1
|
Mahapatra C, Kumar R. Biophysical Mechanisms of Vaginal Smooth Muscle Contraction: The Role of the Membrane Potential and Ion Channels. PATHOPHYSIOLOGY 2024; 31:225-243. [PMID: 38804298 PMCID: PMC11130850 DOI: 10.3390/pathophysiology31020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The vagina is an essential component of the female reproductive system and is responsible for providing female sexual satisfaction. Vaginal smooth muscle contraction plays a crucial role in various physiological processes, including sexual arousal, childbirth, and urinary continence. In pathophysiological conditions, such as pelvic floor disorders, aberrations in vaginal smooth muscle function can lead to urinary incontinence and pelvic organ prolapse. A set of cellular and sub-cellular physiological mechanisms regulates the contractile properties of the vaginal smooth muscle cells. Calcium influx is a crucial determinant of smooth muscle contraction, facilitated through voltage-dependent calcium channels and calcium release from intracellular stores. Comprehensive reviews on smooth muscle biophysics are relatively scarce within the scientific literature, likely due to the complexity and specialized nature of the topic. The objective of this review is to provide a comprehensive description of alterations in the cellular physiology of vaginal smooth muscle contraction. The benefit associated with this particular approach is that conducting a comprehensive examination of the cellular mechanisms underlying contractile activation will enable the creation of more targeted therapeutic agents to control vaginal contraction disorders.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Paris Saclay Institute of Neuroscience, 91440 Saclay, France
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
3
|
Athavale ON, Avci R, Cheng LK, Du P. Computational models of autonomic regulation in gastric motility: Progress, challenges, and future directions. Front Neurosci 2023; 17:1146097. [PMID: 37008202 PMCID: PMC10050371 DOI: 10.3389/fnins.2023.1146097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The stomach is extensively innervated by the vagus nerve and the enteric nervous system. The mechanisms through which this innervation affects gastric motility are being unraveled, motivating the first concerted steps towards the incorporation autonomic regulation into computational models of gastric motility. Computational modeling has been valuable in advancing clinical treatment of other organs, such as the heart. However, to date, computational models of gastric motility have made simplifying assumptions about the link between gastric electrophysiology and motility. Advances in experimental neuroscience mean that these assumptions can be reviewed, and detailed models of autonomic regulation can be incorporated into computational models. This review covers these advances, as well as a vision for the utility of computational models of gastric motility. Diseases of the nervous system, such as Parkinson’s disease, can originate from the brain-gut axis and result in pathological gastric motility. Computational models are a valuable tool for understanding the mechanisms of disease and how treatment may affect gastric motility. This review also covers recent advances in experimental neuroscience that are fundamental to the development of physiology-driven computational models. A vision for the future of computational modeling of gastric motility is proposed and modeling approaches employed for existing mathematical models of autonomic regulation of other gastrointestinal organs and other organ systems are discussed.
Collapse
|
4
|
In Silico, In Vitro, and Ex Vivo Biological Activity of Some Novel Mebeverine Precursors. Biomedicines 2023; 11:biomedicines11020605. [PMID: 36831141 PMCID: PMC9953468 DOI: 10.3390/biomedicines11020605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastroenterological disorder with complex pathogenesis and multifaceted therapy approaches, aimed at alleviating clinical symptoms and improving the life quality of patients. Its treatment includes dietary changes and drugs from various pharmacological groups such as antidiarrheals, anticholinergics, serotonin receptor antagonists, targeting chloride ion channels, etc. The present article is focused on the synthesis and biological evaluation of some mebeverine precursors as potential antispasmodics. METHODS In silico analysis aimed at predicting the pharmacodynamic profile of the compounds was performed. Based on these predictions, ex vivo bioelectrical activity (BEA) and immunohistochemical effects of the compounds were established. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial and cytotoxic activity. RESULTS All the newly synthesized compounds exerted drug-like properties, whereby 3-methyl-1-phenylbutan-2-amine 3 showed a significant change in BEA due to Ca2+ channel regulation, Ca2+ influx modulation, and a subsequent change in smooth muscle cell response. The immunohistochemical studies showed a good correlation with the obtained data on the BEA, defining amine 3 as a leader structure. No cytotoxicity to human malignant leukemic cell lines (LAMA-84, K-562) was observed for all tested compounds. CONCLUSION Based on the experimental results, we outlined 3-methyl-1-phenylbutan-2-amine 3 as a potential effective choice for orally active long-term therapy of IBS.
Collapse
|
5
|
Athavale ON, Cheng LK, Clark AR, Avci R, Du P. Mathematical Modeling of Gastric Slow Waves During Electrical Field Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2266-2269. [PMID: 36086185 DOI: 10.1109/embc48229.2022.9871307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While neural modulation has been trialed as a therapy for functional gastric motility disorders, a computational model that guides stimulation protocol does not exist. In this work, a mathematical model of gastric slow wave activity, which incorporates the effects of neurotransmitter release during electrical field stimulation (EFS), was developed. Slow wave frequency responses due to the release of acetylcholine and slow wave amplitude responses due to the release of nitric oxide were modeled. The model was calibrated using experimental data from literature. A sensitivity analysis was conducted, which showed that the model yielded stable, periodic solutions for EFS frequencies in the range 0-20 Hz. A 25% increase in the input parameter (EFS frequency) from 5 Hz to 6.25 Hz resulted in a 5.2% increase in slow wave frequency and a 3.2 % decrease in slow wave amplitude. Simulated EFS showed that, for stimulation at 15 Hz, with blocking of the nitrergic neurotransmitter pathway the slow wave increased from the no stimulation scenario in frequency by only 2.4x compared to 2.7x when the nitrergic pathway was not blocked. A 21 % reduction in slow wave amplitude occurred when the cholinergic pathway was blocked, compared to a 46% reduction when no neurotransmitter pathways were blocked. Clinical relevance - This mathematical model is a step towards successful computational modeling of the effects ther-apeutic neural stimulation on the stomach. The model is also a tool for understanding of the physiology of neural stimulation.
Collapse
|
6
|
Mah SA, Avci R, Du P, Vanderwinden JM, Cheng LK. Deciphering Stomach Myoelectrical Slow Wave Conduction Patterns via Confocal Imaging of Gastric Pacemaker Cells and Fractal Geometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3514-3517. [PMID: 36085915 DOI: 10.1109/embc48229.2022.9870891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interstitial Cells of Cajal (ICC) are specialized gastrointestinal (GI) pacemaker cells that generate and actively propagate slow waves of depolarization (SWs) of the muscularis propria. SWs regulate the motility of the GI tract necessary for digestion, absorption of nutrients, and elimination of waste. Within the gastric wall, there are three main inter-connected layers of ICC networks: longitudinal muscle ICC (ICC-LM), myenteric plexus ICC (ICC-MP) & circumferential muscle (ICC-CM). Fractal structural parameters such as Fractal Dimension (FD), Lacunarity and Succolarity, have many advantages over physically-based parameters when it comes to characterizing the complex architectures of ICC networks. The analysis of networks of ICC throughout the proximal and distal murine gastric antrum with the FD and Lacunarity metrics was previously performed. Although the application of Succolarity is relatively nascent compared to the FD and Lacunarity; nevertheless, numerous studies have demonstrated the capability of this fractal measure to extract information from images associated with flow by which neither the FD nor Lacunarity are capable of discerning. In this study, Succolarity analysis of ICC-MP and ICC-CM networks were performed with confocal images taken across the proximal and distal murine antrum. Our findings demonstrated the Succolarity of ICC-MP and ICC-CM varied with directions and antral regions. The Succolarity of ICC-MP did not vary considerably with direction, however, Succolarity was higher in the aboral direction with 0.2113 ±0.1589, and 0.0637 ±0.0822 in the proximal and distal antrum, respectively. The overall Succolarity of ICC-MP was significantly higher than that of ICC-CM in the proximal antrum ( 0.1580±0.1325 vs [Formula: see text]) and in the distal antrum ( 0.0449 ±0.0409 vs [Formula: see text]). Clinical Relevance-Modeling SWs conduction patterns via image analysis of detailed ICC networks help to facilitate an improved understanding of the mechanisms underpinning GI myoelectric activity and the diseases associated with its dysfunction.
