1
|
Jiang M, Liu Z, Shao J, Zhou J, Wang H, Song C, Li X, Wang L, Xu Q, Liu X, Lin L, Zhang R. Estrogen receptor α regulates phenotypic switching and proliferation of vascular smooth muscle cells through the NRF1-OMI-mitophagy signaling pathway under simulated microgravity. Front Physiol 2022; 13:1039913. [DOI: 10.3389/fphys.2022.1039913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Vascular remodeling during microgravity exposure results in postflight cardiovascular deconditioning and orthostatic intolerance in astronauts. To clarify the underlying mechanism, we investigated whether estrogen receptor α (ERα)-NRF1-OMI-mitophagy signaling was involved in the dedifferentiation and proliferation of vascular smooth muscle cells (VSMCs) under simulated microgravity. Phenotypic markers, mtDNA copy number and mitochondrial biogenesis, mitochondrial dynamics and mitophagy in rat thoracic artery smooth muscle cells were examined. Four-week hindlimb unweighting (HU) was used to simulate microgravity in rats and 10% serum was used to induce VSMCs dedifferentiation in vitro. The effects of ERα-NRF1-OMI signaling on mitophagy, phenotypic switching and proliferation of VSMCs, and cerebrovascular remodeling in HU rats were studied by genetic manipulation and chronic drug intervention. We found that ERα is positively associated with contractile phenotype switching but inversely correlated with synthetic phenotype switching and proliferation of VSMCs both in vivo and in vitro. During the dedifferentiation process of VSMCs, reduced mtDNA copy number, disturbed mitochondrial biogenesis and respiration, and perturbed fission-fusion-mitophagy signaling were detected, which were reversed by ERα overexpression. Mechanistically, the ERα downstream protein OMI preserved the mitochondrial Parkin level by increasing its protein stability, thereby protecting mitophagy. In line with this, we found that activating ERα signaling by propyl pyrazole triol (PPT) could alleviate the synthetic phenotype switching and proliferation of HU rat cerebral VSMCs by reestablishing fission-fusion-mitophagy hemostasis. The current study clarified a novel mechanism by which inhibited ERα-NRF1-OMI-mitophagy signaling resulted in synthetic phenotype switching and proliferation of VSMCs and cerebrovascular remodeling under simulated microgravity.
Collapse
|
2
|
Liu H, Ru NY, Cai Y, Lyu Q, Guo CH, Zhou Y, Li SH, Cheng JH, Chang JR, Ma J, Su XL. The OPG/RANKL/RANK system modulates calcification of common carotid artery in simulated microgravity rats by regulating NF-κB pathway. Can J Physiol Pharmacol 2021; 100:324-333. [PMID: 34670103 DOI: 10.1139/cjpp-2021-0329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional and structural adaptation of common carotid artery could be one of the important causes of postflight orthostatic intolerance after microgravity exposure, the mechanisms of which remain unclear. Recent evidence indicates that long-term spaceflight increases carotid artery stiffness, which might present a high risk to astronaut health and postflight working ability. Studies have suggested that vascular calcification is a common pathological change in cardiovascular diseases that is mainly manifested as an increase in vascular stiffness. Therefore, this study aimed to investigate whether simulated microgravity induces calcification of common carotid artery and to elucidate the underlying mechanisms. Four-week hindlimb-unweighted (HU) rats were used to simulate the deconditioning effects of microgravity on cardiovascular system. We found that simulated microgravity induced vascular smooth muscle cell (VSMC) osteogenic differentiation and medial calcification, increased receptor activator of nuclear factor κB ligand (RANKL) and RANK expression, and enhanced NF-κB activation in rat common carotid artery. In vitro activation of the RANK pathway with exogenous RANKL, a RANK ligand, increased RANK and osteoprotegerin (OPG) expression in HU rats. Moreover, the expression of osteogenic markers and activation of NF-κB in HU rats were further enhanced by exogenous RANKL but suppressed by the RANK inhibitor OPG-Fc. These results indicated that the OPG/RANKL/RANK system modulates VSMC osteogenic differentiation and medial calcification of common carotid artery in simulated microgravity rats by regulating NF-kB pathway.
