1
|
Venkatachalapathy P, Padhilahouse S, Sellappan M, Subramanian T, Kurian SJ, Miraj SS, Rao M, Raut AA, Kanwar RK, Singh J, Khadanga S, Mondithoka S, Munisamy M. Pharmacogenomics and Personalized Medicine in Type 2 Diabetes Mellitus: Potential Implications for Clinical Practice. Pharmgenomics Pers Med 2021; 14:1441-1455. [PMID: 34803393 PMCID: PMC8598203 DOI: 10.2147/pgpm.s329787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, and is rising in incidence with widespread prevalence. Multiple gene variants are associated with glucose homeostasis, complex T2DM pathogenesis, and its complications. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Pharmacogenomics has made precision medicine possible by allowing for individualized drug therapy based on a patient's genetic and genomic information. T2DM is treated with various classes of oral hypoglycemic agents, such as biguanides, sulfonylureas, thiazolidinediones, meglitinides, DPP4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, and GLP1 analogues, which exhibit various pharmacogenetic variants. Although genomic interventions in monogenic diabetes have been implemented in clinical practice, they are still in the early stages for complex polygenic disorders, such as T2DM. Precision DM medicine has the potential to be effective in personalized therapy for those suffering from various forms of DM, such as T2DM. With recent developments in genetic techniques, the application of candidate-gene studies, large-scale genotyping investigations, genome-wide association studies, and "multiomics" studies has begun to produce results that may lead to changes in clinical practice. Enhanced knowledge of the genetic architecture of T2DM presents a bigger translational potential. This review summarizes the genetics and pathophysiology of T2DM, candidate-gene approaches, genome-wide association studies, personalized medicine, clinical relevance of pharmacogenetic variants associated with oral hypoglycemic agents, and paths toward personalized diabetology.
Collapse
Affiliation(s)
| | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | | | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwin Ashok Raut
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rupinder Kaur Kanwar
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Jitendra Singh
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sagar Khadanga
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sukumar Mondithoka
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
2
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhou X, Chen C, Yin D, Zhao F, Bao Z, Zhao Y, Wang X, Li W, Wang T, Jin Y, Lv D, Lu Q, Yin X. A Variation in the ABCC8 Gene Is Associated with Type 2 Diabetes Mellitus and Repaglinide Efficacy in Chinese Type 2 Diabetes Mellitus Patients. Intern Med 2019; 58:2341-2347. [PMID: 31118371 PMCID: PMC6746626 DOI: 10.2169/internalmedicine.2133-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Previous studies have suggested that variations in the ABCC8 gene may be closely associated with T2DM susceptibility and repaglinide response. However, these results have not been entirely consistent, and there are no related studies in a Chinese population, suggesting the need for further exploration. The current study investigated the associations of the ABCC8 rs1801261 polymorphism with type 2 diabetes mellitus (T2DM) susceptibility and repaglinide therapeutic efficacy in Chinese Han T2DM patients. Methods A total of 234 T2DM patients and 105 healthy subjects were genotyped for ABCC8 rs1801261 polymorphism by a polymerase chain reaction-restriction fragment length polymorphism assay. A total of 70 patients with the same genotypes of CYP2C8*3 139Arg and OATP1B1 521TT were randomized to orally take 3 mg repaglinide per day (1 mg each time before meals) for 8 consecutive weeks. The pharmacodynamic parameters of repaglinide and biochemical indicators were then determined before and after repaglinide treatment. Results The frequency of ABCC8 rs1801261 allele was higher in T2DM patients than in the control subjects (22.6% vs.11.0%, p<0.01). After repaglinide treatment, T2DM patients carrying genotype CT showed a significantly attenuated efficacy on FPG (p<0.01) and HbA1c (p<0.01) compared with those with genotype CC. Conclusion These results suggested that the ABCC8 rs1801261 polymorphism might influence T2DM susceptibility and the therapeutic effect of repaglinide in Chinese Han T2DM patients. This study was registered in the Chinese Clinical Trial Register on May 14, 2013 (No. ChiCTR-CCC13003536).