Collapse
|
7
|
O'Grady G, Gharibans AA, Du P, Huizinga JD. The gastric conduction system in health and disease: a translational review. Am J Physiol Gastrointest Liver Physiol 2021; 321:G527-G542. [PMID: 34549598 DOI: 10.1152/ajpgi.00065.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric peristalsis is critically dependent on an underlying electrical conduction system. Recent years have witnessed substantial progress in clarifying the operations of this system, including its pacemaking units, its cellular architecture, and slow-wave propagation patterns. Advanced techniques have been developed for assessing its functions at high spatiotemporal resolutions. This review synthesizes and evaluates this progress, with a focus on human and translational physiology. A current conception of the initiation and conduction of slow-wave activity in the human stomach is provided first, followed by a detailed discussion of its organization at the cellular and tissue level. Particular emphasis is then given to how gastric electrical disorders may contribute to disease states. Gastric dysfunction continues to grow in their prevalence and impact, and while gastric dysrhythmia is established as a clear and pervasive feature in several major gastric disorders, its role in explaining pathophysiology and informing therapy is still emerging. New insights from high-resolution gastric mapping are evaluated, together with historical data from electrogastrography, and the physiological relevance of emerging biomarkers from body surface mapping such as retrograde propagating slow waves. Knowledge gaps requiring further physiological research are highlighted.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Mah SA, Avci R, Du P, Vanderwinden JM, Cheng LK. Antral Variation of Murine Gastric Pacemaker Cells Informed by Confocal Imaging and Machine Learning Methods. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3105-3108. [PMID: 34891899 DOI: 10.1109/embc46164.2021.9630341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Interstitial Cells of Cajal (ICC) are specialized gastrointestinal (GI) pacemaker cells that generate and actively propagate electrophysiological events called slow waves. Slow waves regulate the GI motility necessary for digestion. Several functional GI motility disorders have been associated with depletion in the ICC. In this study, a validated Fast Random Forest (FRF) classification method using Trainable WEKA Segmentation for segmenting the networks of ICC was applied to confocal microscopy images of a whole mount tissue from the distal antrum of a mouse stomach (583 × 3,376 × 133 μm3, parcellated into 24 equal image stacks). The FRF model performance was compared to 6 manually segmented subflelds and produced an area under the receiver-operating characteristic (AUROC) of 0.95. Structural variations of ICC network in the longitudinal muscle (ICC-LM) and myenteric plexus (ICC-MP) were quantified. The average volume of ICC-MP was significantly higher than ICC-LM at any point throughout the antral tissue sampled. There was a pronounced decline of up to 80% in ICC-LM (from 3,705 μm3 to 716 μm3) over a distance of 279.3 μm, that eventually diminished towards the distal antrum. However, an inverse relationship was observed in ICC-MP with an overall increase of up to 157% (from 59,100 μm3 to 151,830 μm3) over a distance of approximately 2 mm that proceeds towards the distal antrum.
Collapse
|
9
|
Cai W, Makwana R, Straface M, Gharibans A, Andrews PLR, Sanger GJ. Evidence for tetrodotoxin-resistant spontaneous myogenic contractions of mouse isolated stomach that are dependent on acetylcholine. Br J Pharmacol 2021; 179:1187-1200. [PMID: 34519057 PMCID: PMC9297954 DOI: 10.1111/bph.15685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Gastric pacemaker cells, interstitial cells of Cajal (ICC), are believed to initiate myogenic (non‐neuronal) contractions. These become damaged in gastroparesis, associated with dysrhythmic electrical activity and nausea. We utilised mouse isolated stomach to model myogenic contractions and investigate their origin and actions of interstitial cells of Cajal modulators. Experimental Approach Intraluminal pressure was recorded following distension with a physiological volume; tone, contraction amplitude and frequency were quantified. Compounds were bath applied. Key Results The stomach exhibited regular large amplitude contractions (median amplitude 9.0 [4.7–14.8] cmH2O, frequency 2.9 [2.5–3.4] c.p.m; n = 20), appearing to progress aborally. Tetrodotoxin (TTX, 10−6 M) had no effect on tone, frequency or amplitude but blocked responses to nerve stimulation. ω‐conotoxin GVIA (10−7 M) ± TTX was without effect on baseline motility. In the presence of TTX, (1) atropine (10−10–10−6 M) reduced contraction amplitude and frequency in a concentration‐related manner (pIC50 7.5 ± 0.3 M for amplitude), (2) CaCC channel (previously ANO1) inhibitors MONNA and CaCCinh‐A01 reduced contraction amplitude (significant at 10−5, 10−4 M respectively) and frequency (significant at 10−5 M), and (3), neostigmine (10−5 M) evoked a large, variable, increase in contraction amplitude, reduced by atropine (10−8–10−6 M) but unaffected (exploratory study) by the H1 receptor antagonist mepyramine (10−6 M). Conclusions and Implications The distended mouse stomach exhibited myogenic contractions, resistant to blockade of neural activity by TTX. In the presence of TTX, these contractions were prevented or reduced by compounds blocking interstitial cells of Cajal activity or by atropine and enhanced by neostigmine (antagonised by atropine), suggesting involvement of non‐neuronal ACh in their regulation.
Collapse
Affiliation(s)
- Weigang Cai
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raj Makwana
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marilisa Straface
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Armen Gharibans
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Detection of gastric slow oscillatory contraction using parasagittal cine MR images: Comparison with simultaneously measured electrogastrogram. Magn Reson Imaging 2020; 75:149-155. [PMID: 33137456 DOI: 10.1016/j.mri.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine if parasagittal gastric cine magnetic resonance imaging (MRI) is able to measure gastric oscillatory contractions around 0.05 Hz and to determine its relationship with electrical activity as measured by electrogastrography (EGG). METHODS Assessment of the gastric motility is important for the research of the enteric nervous system and for the diagnosis of functional gastric disorders. Electrogastrography is a non-invasive method that can measure gastric oscillatory electrical activity around 0.05 Hz (slow wave) using electrodes on the abdominal skin, but its sensitivity and specificity of the slow wave detection is limited. We used parasagittal gastric cine MRI around the angular incisure to measure gastric oscillatory contraction around 0.05 Hz in 24 healthy volunteers. Cine MRI was acquired with time resolution of 1 s for 10 min while freely breathing participants were lying on the bed. The gastric area of the cross section was measured for each MR image and assessed its change over time. The results were compared with those for simultaneously recorded EGG. RESULTS The main frequency of the gastric area change for each participant ranged from 0.041 to 0.059 Hz (mean ± S.D. = 0.049 ± 0.004), which corresponds to the gastric slow wave frequency (mean ± S.D. = 0.049 ± 0.004) as measured by EGG (p = 7.9585 × 10 -8, Kendall 's tau test). Cross correlation analysis showed that 22 of 24 participants' gastric area changes were significantly (p < 0.05) related to the EGG waveforms. Displacement of the stomach due to respiration did not affect gastric area measurements. CONCLUSIONS Parasagittal cine MRI is correlated with EGG recordings and able to detect and quantifying gastric motility abnormalities.