Collapse
Affiliation(s)
- Huan Liu
- Xi'an Medical University, Department of Basic Medicine, Xi'an, Shaanxi, China.,Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, China;
| | - Ning-Yu Ru
- Xi'an Medical University, Department of Basic Medicine, Xi'an, China;
| | - Yue Cai
- Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi'an, China;
| | - Qiang Lyu
- Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, Shaanxi, China;
| | - Chi-Hua Guo
- Xi'an Medical University, Department of Basic Medicine, Xi'an, China;
| | - Ying Zhou
- Xi'an Medical University, Department of Basic Medicine, Xi'an, China;
| | - Shao-Hua Li
- Fourth Military Medical University, 12644, Department of Aerospace Physiology, Xi'an, China;
| | - Jiu-Hua Cheng
- Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, Shaanxi, China;
| | - Jin-Rui Chang
- Xi'an Medical University, Department of Basic Medicine, Xi'an, China;
| | - Jin Ma
- Fourth Military Medical University, Department of Aerospace Physiology, Xi'an, China;
| | - Xing-Li Su
- Xi'an Medical University, Department of Basic Medicine, Xi'an, China;
| |
Collapse
|
3
|
Lyu Q, Bai Y, Cheng J, Liu H, Li S, Yang J, Wang Z, Ma Y, Jiang M, Dong D, Yan Y, Shi Q, Ren X, Ma J. Intermittent short-duration reoxygenation protects against simulated high altitude-induced pulmonary hypertension in rats. FASEB J 2020; 35:e21212. [PMID: 33230951 DOI: 10.1096/fj.202000533rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease caused by chronic hypoxia and subsequent pulmonary vascular remodeling. No cure is currently available owing to an incomplete understanding about vascular remodeling. It is believed that hypoxia-induced diseases can be prevented by treating hypoxia. Thus, this study aimed to determine whether daily short-duration reoxygenation at sea level attenuates pulmonary hypertension under high-altitude hypoxia. To this end, a simulated 5000-m hypoxia rat model and hypoxic cultured human pulmonary artery smooth muscle cells were used to evaluate the effect of short-duration reoxygenation. Results show that intermittent, not continuous, short-duration reoxygenation effectively attenuates hypoxia-induced pulmonary hypertension. The mechanisms underlining the protective effects involved that intermittent, short-duration reoxygenation prevented functional and structural remodeling of pulmonary arteries and proliferation, migration, and phenotypic conversion of pulmonary artery smooth muscle cells under hypoxia. The specific genes or potential molecular pathways responsible for mediating the protective effects were also characterised by RNA sequencing. Further, the frequency and the total time of intermittent reoxygenation affected its preventive effect of HAPH, which was likely attributable to augmented oxidative stress. Hence, daily intermittent, not continuous, short-duration reoxygenation partially prevented pulmonary hypertension induced by 5000-m hypoxia in rats. This study is novel in revealing a new potential method in preventing HAPH. It gives insights into the selection and optimisation of oxygen supply schemes in high-altitude areas.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yungang Bai
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jiuhua Cheng
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Shaohua Li
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jing Yang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Zhongchao Wang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yan Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Min Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Dong Dong
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yiquan Yan
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Qixin Shi
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Respiratory Diseases, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Zhang R, Jiang M, Zhang J, Qiu Y, Li D, Li S, Liu J, Liu C, Fang Z, Cao F. Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165799. [PMID: 32304741 DOI: 10.1016/j.bbadis.2020.165799] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/27/2023]
Abstract