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Chunxia Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Di Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Zejun Bao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Yun Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Wei Li
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Yingliang Jin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Dongmei Lv
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, People's Republic of China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, People's Republic of China
| |
Collapse
|
4
|
Effect of Zishen Jiangtang Pill, a Chinese Herbal Product, on Rats with Diabetic Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7201914. [PMID: 29670661 PMCID: PMC5833190 DOI: 10.1155/2018/7201914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 12/24/2017] [Indexed: 01/19/2023]
Abstract
Diabetic osteoporosis (DO) is a complication of diabetes. Zishen Jiangtang Pill (ZJP) is a Chinese herbal product which has been used in clinic to maintain blood glucose level and bone density for decades. However, the evidence about its mechanism on diabetes and osteoporosis is still unknown. The aim of this study is to investigate therapeutic effect of ZJP on DO in streptozotocin- (STZ-) induced rats. Rats were randomly assigned to 4 groups: one control group (CON), one model group (MOD), and two ZJP treatment groups (1.5 and 3.0 g/kg/d). All rats were treated for 8 weeks. Results showed that ZJP decreased the blood glucose level during OGTT and prevented the changes of FBG and Fins. Similarly, ZJP inhibited the changes of BCa, P, TRACP-5b, CTX-1, BALP, and BGP and the reduction of BMD. In parallel, 1H-NMR metabolomic studies showed that ZJP significantly altered the metabolic fingerprints of blood and urine level. These findings suggest that ZJP can effectively improve glucose metabolism, abnormal bone metabolism, and metabolic disorders in DO rats, which may be a useful alternative medicine for DO therapy.
Collapse
|
5
|
Zhou Q, Chen B, Ji T, Luo M, Luo J. Association of genetic variants in RETN, NAMPT and ADIPOQ gene with glycemic, metabolic traits and diabetes risk in a Chinese population. Gene 2017; 642:439-446. [PMID: 29101068 DOI: 10.1016/j.gene.2017.10.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Abnormal serum levels of adipokine have been established to be a strong predictor of developing several human diseases including type 2 diabetes mellitus (T2DM). Association studies have reported several genetic variants in genes coding adipokines with contributions to T2DM susceptibility as well as some glycemic and metabolic traits, of which the single nucleotide polymorphisms (SNPs) of RETN, NAMPT, and ADIPOQ gene were well documented. However, little is known about contributions of these SNPs to above phenotypes in Chinese. In the current study, with availably quantitative glycemic and metabolic data from a total of 185 T2DM patients and 191 healthy controls, we tested associations between four SNPs of RETN, NAMPT, ADIPOQ gene and 13 glycemic and metabolic traits. The results showed that the rs1862513 and rs34861192 of RETN gene were functional and negatively correlated with the levels of serum creatinine and cholesterol, respectively. The rs16861194 of ADIPOQ gene was positively correlated with the aspartate aminotransferase (AST) and AST/alanine aminotransferase level. Moreover, the rs34861192 and rs13237989 of NAMPT gene synergistically affected the levels of insulin and glycemic index. However, due to the limited sample size, only the rs16861194 exerted a significant increased risk on T2DM. These results underscore the contributions of SNPs in RETN, NAMPT, ADIPOQ gene to glycemic and metabolic traits as well as T2DM susceptibility in Chinese.
Collapse
Affiliation(s)
- Qiang Zhou
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou 510260, China
| | - Bo Chen
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou 510260, China
| | - Tianxing Ji
- Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou 510260, China
| | - Miaoshan Luo
- Department of Pharmacology, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiandong Luo
- Department of Pharmacology, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China.
| |
Collapse
|
6
|
Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7:302-315. [PMID: 27555891 PMCID: PMC4980637 DOI: 10.4239/wjd.v7.i15.302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a silent progressive polygenic metabolic disorder resulting from ineffective insulin cascading in the body. World-wide, about 415 million people are suffering from T2DM with a projected rise to 642 million in 2040. T2DM is treated with several classes of oral antidiabetic drugs (OADs) viz. biguanides, sulfonylureas, thiazolidinediones, meglitinides, etc. Treatment strategies for T2DM are to minimize long-term micro and macro vascular complications by achieving an optimized glycemic control. Genetic variations in the human genome not only disclose the risk of T2DM development but also predict the personalized response to drug therapy. Inter-individual variability in response to OADs is due to polymorphisms in genes encoding drug receptors, transporters, and metabolizing enzymes for example, genetic variants in solute carrier transporters (SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2) are actively involved in glycemic/HbA1c management of metformin. In addition, CYP gene encoding Cytochrome P450 enzymes also play a crucial role with respect to metabolism of drugs. Pharmacogenetic studies provide insights on the relationship between individual genetic variants and variable therapeutic outcomes of various OADs. Clinical utility of pharmacogenetic study is to predict the therapeutic dose of various OADs on individual basis. Pharmacogenetics therefore, is a step towards personalized medicine which will greatly improve the efficacy of diabetes treatment.