Collapse
|
11
|
Agrusa AS, Allegra AB, Kunkel DC, Coleman TP. Robust Methods to Detect Abnormal Initiation in the Gastric Slow Wave from Cutaneous Recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:225-231. [PMID: 33017970 DOI: 10.1109/embc44109.2020.9176634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upper gastrointestinal (GI) disorders are highly prevalent, with gastroparesis (GP) and functional dyspepsia (FD) affecting 3% and 10% of the US population, respectively. Despite overlapping symptoms, differing etiologies of GP and FD have distinct optimal treatments, thus making their management a challenge. One such cause, that of gastric slow wave abnormalities, affects the electromechanical coordination of pacemaker cells and smooth muscle cells in propelling food through the GI tract. Abnormalities in gastric slow wave initiation location and propagation patterns can be treated with novel pacing technologies but are challenging to identify with traditional spectral analyses from cutaneous recordings due to their occurrence at the normal slow wave frequency. This work advances our previous work in developing a 3D convolutional neural network to process multi-electrode cutaneous recordings and successfully classify, in silico, normal versus abnormal slow wave location and propagation patterns. Here, we use transfer learning to build a method that is robust to heterogeneity in both the location of the abnormal initiation on the stomach surface as well as the recording start times with respect to slow wave cycles. We find that by starting with training lowest-complexity models and building complexity in training sets, transfer learning one model to the next, the final network exhibits, on average, 80% classification accuracy in all but the most challenging spatial abnormality location, and below 5% Type-I error probabilities across all locations.
Collapse
|
12
|
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM. Na +/Ca 2 + Exchange and Pacemaker Activity of Interstitial Cells of Cajal. Front Physiol 2020; 11:230. [PMID: 32256387 PMCID: PMC7093646 DOI: 10.3389/fphys.2020.00230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical slow waves in gastrointestinal (GI) smooth muscles. Slow waves organize basic motor patterns, such as peristalsis and segmentation in the GI tract. Slow waves depend upon activation of Ca2+-activated Cl– channels (CaCC) encoded by Ano1. Slow waves consist of an upstroke depolarization and a sustained plateau potential that is the main factor leading to excitation-contraction coupling. The plateau phase can last for seconds in some regions of the GI tract. How elevated Ca2+ is maintained throughout the duration of slow waves, which is necessary for sustained activation of CaCC, is unknown. Modeling has suggested a role for Na+/Ca2+ exchanger (NCX) in regulating CaCC currents in ICC, so we tested this idea on murine intestinal ICC. ICC of small and large intestine express NCX isoforms. NCX3 is closely associated with ANO1 in ICC, as shown by immunoprecipitation and proximity ligation assays (PLA). KB-R7943, an inhibitor of NCX, increased CaCC current in ICC, suggesting that NCX, acting in Ca2+ exit mode, helps to regulate basal [Ca2+]i in these cells. Shifting NCX into Ca2+ entry mode by replacing extracellular Na+ with Li+ increased spontaneous transient inward currents (STICs), due to activation of CaCC. Stepping ICC from −80 to −40 mV activated slow wave currents that were reduced in amplitude and duration by NCX inhibitors, KB-R7943 and SN-6, and enhanced by increasing the NCX driving force. SN-6 reduced the duration of clustered Ca2+ transients that underlie the activation of CaCC and the plateau phase of slow waves. Our results suggest that NCX participates in slow waves as modeling has predicted. Dynamic changes in membrane potential and ionic gradients during slow waves appear to flip the directionality of NCX, facilitating removal of Ca2+ during the inter-slow wave interval and providing Ca2+ for sustained activation of ANO1 during the slow wave plateau phase.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kate E O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States
| |
Collapse
|
13
|
Ellingson PJ, Korogod SM, Kahl TM, Kulagina IB, Makedonsky IA, Cymbalyuk GS. Role of the Plasma Membrane Ca2+-ATPase Pump in the Regulation of Rhythm Generation by an Interstitial Cell of Cajal: A Computational Study. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09825-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Legner A, Kong SH, Liu YY, Shabat G, Halvax P, Saadi A, Worreth M, Marescaux J, Swanström L, Diana M. The GAMMA concept (gastrointestinal activity manipulation to modulate appetite) preliminary proofs of the concept of local vibrational gastric mechanical stimulation. Surg Endosc 2020; 34:5346-5353. [PMID: 31907661 DOI: 10.1007/s00464-019-07325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mechanical stimulation of the stretch receptors of the gastric wall can simulate the presence of indigested food leading to reduced food intake. We report the preliminary experimental results of an innovative concept of localized mechanical gastric stimulation. METHODS In a first survival study, a biocompatible bulking agent was injected either in the greater curvature (n = 8) or in the cardia wall (n = 8) of Wistar rats. Six animals served as sham. Changes of bulking volume, leptin levels and weight gain were monitored for 3 months. In a second acute study, a micro-motor (n = 10; MM) or a size-paired inactive device (n = 10; ID) where applied on the cardia, while 10 additional rats served as sham. Serum ghrelin and leptin were measured at baseline and every hour (T0-T1-T2-T3), during 3 h. In a third study, 24 implants of various shapes and sizes were introduced into the gastric subserosa of 6 Yucatan pigs. Monthly CT scans and gastroscopies were done for 6 months. RESULTS Weight gain in the CW group was significant lower after 2 weeks and 3 months when compared to the shame and GC (p = 0.01/p = 0.01 and p = 0.048/p = 0.038 respectively). Significant lower increase of leptin production occurred at 2 weeks (p = 0.01) and 3 months (p = 0.008) in CW vs. SG. In the MM group significant reduction of the serum ghrelin was seen after 3 h. Leptin was significantly increased in both MM and ID groups after 3 h, while it was significantly reduced in sham rats. The global device retention was 43.5%. Devices with lower profile and with a biocompatible coating remained more likely in place without complications. CONCLUSIONS Gastric mechanical stimulation induced a reduced weight gain and hormonal changes. Low profile and coated devices inserted within the gastric wall are more likely to be integrated.
Collapse
Affiliation(s)
- Andras Legner
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Seong-Ho Kong
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- Department of Surgery, Seoul National University, Seoul, South Korea
| | - Yu-Yin Liu
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France
| | - Galyna Shabat
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France
| | - Peter Halvax
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Alend Saadi
- Department of Surgery, Obesity Surgery Unit, Neuchâtel Hospital, Neuchâtel, Switzerland
| | - Marc Worreth
- Department of Surgery, Obesity Surgery Unit, Neuchâtel Hospital, Neuchâtel, Switzerland
| | - Jacques Marescaux
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France
| | - Lee Swanström
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Michele Diana
- IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France.
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France.
- Department of Surgery, Obesity Surgery Unit, Neuchâtel Hospital, Neuchâtel, Switzerland.
- IHU-Strasbourg, Institute for Hybrid Minimally-Invasive Image-Guided Surgery, 1, Place de l'Hôpital, 67091, Strasbourg, France.
| |
Collapse
|
15
|
Wang L, Malik A, Roop PS, Cheng LK, Paskaranandavadivel N, Ai W. A novel approach for model-based design of gastric pacemakers. Comput Biol Med 2019; 116:103576. [PMID: 31999552 DOI: 10.1016/j.compbiomed.2019.103576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Understanding the slow wave propagation patterns of Interstitial Cells of Cajal (ICC) is essential when designing Gastric Electrical Stimulators (GESs) to treat motility disorders. A GES with the ability to both sense and pace, working in closed-loop with the ICC, will enable efficient modulation of Gastrointestinal (GI) dysrhythmias. However, existing GESs targeted at modulating GI dysrhythmias operate in an open-loop and hence their clinical efficacy is uncertain. This paper proposes a novel model-based approach for designing GESs that operate in closed-loop with the GI tract. GES is modelled using Hybrid Input Output Automata (HIOA), a well-known formal model, which is suitable for designing safety-critical systems. A two-dimensional ICC network working in real-time with the GES is developed using the same compositional HIOA framework. The ICC network model is used to simulate normal and diseased action potential propagation patterns akin to those observed during GI dysrhythmias. The efficacy of the proposed GES is then validated by integrating it in closed-loop with the ICC network. Results show that the proposed GES is able to sense the propagation patterns and modulate the dysrhythmic patterns of bradygastria back to its normal state automatically. The proposed design of the GES is flexible enough to treat a variety of diseased dysrhythmic patterns using closed-loop operation.
