1
|
Somorjai IML, Ehebauer MT, Escrivà H, Garcia-Fernàndez J. JNK Mediates Differentiation, Cell Polarity and Apoptosis During Amphioxus Development by Regulating Actin Cytoskeleton Dynamics and ERK Signalling. Front Cell Dev Biol 2021; 9:749806. [PMID: 34778260 PMCID: PMC8586503 DOI: 10.3389/fcell.2021.749806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a multi-functional protein involved in a diverse array of context-dependent processes, including apoptosis, cell cycle regulation, adhesion, and differentiation. It is integral to several signalling cascades, notably downstream of non-canonical Wnt and mitogen activated protein kinase (MAPK) signalling pathways. As such, it is a key regulator of cellular behaviour and patterning during embryonic development across the animal kingdom. The cephalochordate amphioxus is an invertebrate chordate model system straddling the invertebrate to vertebrate transition and is thus ideally suited for comparative studies of morphogenesis. However, next to nothing is known about JNK signalling or cellular processes in this lineage. Pharmacological inhibition of JNK signalling using SP600125 during embryonic development arrests gastrula invagination and causes convergence extension-like defects in axial elongation, particularly of the notochord. Pharynx formation and anterior oral mesoderm derivatives like the preoral pit are also affected. This is accompanied by tissue-specific transcriptional changes, including reduced expression of six3/6 and wnt2 in the notochord, and ectopic wnt11 in neurulating embryos treated at late gastrula stages. Cellular delamination results in accumulation of cells in the gut cavity and a dorsal fin-like protrusion, followed by secondary Caspase-3-mediated apoptosis of polarity-deficient cells, a phenotype only partly rescued by co-culture with the pan-Caspase inhibitor Z-VAD-fmk. Ectopic activation of extracellular signal regulated kinase (ERK) signalling in the neighbours of extruded notochord and neural cells, possibly due to altered adhesive and tensile properties, as well as defects in cellular migration, may explain some phenotypes caused by JNK inhibition. Overall, this study supports conserved functions of JNK signalling in mediating the complex balance between cell survival, apoptosis, differentiation, and cell fate specification during cephalochordate morphogenesis.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- School of Biology, University of St Andrews, St Andrews, United Kingdom.,Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France.,Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain
| | | | - Hector Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain.,Institut de Biomedicina, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Harder MJ, Hix J, Reeves WM, Veeman MT. Ciona Brachyury proximal and distal enhancers have different FGF dose-response relationships. PLoS Genet 2021; 17:e1009305. [PMID: 33465083 PMCID: PMC7846015 DOI: 10.1371/journal.pgen.1009305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated by two or more enhancers that drive similar expression patterns. Evolutionary theory suggests that these seemingly redundant enhancers must have functionally important differences. In the simple ascidian chordate Ciona, the transcription factor Brachyury is induced exclusively in the presumptive notochord downstream of lineage specific regulators and FGF-responsive Ets family transcription factors. Here we exploit the ability to finely titrate FGF signaling activity via the MAPK pathway using the MEK inhibitor U0126 to quantify the dependence of transcription driven by different Brachyury reporter constructs on this direct upstream regulator. We find that the more powerful promoter-adjacent proximal enhancer and a weaker distal enhancer have fundamentally different dose-response relationships to MAPK inhibition. The Distal enhancer is more sensitive to MAPK inhibition but shows a less cooperative response, whereas the Proximal enhancer is less sensitive and more cooperative. A longer construct containing both enhancers has a complex dose-response curve that supports the idea that the proximal and distal enhancers are moderately super-additive. We show that the overall expression loss from intermediate doses of U0126 is not only a function of the fraction of cells expressing these reporters, but also involves graded decreases in expression at the single-cell level. Expression of the endogenous gene shows a comparable dose-response relationship to the full length reporter, and we find that different notochord founder cells are differentially sensitive to MAPK inhibition. Together, these results indicate that although the two Brachyury enhancers have qualitatively similar expression patterns, they respond to FGF in quantitatively different ways and act together to drive high levels of Brachyury expression with a characteristic input/output relationship. This indicates that they are fundamentally not equivalent genetic elements.
