1
|
Pagel CN, Kularathna PK, Sanaei R, Young ND, Hooper JD, Mackie EJ. Protease-activated receptor-2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate 2022; 82:723-739. [PMID: 35167724 DOI: 10.1002/pros.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metastatic prostate cancer lesions in the skeleton are frequently characterized by excessive formation of bone. Prostate cancer cells secrete factors, including serine proteases, that are capable of influencing the behavior of surrounding cells. Some of these proteases activate protease-activated receptor-2 (PAR2 ), which is expressed by osteoblasts (bone-forming cells) and precursors of osteoclasts (bone-resorbing cells). The aim of the current study was to investigate a possible role for PAR2 in regulating the behavior of bone cells exposed to metastatic prostate cancer cells. METHODS The effect of medium conditioned by the PC3, DU145, and MDA-PCa-2b prostate cancer cell lines was investigated in assays of bone cell function using cells isolated from wildtype and PAR2 -null mice. Osteoclast differentiation was assessed by counting tartrate-resistant acid phosphatase-positive multinucleate cells in bone marrow cultured in osteoclastogenic medium. Osteoblasts were isolated from calvariae of neonatal mice, and BrdU incorporation was used to assess their proliferation. Assays of alkaline phosphatase activity and quantitative PCR analysis of osteoblastic gene expression were used to assess osteoblast differentiation. Responses of osteoblasts to medium conditioned by MDA-PCa-2b cells were analyzed by RNAseq. RESULTS Conditioned medium (CM) from all three cell lines inhibited osteoclast differentiation independently of PAR2 . Media from PC3 and DU145 cells had no effect on assays of osteoblast function. Medium conditioned by MDA-PCa-2b cells stimulated BrdU incorporation in both wildtype and PAR2 -null osteoblasts but increased alkaline phosphatase activity and Runx2 and Col1a1 expression in wildtype but not PAR2 -null cells. Functional enrichment analysis of RNAseq data identified enrichment of multiple gene ontology terms associated with lysosomal function in both wildtype and PAR2 -null cells in response to MDA-PCa-2b-CM. Analysis of individual genes identified osteogenesis-associated genes that were either upregulated by MDA-PCa-2b-CM selectively in wildtype cells or downregulated selectively in PAR2 -null cells. CONCLUSIONS Factors secreted by prostate cancer cells influence bone cell behavior through both PAR2 -dependent and -independent mechanisms. Both PAR2 -independent suppression of osteoclast differentiation and PAR2 -dependent stimulation of osteogenesis are likely to determine the nature of prostate cancer metastases in bone.
Collapse
Affiliation(s)
- Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pamu K Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John D Hooper
- Mater Research Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Eleanor J Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Sanaei R, Kularathna P, Taghavi N, Hooper J, Pagel C, Mackie E. Protease-activated receptor-2 promotes osteogenesis in skeletal mesenchymal stem cells at the expense of adipogenesis: Involvement of interleukin-6. Bone Rep 2021; 15:101113. [PMID: 34430676 PMCID: PMC8365448 DOI: 10.1016/j.bonr.2021.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 10/27/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) give rise to osteoblasts and adipocytes, with an inverse relationship between the two. The MSCs from protease-activated receptor-2 knockout (PAR2 KO) mice have a reduced capacity to generate osteoblasts. Here we describe the observation that PAR2 KO osteoblastic cultures generate more adipocytes than wildtype (WT) cultures. Osteoblasts from PAR2 KO mice expressed lower levels of osteoblastic genes (Runx2, Col1a1 and Bglap), and higher levels of the adipocytic gene Pparg than WT osteoblasts. Bone marrow stromal cells from PAR2 KO mice generated fewer osteoblastic colonies (assessed by staining for alkaline phosphatase activity and mineral deposition) and more adipocytic (Oil Red-O positive) colonies than cultures from WT mice. Similarly, cultures of the bone marrow stromal cell line (Kusa 4b10) in which PAR2 was knocked down (F2rl1 KD), were less osteoblastic and more adipocytic than vector control cells. Putative regulators of PAR2-mediated osteogenesis and suppression of adipogenesis were identified in an RNA-sequencing (RNA-seq) investigation; these include C1qtnf3, Gpr35, Grem1, Snorc and Tcea3, which were more highly expressed, and Cnr1, Enpep, Hmgn5, Il6 and Ramp3 which were expressed at lower levels, in control than in F2rl1 KD cells. Interleukin-6 (IL-6) levels were higher in medium harvested from F2rl1 KD cells than from control cells, and a neutralising anti-IL-6 antibody reduced the number of adipocytes in F2rl1 KD cultures to that of control cultures. Thus, PAR2 appears to be a mediator of the reciprocal relationship between osteogenesis and adipogenesis, with IL-6 having a regulatory role in these PAR2-mediated effects.