Collapse
Affiliation(s)
- Luman Wang
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Avinash Malik
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Partha S Roop
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | | | - Weiwei Ai
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand
| |
Collapse
|
16
|
Zhang B, Ji F, Tu L, Yang Y, Chen JDZ. Prokinetic effects of spinal cord stimulation and its autonomic mechanisms in dogs. Neurogastroenterol Motil 2019; 31:e13596. [PMID: 30983068 PMCID: PMC6996459 DOI: 10.1111/nmo.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Spinal cord stimulation (SCS) is widely used to treat chronic pain by inhibiting sympathetic activity; however, it is unknown whether it exerts a prokinetic effect on gastric motility. Our aim was to explore effects and possible mechanisms of SCS on glucagon-induced gastric dysmotility and dysrhythmia. METHODS Seven female dogs with electrodes chronically placed on the dorsal column of the spinal cord between T10 and T12 segments were studied in 2 randomized sessions (glucagon + sham-SCS, glucagon + SCS). SCS at T10 using a set of optimized stimulation parameters was performed for 30 minute immediately after glucagon injection. The antral manometry, electrogastrogram, and electrocardiogram were recorded to assess gastric contractions, gastric slow waves (GSW), and autonomic functions, respectively. KEY RESULTS (a) Compared to baseline, glucagon decreased antral motility index (MI) (6315 ± 565 vs 3243 ± 775, P < 0.001), reduced the percentage of normal GSW (89 ± 3% vs 58 ± 3%, P < 0.01), and increased sympathetic activity (0.25 ± 0 0.06 vs 0.60 ± 0.07, P < 0.01). (b) The sympathetic activity was negatively correlated with antral MI (r = -0.558; P < 0.01) and the percentage of gastric normal slow wave (r = -0.616; P < 0.01). (c) SCS prevented the glucagon-induced impairment in antral hypomotility (MI: 5770 ± 927 vs 5521 ± 1238, P > 0.05) and GSW abnormalities (% of normal waves: 84 ± 4% vs 79 ± 6%, P > 0.05) and sympathetic activity (0.27 ± 0.03 vs 0.33 ± 0.07, P > 0.05). CONCLUSION Spinal cord stimulation dramatically improves glucagon-induced impairment in gastric contractions and slow waves by inhibiting sympathetic activity.
Collapse
Affiliation(s)
- Bo Zhang
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Feng Ji
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Lei Tu
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Yi Yang
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, Maryland
| |
Collapse
|
17
|
Patejdl R, Gromann A, Bänsch D, Noack T. Effects of ajmaline on contraction patterns of isolated rat gastric antrum and portal vein smooth muscle strips and on neurogenic relaxations of gastric fundus. Pflugers Arch 2019; 471:995-1005. [PMID: 31044280 DOI: 10.1007/s00424-019-02279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022]
Abstract
Class-I-antiarrhythmics like ajmaline are known to alter smooth muscle function, which may cause alterations in gastrointestinal motility. The effects of ajmaline on isolated gastric and portal vein smooth muscle and the underlying mechanisms are unknown. We studied the effects of ajmaline on the contractile patterns of isolated preparations of gastric antrum and portal vein from Wistar rats. The organ bath technique was used to measure spontaneous or pharmacologically induced isometric contractions. Changes in force observed after application of ajmaline or under control conditions are reported as % of the amplitude of an initial K+-induced contraction. Electric field stimulation was used to study neurogenic relaxations of gastric fundus smooth muscle. Ajmaline increased the amplitude of spontaneous contractions of muscle strips (portal vein: control 31.1 ± 15.2%, with 100 μM ajmaline 76.6 ± 32.3%, n = 9, p < 0.01; gastric antrum: control 9.5 ± 1.6%, with 100 μM ajmaline 63.9 ± 9.96%, n = 14, p < 0.01). The frequency of spontaneous activity was reduced in portal vein, but not in gastric antrum strips. The effects of ajmaline were not blocked by tetrodotoxin, L-nitroarginine methyl ester, or atropine. Ajmaline abolished coordinated neurogenic relaxations triggered by electric field stimulation and partly reversed the inhibition of GA spontaneous activity caused by the gap junction blocker carbenoxolone. Ajmaline enhances the amplitude of spontaneous contractions in rat gastric and portal vein smooth muscle. This effect may be accompanied, but not caused by an inhibition of enteric neurotransmission. Enhanced syncytial coupling as indicated by its ability to antagonize the effects of carbenoxolone is likely to underlie the enhancement of contractility.
Collapse
Affiliation(s)
- Robert Patejdl
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany.
| | - Alina Gromann
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Dietmar Bänsch
- Department of Cardiac Electrophysiology, KMG Hospital Güstrow, Güstrow, Germany
| | - Thomas Noack
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| |
Collapse
|
18
|
Cajal Cell Counts are Important Predictors of Outcomes in Drug Refractory Gastroparesis Patients With Neurostimulation. J Clin Gastroenterol 2019; 53:366-372. [PMID: 29672439 DOI: 10.1097/mcg.0000000000001025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Cajal cells serve as the pacemaker cells of the gastrointestinal tract and regulates peristalsis. On the baisis of that fact, it has been hypothesized that a decrease in Cajal cells can lead to gastroparesis and other motility issues. Treatment with medications has a limited efficacy and most resort to gastric electrical stimulation (GES) devices for symptomatic relief. We believe that the number of Cajal cells present is directly proportional to symptomatic relief with GES. MATERIALS AND METHODS Twenty-three (white female) subjects were recruited from the gastric motility clinic University of Mississipi for this study with the criteria of drug refractory gastropersis. Symptoms were measured using Likert scale and gastric emptying times were measured pre-GES and post-GES. Serosal electrogram measurements were recorded during surgical placement of permanent electrical stimulator under various modes. Cajal cell count scoring via immunohistochemistry were performed during the implantaion of the GES. RESULTS The data were grouped in 2 categories based on the Cajal cells that is ≥2.00 and <2.00. Subjects with higher Cajal cells reported a statiscially improvement in gastroperesis symptoms. Significant differences were also noted in the first hour gastric emptying study. The mean group difference is 17.5 (95% confidence interval, 1.41-33.58; P=0.035). Serosal amplitude differences were noted being significantly higher in the group with ≥2 cajal cells. CONCLUSIONS Electrograms obtained after GES demonstrates immediate improvement in gastric electrical activity and gastroparesis symptoms in patients with relatively higher Cajal cell counts when compared with patients with extensive loss of Cajal cells.
Collapse
|
19
|
|
20
|
Semenov I, Brenner R. Voltage effects on muscarinic acetylcholine receptor-mediated contractions of airway smooth muscle. Physiol Rep 2018; 6:e13856. [PMID: 30187663 PMCID: PMC6125245 DOI: 10.14814/phy2.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023] Open
Abstract
Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised a pharmacological approach to depolarize tissue to various extents in an organ bath preparation, and isolate contraction due exclusively to ASM muscarinic receptors within range of physiological voltages. Our results indicate that unliganded muscarinic receptors do not contribute to contraction regardless of voltage. Utilizing low K+ solution to hyperpolarize membrane potentials during contractions had no effect on liganded muscarinic receptor-evoked contractions, although it eliminated the contribution of voltage-gated calcium channels. However, we found that muscarinic signaling was potentiated by at least 42% at depolarizing voltages (average -12 mV) induced by high K+ solution (20 mmol/L K+ ). In summary, we conclude that contractions evoked by direct activation of muscarinic receptors have negligible sensitivity to physiological voltages. However, contraction activated by cholinergic stimulation can be potentiated by membrane potentials occurring beyond the physiological range of ASM.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkVirginia
| | - Robert Brenner
- Department of Cell and Integrative PhysiologyUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| |
Collapse
|
21
|
O'Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, Cheng LK, Du P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng 2018; 12:287-302. [PMID: 30176605 DOI: 10.1109/rbme.2018.2867555] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
Collapse
|
22
|
Young RC. The uterine pacemaker of labor. Best Pract Res Clin Obstet Gynaecol 2018; 52:68-87. [PMID: 29866432 DOI: 10.1016/j.bpobgyn.2018.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
The laboring uterus is generally thought to initiate contractions much similar to the heart, with a single, dedicated pacemaker. Research on human and animal models over decades has failed to identify such pacemaker. On the contrary, data indicate that instead of being fixed at a site similar to the sinoatrial node of the heart, the initiation site for each uterine contraction changes during time, often with each contraction. The enigmatic uterine "pacemaker" does not seem to fit the standard definition of what a pacemaker should be. The uterine pacemaker must also mesh with the primary physiological function of the uterus - to generate intrauterine pressure. This requires that most areas of the uterine wall contract in a coordinated, or synchronized, manner for each contraction of labor. It is not clear whether the primary mechanism of the uterine pacemaker is a slow-wave generator or an impulse generator. Slow waves in the gut initiate localized smooth muscle contractions. Because the uterus and the gut have somewhat similar cellular and tissue structure, it is reasonable to consider if uterine contractions are paced by a similar mechanism. Unfortunately, there is no convincing experimental verification of uterine slow waves. Similarly, there is no convincing evidence of a cellular mechanism for impulse generation. The uterus appears to have multiple widely dispersed mechanically sensitive functional pacemakers. It is possible that the coordination of organ-level function occurs through intrauterine pressure, thus creating wall stress followed by activation of many mechanosensitive electrogenic pacemakers.