Collapse
|
7
|
Abstract
Glinides, including repaglinide, nateglinide and mitiglinide, are a type of fasting insulin secretagogue that could help to mimic early-phase insulin release, thus providing improved control of the postprandial glucose levels. Glinides stimulate insulin secretion by inhibiting ATP-sensitive potassium channels in the pancreatic β-cell membrane. Although glinides have been widely used clinically and display excellent safety and efficacy, the response to glinides varies among individuals, which is partially due to genetic factors involved in drug absorption, distribution, metabolism and targeting. Several pharmacogenomic studies have demonstrated that variants of genes involved in the pharmacokinetics or pharmacodynamics of glinides are associated with the drug response. Polymorphisms of genes involved in drug metabolism, such as CYP2C9, CYP2C8 and SLCO1B1, may influence the efficacy of glinides and the incidence of adverse effects. In addition, Type 2 diabetes mellitus susceptibility genes, such as KCNQ1, PAX4 and BETA2, also influence the efficacy of glinides. In this article, we review and discuss current pharmacogenomics researches on glinides, and hopefully provide useful data and proof for clinical application.
Collapse
Affiliation(s)
- Miao Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, China
| |
Collapse
|
8
|
Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926713. [PMID: 24864266 PMCID: PMC4016836 DOI: 10.1155/2014/926713] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/22/2014] [Indexed: 02/06/2023]
Abstract
With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) at a genome-wide significant level (P < 5 × 10−8). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown. This review covers the major genetic studies on the risk of T2D based on ethnicity and briefly discusses the potential mechanisms and clinical utility of the genetic information underlying T2D.
Collapse
|
9
|
Maruthur NM, Gribble MO, Bennett WL, Bolen S, Wilson LM, Balakrishnan P, Sahu A, Bass E, Kao WHL, Clark JM. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care 2014; 37:876-86. [PMID: 24558078 PMCID: PMC3931386 DOI: 10.2337/dc13-1276] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We performed a systematic review to identify which genetic variants predict response to diabetes medications. RESEARCH DESIGN AND METHODS We performed a search of electronic databases (PubMed, EMBASE, and Cochrane Database) and a manual search to identify original, longitudinal studies of the effect of diabetes medications on incident diabetes, HbA1c, fasting glucose, and postprandial glucose in prediabetes or type 2 diabetes by genetic variation. Two investigators reviewed titles, abstracts, and articles independently. Two investigators abstracted data sequentially and evaluated study quality independently. Quality evaluations were based on the Strengthening the Reporting of Genetic Association Studies guidelines and Human Genome Epidemiology Network guidance. RESULTS Of 7,279 citations, we included 34 articles (N = 10,407) evaluating metformin (n = 14), sulfonylureas (n = 4), repaglinide (n = 8), pioglitazone (n = 3), rosiglitazone (n = 4), and acarbose (n = 4). Studies were not standalone randomized controlled trials, and most evaluated patients with diabetes. Significant medication-gene interactions for glycemic outcomes included 1) metformin and the SLC22A1, SLC22A2, SLC47A1, PRKAB2, PRKAA2, PRKAA1, and STK11 loci; 2) sulfonylureas and the CYP2C9 and TCF7L2 loci; 3) repaglinide and the KCNJ11, SLC30A8, NEUROD1/BETA2, UCP2, and PAX4 loci; 4) pioglitazone and the PPARG2 and PTPRD loci; 5) rosiglitazone and the KCNQ1 and RBP4 loci; and 5) acarbose and the PPARA, HNF4A, LIPC, and PPARGC1A loci. Data were insufficient for meta-analysis. CONCLUSIONS We found evidence of pharmacogenetic interactions for metformin, sulfonylureas, repaglinide, thiazolidinediones, and acarbose consistent with their pharmacokinetics and pharmacodynamics. While high-quality controlled studies with prespecified analyses are still lacking, our results bring the promise of personalized medicine in diabetes one step closer to fruition.
Collapse
|
10
|
Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb) 2013; 23:154-71. [PMID: 23894862 PMCID: PMC3900064 DOI: 10.11613/bm.2013.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide epidemic with considerable health and economic consequences. T2DM patients are often treated with more than one drug, including oral antidiabetic drugs (OAD) and drugs used to treat diabetic complications, such as dyslipidemia and hypertension. If genetic testing could be employed to predict treatment outcome, appropriate measures could be taken to treat T2DM more efficiently. Here we provide a review of pharmacogenetic studies focused on OAD and a role of common drug-metabolizing enzymes (DME) and drug-transporters (DT) variants in therapy outcomes. For example, genetic variations of several membrane transporters, including SLC2A1/2 and SLC47A1/2 genes, are implicated in the highly variable glycemic response to metformin, a first-line drug used to treat newly diagnosed T2DM. Furthermore, cytochrome P450 (CYP) enzymes are implicated in variation of sulphonylurea and meglitinide metabolism. Additional variants related to drug target and diabetes risk genes have been also linked to interindividual differences in the efficacy and toxicity of OAD. Thus, in addition to promoting safe and cost-effective individualized diabetes treatment, pharmacogenomics has a great potential to complement current efforts to optimize treatment of diabetes and lead towards its effective and personalized care.