Collapse
Affiliation(s)
- R. Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P.K. Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N. Taghavi
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J.D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - C.N. Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - E.J. Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6683033. [PMID: 34211632 PMCID: PMC8205587 DOI: 10.1155/2021/6683033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation.
Collapse
|
4
|
Abstract
Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
5
|
Parks XX, Ronzier E, O-Uchi J, Lopes CM. Fluvastatin inhibits Rab5-mediated IKs internalization caused by chronic Ca 2+-dependent PKC activation. J Mol Cell Cardiol 2019; 129:314-325. [PMID: 30898664 DOI: 10.1016/j.yjmcc.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/26/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
Abstract
Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Jin O-Uchi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America; Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, United States of America
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| |
Collapse
|
6
|
Francis N, Ayodele BA, O'Brien-Simpson NM, Birchmeier W, Pike RN, Pagel CN, Mackie EJ. Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cell Microbiol 2018; 20:e12891. [PMID: 30009515 DOI: 10.1111/cmi.12891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/13/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
Abstract
Chronic periodontitis is characterised by gingival inflammation and alveolar bone loss. A major aetiological agent is Porphyromonas gingivalis, which secretes proteases that activate protease-activated receptor 2 (PAR2 ). PAR2 expressed on oral keratinocytes is activated by proteases released by P. gingivalis, inducing secretion of interleukin 6 (IL-6), and global knockout of PAR2 prevents bone loss and inflammation in a periodontal disease model in mice. To test the hypothesis that PAR2 expressed on gingival keratinocytes is required for periodontal disease pathology, keratinocyte-specific PAR2 -null mice were generated using K14-Cre targeted deletion of the PAR2 gene (F2rl1). These mice were subjected to a model of periodontitis involving placement of a ligature around a tooth, combined with P. gingivalis infection ("Lig + Inf"). The intervention caused a significant 44% decrease in alveolar bone volume (assessed by microcomputed tomography) in wildtype (K14-Cre:F2rl1wt/wt ), but not littermate keratinocyte-specific PAR2 -null (K14-Cre:F2rl1fl/fl ) mice. Keratinocyte-specific ablation of PAR2 prevented the significant Lig + Inf-induced increase (2.8-fold) in the number of osteoclasts in alveolar bone and the significant up-regulation (2.4-4-fold) of the inflammatory markers IL-6, IL-1β, interferon-γ, myeloperoxidase, and CD11b in gingival tissue. These data suggest that PAR2 expressed on oral epithelial cells is a critical regulator of periodontitis-induced bone loss and will help in designing novel therapies with which to treat the disease.
Collapse
Affiliation(s)
- Nidhish Francis
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Babatunde A Ayodele
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Robert N Pike
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
7
|
A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. Int J Biochem Cell Biol 2017; 92:95-103. [DOI: 10.1016/j.biocel.2017.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023]
|
8
|
Park MK, Cho MK, Kang SA, Kim BY, Yu HS. The induction of the collagen capsule synthesis by Trichinella spiralis is closely related to protease-activated receptor 2. Vet Parasitol 2016; 230:56-61. [PMID: 27884442 DOI: 10.1016/j.vetpar.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
The muscle-stage larvae of the parasite Trichinella spiralis have the ability to survive within host muscle tissue by virtue of the formation a nurse cell-parasite complex, which is surrounded by collagen. The formation of the complex is initiated by excretory-secretory (ES) proteins produced by the parasite. To determine the mechanisms underlying collagen capsule formation, we investigated the expression levels of several types of collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) in muscle cells. Synthesis of type I, IV, and VI collagen, which are major constituents of the collagen capsule, significantly increased during T. spiralis infection. In addition, we found that expression of the protease-activated receptor 2 (PAR2) gene was significantly increased during this period. Expression levels of the collagen genes and TGF-βI, Smad2, and Smad3 were induced by ES proteins and a PAR2 agonist, whereas their enhanced expression levels were reduced by a PAR2 antagonist and serine protease inhibitors. To evaluate the involvement of PAR2 during T. spiralis infection in vivo, we infected wild-type and PAR2 knockout (KO) mice with T. spiralis. Expression levels of type I, IV, and VI collagen genes and TGF-βI signaling-related genes (Smad2 and Smad3) were also decreased in the PAR2 KO mice. Phosphorylation of Smad2/3, which was increased by T. spiralis infection, was significantly diminished in the PAR2 KO mice. In conclusion, ES proteins containing serine protease most likely activate collagen synthesis via PAR2 and TGF-βI signaling, and this event could influence collagen capsule formation.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Min Kyoung Cho
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Bo Young Kim
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology School of Medicine, Pusan National University, and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Yangsan, Republic of Korea.