Collapse
|
23
|
Korogod SM, Cymbalyuk GS, Makedonsky IA, Kulagina IB. Hypoxic Depression of Pacemaker Activity of Interstitial Cells of Cajal: A Threat of Gastrointestinal Dysmotility and Necrosis. A Simulation Study. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping. Obes Surg 2018; 27:1929-1937. [PMID: 28213666 DOI: 10.1007/s11695-017-2597-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Laparoscopic sleeve gastrectomy (LSG) is increasingly being applied to treat obesity. LSG includes excision of the normal gastric pacemaker, which could induce electrical dysrhythmias impacting on post-operative symptoms and recovery, but these implications have not been adequately investigated. This study aimed to define the effects of LSG on gastric slow-wave pacemaking using laparoscopic high-resolution (HR) electrical mapping. METHODS Laparoscopic HR mapping was performed before and after LSG using flexible printed circuit arrays (64-96 electrodes; 8-12 cm2; n = 8 patients) deployed through a 12 mm trocar and positioned on the gastric serosa. An additional patient with chronic reflux, nausea, and dysmotility 6 months after LSG also underwent gastric mapping while undergoing conversion to gastric bypass. Slow-wave activity was quantified by propagation pattern, frequency, velocity, and amplitude. RESULTS Baseline activity showed exclusively normal propagation. Acutely after LSG, all patients developed either a distal unifocal ectopic pacemaker with retrograde propagation (50%) or bioelectrical quiescence (50%). Propagation velocity was abnormally rapid after LSG (12.5 ± 0.8 vs baseline 3.8 ± 0.8 mm s-1; p = 0.01), whereas frequency and amplitude were unchanged (2.7 ± 0.3 vs 2.8 ± 0.3 cpm, p = 0.7; 1.7 ± 0.2 vs 1.6 ± 0.6 mV, p = 0.7). In the patient with chronic dysmotility after LSG, mapping also revealed a stable antral ectopic pacemaker with retrograde rapid propagation (12.6 ± 4.8 mm s-1). CONCLUSION Resection of the gastric pacemaker during LSG acutely resulted in aberrant distal ectopic pacemaking or bioelectrical quiescence. Ectopic pacemaking can persist long after LSG, inducing chronic dysmotility. The clinical and therapeutic significance of these findings now require further investigation.
Collapse
|
25
|
Du P, Calder S, Angeli TR, Sathar S, Paskaranandavadivel N, O'Grady G, Cheng LK. Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities. Front Physiol 2018; 8:1136. [PMID: 29379448 PMCID: PMC5775268 DOI: 10.3389/fphys.2017.01136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R. Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
26
|
Wang THH, Du P, Angeli TR, Paskaranandavadivel N, Erickson JC, Abell TL, Cheng LK, O'Grady G. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach. Neurogastroenterol Motil 2018; 30. [PMID: 28695661 DOI: 10.1111/nmo.13152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric slow wave dysrhythmias are accompanied by deviations in frequency, velocity, and extracellular amplitude, but the inherent association between these parameters in normal activity still requires clarification. This study quantified these associations using a joint experimental-theoretical approach. METHODS Gastric pacing was conducted in pigs with simultaneous high-resolution slow wave mapping (32-256 electrodes; 4-7.6 mm spacing). Relationships between period, velocity, and amplitude were quantified and correlated for each wavefront. Human data from two existing mapping control cohorts were analyzed to extract and correlate these same parameters. A validated biophysically based ICC model was also applied in silico to quantify velocity-period relationships during entrainment simulations and velocity-amplitude relationships from membrane potential equations. KEY RESULTS Porcine pacing studies identified positive correlations for velocity-period (0.13 mm s-1 per 1 s, r2 =.63, P<.001) and amplitude-velocity (74 μV per 1 mm s-1 , r2 =.21, P=.002). In humans, positive correlations were also quantified for velocity-period (corpus: 0.11 mm s-1 per 1 s, r2 =.16, P<.001; antrum: 0.23 mm s-1 per 1 s, r2 =.55; P<.001), and amplitude-velocity (94 μV per 1 mm s-1 , r2 =.56; P<.001). Entrainment simulations matched the experimental velocity-period relationships and demonstrated dependence on the slow wave recovery phase. Simulated membrane potential relationships were close to these experimental results (100 μV per 1 mm s-1 ). CONCLUSIONS AND INFERENCES These data quantify the relationships between slow wave frequency, velocity, and extracellular amplitude. The results from both human and porcine studies were in keeping with biophysical models, demonstrating concordance with ICC biophysics. These relationships are important in the regulation of gastric motility and will help to guide interpretations of dysrhythmias.
Collapse
Affiliation(s)
- T H-H Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - P Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - T R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - N Paskaranandavadivel
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J C Erickson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Physics-Engineering, Washington & Lee University, Lexington, VA, USA
| | - T L Abell
- Division of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - L K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - G O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Du P, O'Grady G, Cheng LK. A theoretical analysis of anatomical and functional intestinal slow wave re-entry. J Theor Biol 2017; 425:72-79. [DOI: 10.1016/j.jtbi.2017.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
28
|
Zhu MH, Sung TS, Kurahashi M, O'Kane LE, O'Driscoll K, Koh SD, Sanders KM. Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1037-G1046. [PMID: 27742704 PMCID: PMC5206290 DOI: 10.1152/ajpgi.00277.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/11/2016] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal (ICC) generate electrical slow waves by coordinated openings of ANO1 channels, a Ca2+-activated Cl- (CaCC) conductance. Efflux of Cl- during slow waves must be significant, as there is high current density during slow-wave currents and slow waves are of sufficient magnitude to depolarize the syncytium of smooth muscle cells and PDGFRα+ cells to which they are electrically coupled. We investigated how the driving force for Cl- current is maintained in ICC. We found robust expression of Slc12a2 (which encodes an Na+-K+-Cl- cotransporter, NKCC1) and immunohistochemical confirmation that NKCC1 is expressed in ICC. With the use of the gramicidin permeabilized-patch technique, which is reported to not disturb [Cl-]i, the reversal potential for spontaneous transient inward currents (ESTICs) was -10.5 mV. This value corresponds to the peak of slow waves when they are recorded directly from ICC in situ. Inhibition of NKCC1 with bumetanide shifted ESTICs to more negative potentials within a few minutes and reduced pacemaker activity. Bumetanide had no direct effects on ANO1 or CaV3.2 channels expressed in HEK293 cells or L-type Ca2+ currents. Reducing extracellular Cl- to 10 mM shifted ESTICs to positive potentials as predicted by the Nernst equation. The relatively rapid shift in ESTICs when NKCC1 was blocked suggests that significant changes in the transmembrane Cl- gradient occur during the slow-wave cycle, possibly within microdomains formed between endoplasmic reticulum and the plasma membrane in ICC. Recovery of Cl- via NKCC1 might have additional consequences on shaping the waveforms of slow waves via Na+ entry into microdomains.