Collapse
Affiliation(s)
- Sabina Semiz
- Department of Biochemistry and Clinical Analysis, Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | | | | |
Collapse
|
11
|
van Leeuwen N, Swen JJ, Guchelaar HJ, ’t Hart LM. The Role of Pharmacogenetics in Drug Disposition and Response of Oral Glucose-Lowering Drugs. Clin Pharmacokinet 2013; 52:833-54. [PMID: 23719679 DOI: 10.1007/s40262-013-0076-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Mannino GC, Sesti G. Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol Diagn Ther 2013; 16:285-302. [PMID: 23018631 DOI: 10.1007/s40291-012-0002-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, abnormally elevated hepatic glucose production, and reduced glucose-stimulated insulin secretion. Treatment with antihyperglycemic agents is initially successful in type 2 diabetes, but it is often associated with a high secondary failure rate, and the addition of insulin is eventually necessary for many patients, in order to restore acceptable glycemic control and to reduce the risk of development and progression of disease complications. Notably, even patients who appear to have similar requirements of antidiabetic regimens show great variability in drug disposition, glycemic response, tolerability, and incidence of adverse effects during treatment. Pharmacogenomics is a promising area of investigation and involves the search for genetic polymorphisms that may explain the interindividual variability in antidiabetic therapy response. The initial positive results portend that genomic efforts will be able to shed important light on variability in pharmacologic traits. In this review, we summarize the current understanding of genetic polymorphisms that may affect the responses of subjects with T2DM to antidiabetic treatment. These genes belong to three major classes: genes involved in drug metabolism and transporters that influence pharmacokinetics (including the cytochrome P450 [CYP] superfamily, the organic anion transporting polypeptide [OATP] family, and the polyspecific organic cation transporter [OCT] family); genes encoding drug targets and receptors (including peroxisome proliferator-activated receptor gamma [PPARG], the adenosine triphosphate [ATP]-sensitive potassium channel [K(ATP)], and incretin receptors); and genes involved in the causal pathway of T2DM that are able to modify the effects of drugs (including adipokines, transcription factor 7-like 2 (T cell specific, HMG-box) [TCF7L2], insulin receptor substrate 1 [IRS1], nitric oxide synthase 1 (neuronal) adaptor protein [NOS1AP], and solute carrier family 30 (zinc transporter), member 8 [SLC30A8]). In addition to these three major classes, we also review the available evidence on novel genes (CDK5 regulatory subunit associated protein 1-like 1 [CDKAL1], insulin-like growth factor 2 mRNA binding protein 2 [IGF2BP2], potassium voltage-gated channel, KQT-like subfamily, member 1 [KCNQ1], paired box 4 [PAX4] and neuronal differentiation 1 [NEUROD1] transcription factors, ataxia telangiectasia mutated [ATM], and serine racemase [SRR]) that have recently been proposed as possible modulators of therapeutic response in subjects with T2DM.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
13
|
Abstract
In recent decades, the prevalence of type 2 diabetes in China has increased significantly, underscoring the importance of investigating the etiological mechanisms, including genetic determinants, of the disease in Chinese populations. Numerous loci conferring susceptibility to type 2 diabetes (T2D) have been identified worldwide, with most having been identified in European populations. In terms of ethnic heterogeneity in pathogenesis as well as disease predisposition, it is imperative to explore the specific genetic architecture of T2D in Han Chinese. Replication studies of European-derived susceptibility loci have been performed, validating 11 of 32 loci in Chinese populations. Genetic investigations into heritable traits related to glucose metabolism are expected to provide new insights into the pathogenesis of T2D, and such studies have already inferred some new susceptibility loci. Other than replication studies of European-derived loci, efforts have been made to identify specific susceptibility loci in Chinese populations using methods such as genome-wide association studies. These efforts have identified additional new loci for the disease. Genetic studies can facilitate the prediction of risk for T2D and also promote individualized anti-diabetic treatment. Despite many advances in the field of risk prediction and pharmacogenetics, the pace of clinical application of these findings is rather slow. As a result, more studies into the practical utility of these findings remain necessary.
Collapse
Affiliation(s)
- Weihui Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|