| |
Collapse
|
9
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
10
|
Betts RJ, Mann TS, Henry PJ. Inhibitory influence of the hexapeptidic sequence SLIGRL on influenza A virus infection in mice. J Pharmacol Exp Ther 2012; 343:725-35. [PMID: 22988062 DOI: 10.1124/jpet.112.196485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proteinase-activated receptor 2 (PAR(2)) is widely expressed in the respiratory tract and is an integral component of the host antimicrobial defense system. The principal aim of this study was to investigate the influence of a PAR(2)-activating peptide, SLIGRL, on influenza A virus (IAV)-induced pathogenesis in mice. Intranasal inoculation of BALB/c mice with influenza A/PR/8/34 virus caused time-dependent increases in the number of pulmonary leukocytes (recovered from bronchoalveolar lavage fluid), marked airway histopathology characterized by extensive epithelial cell damage, airway hyper-responsiveness to the bronchoconstrictor methacholine, and elevated levels of inflammatory chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein 2) and cytokines (interferon-γ). It is noteworthy that these IAV-induced effects were dose-dependently attenuated in mice treated with a PAR(2)-activating peptide, SLIGRL, at the time of IAV inoculation. However, SLIGRL also inhibited IAV-induced increases in pulmonary leukocytes in PAR(2)-deficient mice, indicating these antiviral actions were not mediated by PAR(2). The potency order obtained for a series of structural analogs of SLIGRL for anti-IAV activity (IGRL > SLIGRL > LSIGRL >2-furoyl-LIGRL) was also inconsistent with a PAR(2)-mediated effect. In further mechanistic studies, SLIGRL inhibited IAV-induced propagation in ex vivo perfused segments of trachea from wild-type or PAR(2)(-/-) mice, but did not inhibit viral attachment or replication in Madin-Darby canine kidney cells and chorioallantoic membrane cells, which are established hosts for IAV. In summary, SLIGRL protected mice from IAV infection independently of PAR(2) and independently of direct inhibition of IAV attachment or replication, potentially through the activation of endogenous antiviral pathways within the mouse respiratory tract.
Collapse
Affiliation(s)
- Richard J Betts
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia
| | | | | |
Collapse
|
11
|
O'Neill KR, Stutz CM, Mignemi NA, Cole H, Murry MR, Nyman JS, Hamm H, Schoenecker JG. Fracture healing in protease-activated receptor-2 deficient mice. J Orthop Res 2012; 30:1271-6. [PMID: 22247070 DOI: 10.1002/jor.22071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/20/2011] [Indexed: 02/04/2023]
Abstract
Protease-activated receptor-2 (PAR-2) provides an important link between extracellular proteases and the cellular initiation of inflammatory responses. The effect of PAR-2 on fracture healing is unknown. This study investigates the in vivo effect of PAR-2 deletion on fracture healing by assessing differences between wild-type (PAR-2(+/+)) and knock-out (PAR-2(-/-)) mice. Unilateral mid-shaft femur fractures were created in 34 PAR-2(+/+) and 28 PAR-2(-/-) mice after intramedullary fixation. Histologic assessments were made at 1, 2, and 4 weeks post-fracture (wpf), and radiographic (plain radiographs, micro-computed tomography (µCT)) and biomechanical (torsion testing) assessments were made at 7 and 10 wpf. Both the fractured and un-fractured contralateral femur specimens were evaluated. Polar moment of inertia (pMOI), tissue mineral density (TMD), bone volume fraction (BV/TV) were determined from µCT images, and callus diameter was determined from plain radiographs. Statistically significant differences in callus morphology as assessed by µCT were found between PAR-2(-/-) and PAR-2(+/+) mice at both 7 and 10 wpf. However, no significant histologic, plain radiographic, or biomechanical differences were found between the genotypes. The loss of PAR-2 was found to alter callus morphology as assessed by µCT but was not found to otherwise effect fracture healing in young mice.