Collapse
Affiliation(s)
- Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. O'Kane
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kate O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
29
|
Problems with extracellular recording of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol 2016; 13:731-741. [PMID: 27756919 PMCID: PMC8325940 DOI: 10.1038/nrgastro.2016.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motility patterns of the gastrointestinal tract are important for efficient processing of nutrients and waste. Peristalsis and segmentation are based on rhythmic electrical slow waves that generate the phasic contractions fundamental to gastrointestinal motility. Slow waves are generated and propagated actively by interstitial cells of Cajal (ICC), and these events conduct to smooth muscle cells to elicit excitation-contraction coupling. Extracellular electrical recording has been utilized to characterize slow-wave generation and propagation and abnormalities that might be responsible for gastrointestinal motility disorders. Electrode array recording and digital processing are being used to generate data for models of electrical propagation in normal and pathophysiological conditions. Here, we discuss techniques of extracellular recording as applied to gastrointestinal organs and how mechanical artefacts might contaminate these recordings and confound their interpretation. Without rigorous controls for movement, current interpretations of extracellular recordings might ascribe inaccurate behaviours and electrical anomalies to ICC networks and gastrointestinal muscles, bringing into question the findings and validity of models of gastrointestinal electrophysiology developed from these recordings.
Collapse
|
30
|
Lentle RG, Reynolds GW, Hulls CM, Chambers JP. Advanced spatiotemporal mapping methods give new insights into the coordination of contractile activity in the stomach of the rat. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1064-G1075. [PMID: 27765760 DOI: 10.1152/ajpgi.00308.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023]
Abstract
We used spatiotemporal mapping of strain rate to determine the direction of propagation and amplitudes of the longitudinal and circumferential components of antrocorporal (AC) contractions and fundal contractions in the rat stomach maintained ex vivo and containing a volume of fluid that was within its normal functional capacity. In the region of the greater curvature the longitudinal and circular components of AC contractions propagated synchronously at right angles to the arciform geometric axis of the stomach. However, the configuration of AC contractions was U shaped, neither the circular nor the longitudinal component of contractions being evident in the upper proximal corpus. Similarly, in the distal upper antrum of some preparations, circumferential components propagated more rapidly than longitudinal components. Ongoing "high-frequency, low-amplitude myogenic contractions" were identified in the upper proximal gastric corpus and on the anterior and posterior wall of the fundus. The amplitudes of these contractions were modulated in the occluded stomach by low-frequency pressure waves that occurred spontaneously. Hence the characteristics of phasic contractions vary regionally in the antrum and corpus and a previously undescribed high-frequency contractile component was identified in the proximal corpus and fundus, the latter being modulated in synchrony with cyclic variation in intrafundal pressure in the occluded fundus.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - G W Reynolds
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - C M Hulls
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; and
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
31
|
Quijano JC, Raynaud F, Nguyen D, Piacentini N, Meister JJ. Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study. Sci Rep 2016; 6:31271. [PMID: 27507785 PMCID: PMC4978975 DOI: 10.1038/srep31271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.
Collapse
Affiliation(s)
- J C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia
| | - F Raynaud
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Computational Systems Oncology, Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - D Nguyen
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Piacentini
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - J J Meister
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
33
|
Parsons SP, Huizinga JD. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model. Front Neurosci 2016; 10:19. [PMID: 26869875 PMCID: PMC4740389 DOI: 10.3389/fnins.2016.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Collapse
Affiliation(s)
- Sean P Parsons
- Department of Medicine, Farncombe Family Digestive Health Institute, McMaster University Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Institute, McMaster University Hamilton, ON, Canada
| |
Collapse
|
34
|
Paskaranandavadivel N, Pan X, Du P, O'Grady G, Cheng LK. Detection of the Recovery Phase of in vivo gastric slow wave recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6094-7. [PMID: 26737682 DOI: 10.1109/embc.2015.7319782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastric motility is coordinated by bio-electrical events known as slow waves. Abnormalities in slow waves are linked to major functional and motility disorders. In recent years, the use of high-resolution (HR) recordings have provided a unique view of spatiotemporal activation profiles of normal and dysrhythmic slow wave activity. To date, in vivo studies of gastric slow wave activity have primarily focused on the activation phase of the slow wave event. In this study, the recovery phase of slow waves was investigated through the use of HR recording techniques. The recovery phase of the slow wave event was detected through the use of the signal derivative, computed via a wavelet transform. The activation to recovery interval (ARi) metric was computed as a difference between the recovery time and activation time. The detection method was validated with synthetic slow wave signals of varying morphologies with the addition of synthetic ventilator and high frequency noise. The methods was then applied to HR experimental porcine gastric slow wave recordings. Ventilator noise more than 10% of the slow wave amplitude affected the estimation of the ARi metric. Signal to noise ratio below 3 dB affected the ARi metric, but with minor deviation in accuracy. Experimental ARi values ranged from 3.7-4.7 s from three data sets, with significant differences across them.
Collapse
|
35
|
Du P, Gao J, O'Grady G, Cheng LK. A simplified biophysical cell model for gastric slow wave entrainment simulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6547-50. [PMID: 24111242 DOI: 10.1109/embc.2013.6611055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Gastric electrical activity, also termed slow wave activity, is generated by a class of pacemaker cells called the interstitial cells of Cajal (ICC), which are organized with decreasing intrinsic frequencies along the stomach. In the healthy stomach, slow waves of different intrinsic frequencies converge to a single frequency with a constant phase-lag, in a process called entrainment. The main aim of this study was to develop a simplified biophysical ICC model that is capable of modeling the self-excitatory behavior and standard morphology of gastric slow waves. Entrainment of gastric slow waves was simulated in a one-dimensional (1D) model, with a linear gradient of intrinsic slow wave frequencies. In a coupled 1D model, the simulated slow waves were entrained to a single frequency; whereas in an uncoupled 1D model, the simulated slow waves occurred at different frequencies, resulting in loss of entrainment. The new cell model presents an option for future large multi-scale simulations of gastric slow waves in intact ICC network and diseased conditions where the loss of entrainment may lead to slow wave dysrhythmias and diminished gastric motility.
Collapse
|
36
|
Gao J, Du P, O'Grady G, Archer R, Gibbons SJ, Farrugia G, Cheng LK. Cellular automaton model for simulating tissue-specific intestinal electrophysiological activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:5537-40. [PMID: 24110991 DOI: 10.1109/embc.2013.6610804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Depletion of interstitial cell of Cajal (ICC) networks is known to occur in various gastrointestinal (GI) motility disorders. Although techniques for quantifying the structure of ICC networks are available, the ICC network structure-function relationships are yet to be well elucidated. Existing methods of relating ICC structure to function are computationally expensive, and it is difficult to up-scale them to larger multiscale simulations. A new cellular automaton model for simulating tissue-specific slow wave propagation was developed, and in preliminary studies the automaton model was applied on jejunal ICC network structures from wild-type and 5-HT2B receptor knockout (ICC depleted) mice. Two metrics were also developed to quantify the simulated propagation patterns: 1) ICC and 2) non-ICC activation lag metrics. These metrics measured the average delay in time taken for the slow wave to propagate across the ICC and non-ICC domain throughout the entire network compared to the theoretical fastest propagation, respectively. Slow wave propagation was successfully simulated across the ICC networks with greatly reduced computational time compared to previous methods, and the propagation pattern metrics quantitatively revealed an impaired propagation during ICC depletion. In conclusion, the developed slow wave propagation model and propagation pattern metrics offer a computationally efficient framework for relating ICC structure to function. These tools can now be further applied to define ICC structure-function relationships across various spatial and temporal scales.