Microgravity exposure results in vascular remodeling and cardiovascular dysfunction. Here, the effects of mitochondrial oxidative stress on vascular smooth muscle cells (VSMCs) in rat cerebral arteries under microgravity simulated by hindlimb unweighting (HU) was studied. Endoplasmic reticulum (ER)-resident transmembrane sensor proteins and phenotypic markers of rat cerebral VSMCs were examined. In HU rats, CHOP expression was increased gradually, and the upregulation of the PERK-eIF2α-ATF4 pathway was the most pronounced in cerebral arteries. Furthermore, PERK/p-PERK signaling, CHOP, GRP78 and reactive oxygen species were augmented by PERK overexpression but attenuated by the mitochondria-targeting antioxidant MitoTEMPO. Meanwhile, p-PI3K, p-Akt and p-mTOR protein levels in VSMCs were increased in HU rat cerebral arteries. Compared with the control, HU rats exhibited lower α-SMA, calponin, SM-MHC and caldesmon protein levels but higher OPN and elastin levels in cerebral VSMCs. The cerebral VSMC phenotype transition from a contractile to synthetic phenotype in HU rats was augmented by PERK overexpression and 740Y-P but reversed by MitoTEMPO and the ER stress inhibitors tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). In summary, mitochondrial oxidative stress and ER stress induced by simulated microgravity contribute to phenotype transition of cerebral VSMCs through the PERK-eIF2a-ATF4-CHOP pathway in a rat model.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Jiang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya Qiu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Danyang Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Sulei Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Junsong Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuanbin Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiyi Fang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Su YT, Cheng YP, Zhang X, Xie XP, Chang YM, Bao JX. Acid sphingomyelinase/ceramide mediates structural remodeling of cerebral artery and small mesenteric artery in simulated weightless rats. Life Sci 2020; 243:117253. [PMID: 31927048 DOI: 10.1016/j.lfs.2019.117253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
AIMS Weightlessness exposure conduces to substantial vascular remodeling, mechanisms behind which remain unclear. Acid sphingomyelinase (ASM) catalyzed ceramide (Cer) generation accounts for multiple vascular disorders, so the role of it in adjustment of cerebral artery (CA) and small mesenteric artery (MA) was investigated in simulated weightless rats. MAIN METHODS Rats were hindlimb unloaded tail suspended (HU) to simulate the effect of weightlessness. Arterial morphology was examined by hematoxylin-eosin staining. Cer abundance was measured by immunohistochemistry. Western blotting was used to detect protein content. Apoptosis was detected by transferase-mediated dUTP nick end labeling. KEY FINDINGS During 4 weeks of tail suspension, intima-media thickness (IMT) and media cross section area (CSA) were increased gradually in CA but decreased gradually in MA (P < 0.05). Correspondingly, the apoptosis and proliferation of vascular smooth muscle cells were reduced and enhanced respectively in CA (P < 0.05), while promoted and restrained in MA (P < 0.05). As compared to control, both ASM protein expression and Cer content were lowered in CA and elevated in MA of HU rats (P < 0.05). Permeable Cer incubation reversed the change of apoptosis and proliferation in CA of HU rats, while ASM inhibition recapitulated it in control rats. On the contrary, ASM inhibitors restored the alteration of apoptosis and proliferation in MA of HU. SIGNIFICANCE The results suggest that by controlling the balance between apoptosis and proliferation, ASM/Cer exerts an important role in structural adaptation of CA and MA to simulated weightlessness.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yao-Ping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xi Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiao-Ping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
6
|
Zhang H, Ren NT, Zhou FQ, Li J, Lei W, Liu N, Bi L, Wu ZX, Zhang R, Zhang YG, Cui G. Effects of Hindlimb Unweighting on MBP and GDNF Expression and Morphology in Rat Dorsal Root Ganglia Neurons. Neurochem Res 2016; 41:2433-42. [DOI: 10.1007/s11064-016-1956-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
|
7
|
Liu H, Wang ZC, Bai YG, Cai Y, Yu JW, Zhang HJ, Bao JX, Ren XL, Xie MJ, Ma J. Simulated microgravity promotes monocyte adhesion to rat aortic endothelium via nuclear factor-κB activation. Clin Exp Pharmacol Physiol 2016; 42:510-9. [PMID: 25740656 DOI: 10.1111/1440-1681.12381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 11/28/2022]
Abstract