Collapse
Affiliation(s)
- Kevin R O'Neill
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-9565, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:861-73. [PMID: 22842724 DOI: 10.1007/s00210-012-0783-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/13/2012] [Indexed: 12/29/2022]
Abstract
Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by intramolecular docking of a tethered ligand that is released by the actions of proteases, mainly of the serine protease family. Here, we evaluate four commercially available anti-PAR2 antibodies, SAM11, C17, N19 and H99, demonstrating marked differences in the ability of these reagents to detect the target receptor in Western blot, immunocytochemical and flow cytometry applications. In Western blot analysis, we evaluated antibody reactivity against both ectopic and endogenous receptors. Against material from transfected cells, we show that SAM11 and N19, and to a lesser extent C17, but not H99, are able to detect ectopic PAR2. Interestingly, these Western blot analyses indicate that N19 and C17 detect conformations of ectopic PAR2 distinct to those recognised by SAM11. Significantly, our data also indicate that Western blot signal detected by SAM11 and C17, and much of the signal detected by N19, against cells endogenously expressing PAR2 is non-specific. Despite confounding non-specific signals, we were able to discern N19 reactivity against endogenous PAR2 as a broad smear that we also observed in ectopically expressing human and mouse cells and that is sensitive to loss of N-glycosylation. In immunocytochemistry analysis, each antibody is able to detect ectopic PAR2 although it appears that H99 detects only a subset of the ectopically expressed receptor. In addition, SAM11 and N19 are able to detect both ectopic and endogenous cell surface PAR2 by flow cytometry. In summary: (1) each antibody can detect ectopic PAR2 by immunocytochemical analysis with SAM11 and N19 suitable for cell surface detection of both ectopic and endogenous receptor by flow cytometry; (2) in Western blot analysis, N19, SAM11 and C17 can detect ectopically expressed PAR2, with only N19 able to detect the endogenous receptor by this technique and (3) in each of these approaches, appropriate controls are essential to ensure that non-specific reactivity is identified.
Collapse
|
13
|
Georgy SR, Pagel CN, Ghasem-Zadeh A, Zebaze RMD, Pike RN, Sims NA, Mackie EJ. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone 2012; 50:704-12. [PMID: 22173052 DOI: 10.1016/j.bone.2011.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
Abstract
Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2) expression. These results suggest that PAR(2) activation contributes to determination of cells of both osteoblast and osteoclast lineages within bone marrow, and thereby participates in the regulation of skeletal growth and bone repair.
Collapse
Affiliation(s)
- S R Georgy
- School of Veterinary Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
14
|
Amiable N, Martel-Pelletier J, Lussier B, Kwan Tat S, Pelletier JP, Boileau C. Proteinase-activated receptor-2 gene disruption limits the effect of osteoarthritis on cartilage in mice: a novel target in joint degradation. J Rheumatol 2011; 38:911-20. [PMID: 21285164 DOI: 10.3899/jrheum.100710] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Evidence indicates that proteinase-activated receptor (PAR)-2 participates in the degradative processes of human osteoarthritis (OA). We evaluated the in vivo effect of PAR-2 on articular lesions in a PAR-2-knockout (KO) mouse model of OA. METHODS OA was surgically induced by destabilization of the medial meniscus of the right knee in C57Bl/6 wild-type (WT) and PAR-2 KO mice. Knee swelling was measured throughout the duration of the study (8 weeks postsurgery) and histologic evaluation of cartilage was done to assess structure, cellularity, matrix staining, and remodeling in the deep zone. Morphometric analysis of subchondral bone was also performed. RESULTS Data showed significant knee swelling in the operated WT mice immediately following surgery, which increased with time (8 weeks post-surgery). Knee swelling was significantly lower (p ≤ 0.0001) in PAR-2 KO mice than in WT mice at both 4 and 8 weeks postsurgery. Cartilage damage was found in both operated WT and PAR-2 KO mice; however, lesions were significantly less severe (global score; p ≤ 0.05) in the PAR-2 KO mice at 4 weeks postsurgery. Operated WT mice showed reduced subchondral bone surface and trabecular thickness with significance reached at 4 weeks (p ≤ 0.03 and p ≤ 0.05, respectively), while PAR-2 KO mice demonstrated a gradual increase in subchondral bone surface with significance reached at 8 weeks (p ≤ 0.007). CONCLUSION We demonstrated the in vivo implication of PAR-2 in the development of experimental OA, thus confirming its involvement in OA joint structural changes and reinforcing the therapeutic potential of a PAR-2 antagonist for treatment of OA.
Collapse
Affiliation(s)
- Nathalie Amiable
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre, Notre-Dame Hospital, 1560 Sherbrooke Street East, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|