Collapse
|
37
|
O'Grady G, Wang THH, Du P, Angeli T, Lammers WJEP, Cheng LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol 2015; 41:854-62. [PMID: 25115692 DOI: 10.1111/1440-1681.12288] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023]
Abstract
Gastric arrhythmia continues to be of uncertain diagnostic and therapeutic significance. However, recent progress has been substantial, with technical advances, theoretical insights and experimental discoveries offering new translational opportunities. The discoveries that interstitial cells of Cajal (ICC) generate slow waves and that ICC defects are associated with dysmotility have reinvigorated gastric arrhythmia research. Increasing evidence now suggests that ICC depletion and damage, network disruption and channelopathies may lead to aberrant slow wave initiation and conduction. Histological and high-resolution (HR) electrical mapping studies have now redefined the human 'gastric conduction system', providing an improved baseline for arrhythmia research. The application of HR mapping to arrhythmia has also generated important new insights into the spatiotemporal dynamics of arrhythmia onset and maintenance, resulting in the emergence of new provisional classification schemes. Meanwhile, the strong associations between gastric functional disorders and electrogastrography (EGG) abnormalities (e.g. in gastroparesis, unexplained nausea and vomiting and functional dyspepsia) continue to motivate deeper inquiries into the nature and causes of gastrointestinal arrhythmias. In future, technical progress in EGG methods, new HR mapping devices and software, wireless slow wave acquisition systems and improved gastric pacing devices may achieve validated applications in clinical practice. Neurohormonal factors in arrhythmogenesis also continue to be elucidated and a deepening understanding of these mechanisms may open opportunities for drug design for treating arrhythmias. However, for all translational goals, it remains to be seen whether arrhythmia can be corrected in a way that meaningfully improves organ function and symptoms in patients.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
38
|
Sathar S, Trew ML, OGrady G, Cheng LK. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing. IEEE Trans Biomed Eng 2015; 62:2685-92. [PMID: 26080372 DOI: 10.1109/tbme.2015.2444384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
GOAL Gastric motility disorders have been associated with abnormal slow wave electrical activity (gastric dysrhythmias). Gastric pacing is a potential therapy for gastric dysrhythmias; however, new pacing protocols are required that can effectively modulate motility patterns, while being power efficient. This study presents a novel comprehensive 3-D multiscale modeling framework of the human stomach, including anisotropic conduction, capable of evaluating pacing strategies. METHODS A high-resolution anatomically realistic mesh was generated from CT images taken from a human stomach. Principal conduction axes were calculated and embedded within this model based on a modified Laplace-Dirichlet rule-based algorithm. A continuum-based tridomain formulation was implemented and evaluated for performance and used to model the slow-wave propagation, which takes into account the two main cell types present in gastric musculature. Model parameters were found by matching predicted normal slow-wave activity to experimental observation and data. These simulation parameters were applied while modeling an external pacing event to entrain slow-wave patterns. RESULTS The proposed formulation was found to be two times more efficient than a previous formulation for a normal slow-wave simulation. Convergence analysis showed that a mesh resolution of [Formula: see text] is required for an accurate solution process. CONCLUSION The effect of different pacing frequencies on entrainment demonstrated that the pacing protocols are limited by the frequency of the native propagation and the refractory period of the cellular activity. SIGNIFICANCE The model is expected to become an important tool in studying pacing protocols for both efficiency and effectiveness.
Collapse
|
39
|
Lee JY, Ko EJ, Ahn KD, Kim S, Rhee PL. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle. Am J Physiol Gastrointest Liver Physiol 2015; 308:G625-33. [PMID: 25591864 PMCID: PMC4385896 DOI: 10.1152/ajpgi.00220.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023]
Abstract
Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.
Collapse
Affiliation(s)
| | - Eun-ju Ko
- 2Samsung Biomedical Research Institute and
| | - Ki Duck Ahn
- 3Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- 3Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
40
|
Gao J, Sathar S, O'Grady G, Archer R, Cheng LK. A Stochastic Algorithm for Generating Realistic Virtual Interstitial Cell of Cajal Networks. IEEE Trans Biomed Eng 2015; 62:2070-8. [PMID: 25781477 DOI: 10.1109/tbme.2015.2412533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interstitial cells of Cajal (ICC) play a central role in coordinating normal gastrointestinal (GI) motility. Depletion of ICC numbers and network integrity contributes to major functional GI motility disorders. However, the mechanisms relating ICC structure to GI function and dysfunction remains unclear, partly because there is a lack of large-scale ICC network imaging data across a spectrum of depletion levels to guide models. Experimental imaging of these large-scale networks remains challenging because of technical constraints, and hence, we propose the generation of realistic virtual ICC networks in silico using the single normal equation simulation (SNESIM) algorithm. ICC network imaging data obtained from wild-type (normal) and 5-HT2B serotonin receptor knockout (depleted ICC) mice were used to inform the algorithm, and the virtual networks generated were assessed using ICC network structural metrics and biophysically-based computational modeling. When the virtual networks were compared to the original networks, there was less than 10% error for four out of five structural metrics and all four functional measures. The SNESIM algorithm was then modified to enable the generation of ICC networks across a spectrum of depletion levels, and as a proof-of-concept, virtual networks were successfully generated with a range of structural and functional properties. The SNESIM and modified SNESIM algorithms, therefore, offer an alternative strategy for obtaining the large-scale ICC network imaging data across a spectrum of depletion levels. These models can be applied to accurately inform the physiological consequences of ICC depletion.
Collapse
|
41
|
Du P, Paskaranandavadivel N, O'Grady G, Tang SJ, Cheng LK. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2014; 32:405-23. [PMID: 25552487 DOI: 10.1093/imammb/dqu023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/02/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Gastric slow wave dysrhythmias are associated with motility disorders. Periods of tachygastria associated with slow wave re-entry were recently recognized as one important dysrhythmia mechanism, but factors promoting and sustaining gastric re-entry are currently unknown. This study reports two experimental forms of gastric re-entry and presents a series of multi-scale models that define criteria for slow wave re-entry initiation, maintenance and termination. High-resolution electrical mapping was conducted in porcine and canine models and two spatiotemporal patterns of re-entrant activities were captured: single-loop rotor and double-loop figure-of-eight. Two separate multi-scale mathematical models were developed to reproduce the velocity and entrainment frequency of these experimental recordings. A single-pulse stimulus was used to invoke a rotor re-entry in the porcine model and a figure-of-eight re-entry in the canine model. In both cases, the simulated re-entrant activities were found to be perpetuated by tachygastria that was accompanied by a reduction in the propagation velocity in the re-entrant pathways. The simulated re-entrant activities were terminated by a single-pulse stimulus targeted at the tip of re-entrant wave, after which normal antegrade propagation was restored by the underlying intrinsic frequency gradient. MAIN FINDINGS (i) the stability of re-entry is regulated by stimulus timing, intrinsic frequency gradient and conductivity; (ii) tachygastria due to re-entry increases the frequency gradient while showing decreased propagation velocity; (iii) re-entry may be effectively terminated by a targeted stimulus at the core, allowing the intrinsic slow wave conduction system to re-establish itself.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Greg O'Grady
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shou-Jiang Tang
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand and Department of Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Gravina FS, van Helden DF, Kerr KP, de Oliveira RB, Jobling P. Phasic contractions of the mouse vagina and cervix at different phases of the estrus cycle and during late pregnancy. PLoS One 2014; 9:e111307. [PMID: 25337931 PMCID: PMC4206458 DOI: 10.1371/journal.pone.0111307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/30/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. METHODOLOGY/PRINCIPAL FINDINGS Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. CONCLUSIONS/SIGNIFICANCE Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.