Collapse
Affiliation(s)
- Matthew J. Harder
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Julie Hix
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Wendy M. Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael T. Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
3
|
Zhang T, Xu Y, Imai K, Fei T, Wang G, Dong B, Yu T, Satou Y, Shi W, Bao Z. A single-cell analysis of the molecular lineage of chordate embryogenesis. SCIENCE ADVANCES 2020; 6:eabc4773. [PMID: 33148647 PMCID: PMC7673699 DOI: 10.1126/sciadv.abc4773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 05/05/2023]
Abstract
Progressive unfolding of gene expression cascades underlies diverse embryonic lineage development. Here, we report a single-cell RNA sequencing analysis of the complete and invariant embryonic cell lineage of the tunicate Ciona savignyi from fertilization to the onset of gastrulation. We reconstructed a developmental landscape of 47 cell types over eight cell cycles in the wild-type embryo and identified eight fate transformations upon fibroblast growth factor (FGF) inhibition. For most FGF-dependent asymmetric cell divisions, the bipotent mother cell displays the gene signature of the default daughter fate. In convergent differentiation of the two notochord lineages, we identified additional gene pathways parallel to the master regulator T/Brachyury Last, we showed that the defined Ciona cell types can be matched to E6.5-E8.5 stage mouse cell types and display conserved expression of limited number of transcription factors. This study provides a high-resolution single-cell dataset to understand chordate early embryogenesis and cell lineage differentiation.
Collapse
Affiliation(s)
- Tengjiao Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| | - Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Kaoru Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Teng Fei
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Guilin Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, Guangdong 518172, China
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
4
|
Harder M, Reeves W, Byers C, Santiago M, Veeman M. Multiple inputs into a posterior-specific regulatory network in the Ciona notochord. Dev Biol 2018; 448:136-146. [PMID: 30287118 DOI: 10.1016/j.ydbio.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 11/28/2022]
Abstract
The gene regulatory networks underlying Ciona notochord fate specification and differentiation have been extensively investigated, but the regulatory basis for regionalized expression within the notochord is not understood. Here we identify three notochord-expressed genes, C11.331, C12.115 and C8.891, with strongly enriched expression in the secondary notochord cells at the posterior tip of the tail. C11.331 and C12.115 share a distinctive expression pattern that is highly enriched in the secondary notochord lineage but also graded within that lineage with the strongest expression at the posterior tip. Both genes show similar responses to pharmacological perturbations of Wnt and FGF signaling, consistent with an important role for Wnt and FGF ligands expressed at the tail tip. Reporter analysis indicates that the C11.331 cis-regulatory regions are extensively distributed, with multiple non-overlapping regions conferring posterior notochord-enriched expression. Fine-scale analysis of a minimal cis-regulatory module identifies discrete positive and negative elements including a strong silencer. Truncation of the silencer region leads to increased expression in the primary notochord, indicating that C11.331 expression is influenced by putative regulators of primary versus secondary notochord fate. The minimal CRM contains predicted ETS, GATA, LMX and Myb sites, all of which lead to reduced expression in secondary notochord when mutated. These results show that the posterior-enriched notochord expression of C11.331 depends on multiple inputs, including Wnt and FGF signals from the tip of the tail, multiple notochord-specific regulators, and yet-to-be identified regulators of regional identity within the notochord.
Collapse
Affiliation(s)
- Matthew Harder
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chase Byers
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mercedes Santiago
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
5
|
Hawkins TA, Cavodeassi F, Erdélyi F, Szabó G, Lele Z. The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:42. [PMID: 18419805 PMCID: PMC2359734 DOI: 10.1186/1471-213x-8-42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022]
Abstract
Background Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals. Results Here, we reveal a potential role for Mek1/2 during notochord development by using the small molecule Mek1/2 inhibitor U0126 which blocks phosphorylation of the Mek1/2 target gene Erk1/2 in vivo. Applying the inhibitor from early gastrulation until the 18-somite stage produces a specific and consistent phenotype with lack of dark pigmentation, shorter tail and an abnormal, undulated notochord. Using morphological analysis, in situ hybridization, immunhistochemistry, TUNEL staining and electron microscopy, we demonstrate that in treated embryos the chordamesoderm to notochord transition is disrupted and identify disorganization in the medial layer of the perinotochordal basement mebrane as the probable cause of the undulations and bulges in the notochord. We also examined and excluded FGF as the upstream signal during this process. Conclusion Using the small chemical U0126, we have established a novel link between MAPK-signaling and notochord differentiation. Our phenotypic analysis suggests a potential connection between the MAPK-pathway, the COPI-mediated intracellular transport and/or the copper-dependent posttranslational regulatory processes during notochord differentiation.
Collapse
Affiliation(s)
- Thomas A Hawkins
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|