commercial local anesthetic agent for providing prolonged analgesia were considered using the NCBI Medline site. of local anesthetic, prolonged anesthesia, polymers and liposomes were entered in order to retrieve appropriate articles and reviews from 1966 to 2010, with emphasis on the last 10 years. Reference pages were searched manually for other relevant articles. The topics covered include an overview of local anesthetic agents and a review of local anesthetic carrier agents, with emphasis on liposomes and polymer carriers. Articles were limited to the English language. WHAT THE READER WILL GAIN The current research areas for prolongation of local anesthetic effect are evaluated, along with their limitations. Each topic has been summarized, and the review has attempted to cover all current laboratory and clinical studies in a simple manner that should also be useful for readers without a pharmacology background. The direction of research is promising and exciting, and this review should be a useful up-to-date reference. TAKE HOME MESSAGE Many formulations including polymer and liposome carriers have facilitated prolonged local anesthetic action for several days, although few clinical studies have been performed. This field promises a safe way to deliver local anesthetics for effect far beyond that of commercially available agents, with potential cost and health benefits for patients suffering chronic or postoperative pain.
Collapse
Affiliation(s)
- Carolyn F Weiniger
- Hadassah Hebrew University Medical Center, Department of Anesthesiology and Critical Care Medicine, Jerusalem, POB 12000, Israel.
| | | | | | | |
Collapse
|
16
|
|
17
|
de Araujo DR, Cereda CMS, Brunetto GB, Vomero VU, Pierucci A, Neto HS, de Oliveira ALR, Fraceto LF, Braga ADFDA, de Paula E. Pharmacological and local toxicity studies of a liposomal formulation for the novel local anaesthetic ropivacaine. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.11.0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
This study reports an investigation of the pharmacological activity, cytotoxicity and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and α-tocopherol (4:3:0.07, mole%). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVCPLAIN) and liposomal RVC (RVCLUV) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 ± 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVCLUV presented reduced cytotoxicity (P < 0.001) when compared with RVCPLAIN. Treatment with RVCLUV increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4–1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVCPLAIN. Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVCPLAIN or RVCluv at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVCLUV as a potential new formulation, since RVC is a new and safe local anaesthetic agent.
Collapse
Affiliation(s)
- Daniele Ribeiro de Araujo
- Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Cintia Maria Saia Cereda
- Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Giovanna Bruschini Brunetto
- Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Viviane Urbini Vomero
- Department of Anatomy, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Amauri Pierucci
- Department of Anatomy, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Humberto Santo Neto
- Department of Anatomy, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
- Department of Environmental Engineering, State University of São Paulo - UNESP, Sorocaba, SP, Brazil
| | | | - Eneida de Paula
- Department of Biochemistry, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
18
|
Abstract
Injectable local anesthetics that would last for many days could have a marked impact on periprocedural care and pain management. Formulations have often been limited in duration of action, or by systemic toxicity, local tissue toxicity from local anesthetics, and inflammation. To address those issues, we developed liposomal formulations of saxitoxin (STX), a compound with ultrapotent local anesthetic properties but little or no cytotoxicity. In vitro, the release of bupivacaine and STX from liposomes depended on the lipid composition and on whether dexamethasone was incorporated. In cell culture, bupivacaine, but not STX, was myotoxic (to C2C12 cells) and neurotoxic (to PC12 cells) in a concentration- and time-dependent manner. Liposomal formulations containing combinations of the above compounds produced sciatic nerve blockade lasting up to 7.5 days (with STX + dexamethasone liposomes) in male Sprague-Dawley rats. Systemic toxicity only occurred where high loadings of dexamethasone increased the release of liposomal STX. Mild myotoxicity was only seen in formulations containing bupivacaine. There was no nerve injury on Epon-embedded sections, and these liposomes did not up-regulate the expression of 4 genes associated with nerve injury in the dorsal root ganglia. These results suggest that controlled release of STX and similar compounds can provide very prolonged nerve blocks with minimal systemic and local toxicity.
Collapse
|
19
|
Sokolsky-Papkov M, Golovanevski L, Domb AJ, Weiniger CF. Prolonged Local Anesthetic Action Through Slow Release from Poly(Lactic Acid Co Castor Oil). Pharm Res 2008; 26:32-9. [DOI: 10.1007/s11095-008-9699-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
20
|
Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic–polymer formulation to prolong the effect of analgesia. J Control Release 2007; 117:97-103. [PMID: 17137669 DOI: 10.1016/j.jconrel.2006.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/06/2006] [Accepted: 10/05/2006] [Indexed: 11/15/2022]
Abstract
Prolonged postoperative analgesia cannot be achieved using single injections of local anesthetic solutions. The study objective was to evaluate the efficacy and toxicity of a new formulation of bupivacaine loaded in an injectable fatty acid based biodegradable polymer poly(sebacic-co-ricinoleic acid) for producing motor and sensory block when injected near the sciatic nerve. Bupivacaine was dissolved in poly(fatty ester-anhydride) paste and tested for drug release in vitro and in vivo after injection in mice. The efficacy and toxicity of the polymer-drug combination was determined by injecting the polymer formulation near the sciatic nerve of mice and measure the sensory and motor nerve blockade for 48 h, while monitoring the animal general health and the injection site. Seventy percent of the incorporated drug was released during 1 week in vitro. Single injection of 10% bupivacaine in the polymer caused motor and sensory block that lasted 30 h. Microscopic examination of the injection sites revealed only mild infiltration in three of eight examined tissues with no pathological findings for internal organs were found. In conclusion the polymer poly(sebacic-co-ricinoleic acid) is a safe carrier for prolonged activity of bupivacaine.
Collapse
Affiliation(s)
- Ariella Shikanov
- School of Pharmacy, Hadassah Hebrew University Medical Schools, Ein Kerem, Jerusalem, POB 12000, Israel
| | | | | |
Collapse
|
21
|
Local Anesthetics in Lipid-Depot Formulations—Neurotoxicity in Relation to Duration of Effect in a Rat Model. Reg Anesth Pain Med 2006. [DOI: 10.1097/00115550-200609000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
|