Microgravity-induced vascular remodelling may play an important role in post-spaceflight orthostatic intolerance. In this study, we aimed to investigate the effects of simulated microgravity on monocyte adhesion to aortic endothelium in hindlimb unweighted rats and to elucidate the underlying mechanisms associated with this event. Sprague-Dawley rats were subjected to 4-week hindlimb unweighting to simulate microgravity. The recruitment of monocytes to the abdominal aorta was investigated by en face immunofluorescence staining and monocyte binding assays. The expression of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 as well as the cytokine monocyte chemoattractant protein (MCP)-1 was evaluated by immunohistochemical staining, western blot, and quantitative reverse transcription polymerase chain reaction analyses. Additionally, nuclear factor-κB (NF-κB) activation and the messenger RNA expression levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 were assessed with the administration of an NF-κB inhibitor, pyrrolidine dithiocarbamate. Results showed that simulated microgravity significantly increased monocyte recruitment to the aortic endothelium, protein expression of E-selectin and MCP-1, and NF-κB activation in the abdominal aorta of rats. Pyrrolidine dithiocarbamate treatment not only significantly inhibited NF-κB activity but also reduced the messenger RNA levels of E-selectin, vascular cell adhesion molecule-1, and MCP-1 as well as monocyte recruitment in the abdominal aorta of hindlimb unweighted rats. These results suggest that simulated microgravity increases monocyte adhesion to rat aortic endothelium via the NF-κB-mediated expression of the adhesion molecule E-selectin and the cytokine MCP-1. Therefore, an NF-κB-mediated inflammatory response may be one of the cellular mechanisms responsible for arterial remodelling during exposure to microgravity.
Collapse
Affiliation(s)
- Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang R, Ran H, Cai L, Zhu L, Sun J, Peng L, Liu X, Zhang L, Fang Z, Fan Y, Cui G. Simulated microgravity‐induced mitochondrial dysfunction in rat cerebral arteries. FASEB J 2014; 28:2715-2724. [DOI: 10.1096/fj.13-245654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ran Zhang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Hai‐Hong Ran
- Department of Geriatric HematologyChinese People's Liberation Army General HospitalBeijingChina
| | - Li‐Li Cai
- Department of Clinical Laboratory MedicineChinese People's Liberation Army General HospitalBeijingChina
| | - Li Zhu
- Changhai HospitalSecond Military Medical UniversityShanghaiChina
| | - Jun‐Fang Sun
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Liang Peng
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Xiao‐Juan Liu
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Lan‐Ning Zhang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Zhou Fang
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Yong‐Yan Fan
- Institute of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| | - Geng Cui
- Department of OsteologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
9
|
Mitochondrial regulation of NADPH oxidase in hindlimb unweighting rat cerebral arteries. PLoS One 2014; 9:e95916. [PMID: 24759683 PMCID: PMC3997512 DOI: 10.1371/journal.pone.0095916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 02/07/2023] Open
Abstract
Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. Four-week HU was used to simulate microgravity in rats. Vascular superoxide generation, protein and mRNA levels of Nox2/Nox4, and the activity of NADPH oxidase were examined in the present study. Compared with control rats, the levels of superoxide increased in cerebral (P<0.001) but not in mesenteric vascular smooth muscle cells. The protein and mRNA levels of Nox2 and Nox4 were upregulated significantly (P<0.001 and P<0.001 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly by HU (P<0.001) in cerebral arteries but not in mesenteric arteries. Chronic treatment with mitochondria-targeted antioxidant mitoTEMPO attenuated superoxide levels (P<0.001), decreased the protein and mRNA expression levels of Nox2/Nox4 (P<0.01 and P<0.05 for Nox2, respectively; P<0.001 and P<0.001 for Nox4, respectively) and the activity of NADPH oxidase (P<0.001) in HU rat cerebral arteries, but exerted no effects on HU rat mesenteric arteries. Therefore, mitochondria regulated the expression and activity of NADPH oxidases during simulated microgravity. Both mitochondria and NADPH oxidase participated in vascular redox status regulation.
Collapse
|
10
|
Zhang LF. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 2013; 113:2873-95. [DOI: 10.1007/s00421-013-2597-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|