Collapse
Affiliation(s)
- Fernanda S. Gravina
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Dirk F. van Helden
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Karen P. Kerr
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Ramatis B. de Oliveira
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
43
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
44
|
Gao J, Sathar S, O'Grady G, Han J, Cheng LK. Developmental changes in postnatal murine intestinal interstitial cell of Cajal network structure and function. Ann Biomed Eng 2014; 42:1729-39. [PMID: 24866568 DOI: 10.1007/s10439-014-1021-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/26/2014] [Indexed: 01/18/2023]
Abstract
The mammalian gastrointestinal (GI) tract undergoes rapid development during early postnatal life in order to transition from a milk to solid diet. Interstitial cells of Cajal (ICC) are the pacemaker cells that coordinate smooth muscle contractility within the GI tract, and hence we hypothesized that ICC networks undergo significant developmental changes during this early postnatal period. Numerical metrics for quantifying ICC network structural properties were applied on confocal ICC network imaging data obtained from the murine small intestine at various postnatal ages spanning birth to weaning. These imaging data were also coupled to a biophysically-based computational model to simulate pacemaker activity in the networks, to quantify how changes in structure may alter function. The results showed a pruning-like mechanism which occurs during postnatal development, and the temporal course of this phenomenon was defined. There was an initial ICC process overgrowth to optimize network efficiency and increase functional output volume. This was followed by a selective retaining and strengthening of processes, while others were discarded to further elevate functional output volume. Subsequently, new ICC processes were formed and the network was adjusted to its adult morphology. These postnatal ICC network developmental events may be critical in facilitating mature digestive function.
Collapse
Affiliation(s)
- Jerry Gao
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | | | | | | | | |
Collapse
|
45
|
Jactel SN, Abramowsky CR, Schniederjan M, Durham MM, Ricketts RR, Clifton MS, Langberg KM, Elawabdeh N, Pandya S, Talebagha S, Shehata BM. Noniatrogenic neonatal gastric perforation: the role of interstitial cells of Cajal. Fetal Pediatr Pathol 2013; 32:422-8. [PMID: 23742621 DOI: 10.3109/15513815.2013.799248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Noniatrogenic neonatal gastric perforation is a rare and life-threatening condition whose etiology is often unclear. Interstitial cells of Cajal act as gastrointestinal pacemaker cells and express the proto-oncogene c-Kit. Six new cases were identified at our institution which presented with no mechanical, pharmacologic, or otherwise medical-related intervention prior to rupture. The number of interstitial cells of Cajal in nonnecrotic muscularis propria from five random high-power fields per specimen was compared using immunohistochemical stains for c-Kit. The authors show that a lack of interstitial cells of Cajal in the stomach musculature may be implicated in the development of noniatrogenic gastric perforation (p = 0.008). Further large-scale studies, including molecular and genetic analysis, may help to better understand this phenomenon.
Collapse
Affiliation(s)
- Samuel Noah Jactel
- 1Pathology, Childrens Hospital of Atlanta -Egleston, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Quijano JC, Vianay B, Bény JL, Meister JJ. Ultrafast Ca2+ wave in cultured vascular smooth muscle cells aligned on a micropatterned surface. Cell Calcium 2013; 54:436-45. [PMID: 24183802 DOI: 10.1016/j.ceca.2013.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022]
Abstract
Communication between vascular smooth muscle cells (SMCs) allows control of their contraction and so regulation of blood flow. The contractile state of SMCs is regulated by cytosolic Ca2+ concentration ([Ca2+]i) which propagates as Ca2+ waves over a significant distance along the vessel. We have characterized an intercellular ultrafast Ca2+ wave observed in cultured A7r5 cell line and in primary cultured SMCs (pSMCs) from rat mesenteric arteries. This wave, induced by local mechanical or local KCl stimulation, had a velocity around 15 mm/s. Combining of precise alignment of cells with fast Ca2+ imaging and intracellular membrane potential recording, allowed us to analyze rapid [Ca2+]i dynamics and membrane potential events along the network of cells. The rate of [Ca2+]i increase along the network decreased with distance from the stimulation site. Gap junctions or voltage-operated Ca2+ channels (VOCCs) inhibition suppressed the ultrafast Ca2+ wave. Mechanical stimulation induced a membrane depolarization that propagated and that decayed exponentially with distance. Our results demonstrate that an electrotonic spread of membrane depolarization drives a rapid Ca2+ entry from the external medium through VOCCs, modeled as an ultrafast Ca2+ wave. This wave may trigger and drive slower Ca2+ waves observed ex vivo and in vivo.
Collapse
Affiliation(s)
- Jairo C Quijano
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Facultad de Ciencias Básicas, Politécnico Colombiano JIC, Medellín, Colombia.
| | | | | | | |
Collapse
|
47
|
Taniguchi M, Kajioka S, Shozib HB, Sawamura K, Nakayama S. Spatial analysis of slowly oscillating electric activity in the gut of mice using low impedance arrayed microelectrodes. PLoS One 2013; 8:e75235. [PMID: 24124480 PMCID: PMC3790767 DOI: 10.1371/journal.pone.0075235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/13/2013] [Indexed: 01/25/2023] Open
Abstract
Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity.
Collapse
Affiliation(s)
- Mizuki Taniguchi
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Habibul B. Shozib
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Sawamura
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
48
|
Cheng LK, Du P, O'Grady G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda) 2013; 28:310-7. [PMID: 23997190 PMCID: PMC3768093 DOI: 10.1152/physiol.00022.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A key discovery in gastrointestinal motility has been the central role played by interstitial cells of Cajal (ICC) in generating electrical slow waves that coordinate contractions. Multielectrode mapping and multiscale modeling are two emerging interdisciplinary strategies now showing translational promise to investigate ICC function, electrophysiology, and contractions in the human gut.
Collapse
Affiliation(s)
- L K Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
49
|
Gao J, Du P, O'Grady G, Archer R, Farrugia G, Gibbons SJ, Cheng LK. Numerical metrics for automated quantification of interstitial cell of Cajal network structural properties. J R Soc Interface 2013; 10:20130421. [PMID: 23804441 DOI: 10.1098/rsif.2013.0421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depletion of interstitial cells of Cajal (ICC) networks is known to occur in several gastrointestinal motility disorders. Although confocal microscopy can effectively image and visualize the spatial distribution of ICC networks, current descriptors of ICC depletion are limited to cell numbers and volume computations. Spatial changes in ICC network structural properties have not been quantified. Given that ICC generate electrical signals, the organization of a network may also affect physiology. In this study, six numerical metrics were formulated to automatically determine complex ICC network structural properties from confocal images: density, thickness, hole size, contact ratio, connectivity and anisotropy. These metrics were validated and applied in proof-of-concept studies to quantitatively determine jejunal ICC network changes in mouse models with decreased (5-HT2B receptor knockout (KO)) and normal (Ano1 KO) ICC numbers, and during post-natal network maturation. Results revealed a novel remodelling phenomenon occurring during ICC depletion, namely a spatial rearrangement of ICC and the preferential longitudinal alignment. In the post-natal networks, an apparent pruning of the ICC network was demonstrated. The metrics developed here enabled the first detailed quantitative analyses of structural changes that may occur in ICC networks during depletion and development.
Collapse
Affiliation(s)
- Jerry Gao
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
50
|
Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282757. [PMID: 23762836 PMCID: PMC3677658 DOI: 10.1155/2013/282757] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Cutaneous electrogastrography (EGG) is a non-invasive technique to record gastric myoelectrical activity from the abdominal surface. Although the recent rapid increase in the development of electrocardiography, EGG still suffers from several limitations. Currently, computer analysis of EGG provides few reliable parameters, such as frequency and the percentage of normal and altered slow wave activity (bradygastria and tachygastria). New EGG hardware and software, along with an appropriate arrangement of abdominal electrodes, could detect the coupling of the gastric slow wave from the EGG. At present, EGG does not diagnose a specific disease, but it puts in evidence stomach motor dysfunctions in different pathological conditions as gastroparesis and functional dyspepsia. Despite the current pitfalls of EGG, a multitasking diagnostic protocol could involve the EGG and the (13)C-breath testing for the evaluation of the gastric emptying time-along with validated gastrointestinal questionnaires and biochemical evaluations of the main gastrointestinal peptides-to identify dyspeptic subgroups. The present review tries to report the state of the art about the pathophysiological background of the gastric electrical activity, the recording and processing methodology of the EGG with particular attention to multichannel recording, and the possible clinical application of the EGG in adult and children.
Collapse
|