1
|
Sadeghloo Z, Saffarian P, Hakemi-Vala M, Sadeghi A, Yadegar A. The modulatory effect of Lactobacillus gasseri ATCC 33323 on autophagy induced by extracellular vesicles of Helicobacter pylori in gastric epithelial cells in vitro. Microb Pathog 2024; 188:106559. [PMID: 38272328 DOI: 10.1016/j.micpath.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Helicobacter pylori has been recognized as a true pathogen, which is associated with various gastroduodenal diseases, and gastric adenocarcinoma. The crosstalk between H. pylori virulence factors and host autophagy remains challenging. H. pylori can produce extracellular vesicles (EVs) that contribute to gastric inflammation and malignancy. Some probiotic strains have been documented to modulate cell autophagy process. This study was aimed to investigate the modulatory effect of cell-free supernatant (CFS) obtained from Lactobacillus gasseri ATCC 33323 on autophagy induced by H. pylori-derived EVs. EVs were isolated from two clinical H. pylori strains (BY-1 and OC824), and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The viability of AGS cells was assessed after exposure to different concentrations of H. pylori EVs, and L. gasseri CFS. Based on MTT assay and Annexin V-FITC/PI staining, 50 μg/ml of H. pylori EVs and 10 % v/v of L. gasseri CFS were used for further cell treatment experiments. Autophagy was examined using acridin orange (AO) staining, RT-qPCR analysis for autophagy mediators (LC3B, ATG5, ATG12, ATG16L1, BECN1, MTOR, and NOD1), and western blotting for LC3B expression. H. pylori EVs were detected to range in size from 50 to 200 nm. EVs of both H. pylori strains and L. gasseri CFS showed no significant effect on cell viability as compared to untreated cells. H. pylori EVs promoted the development of acidic vesicular organelles and the expression of autophagy-related genes (LC3B, ATG5, ATG12, ATG16L1, BECN1, and NOD1), and decreased the expression of MTOR in AGS cells at 12 and 24 h time periods. In addition, the production of LC3B was increased following 12 h of treatment in AGS cells. In contrast, L. gasseri CFS effectively inhibited EVs-induced autophagy, as evidenced by reduced acidic vesicular organelle formation and modulation of autophagy markers. Our study indicated that L. gasseri CFS can effectively suppress H. pylori EV-induced autophagy in AGS cells. Further investigations are required to decipher the mechanism of action L. gasseri CFS and its metabolites on autophagy inhibition induced by H. pylori.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Koga Y. Microbiota in the stomach and application of probiotics to gastroduodenal diseases. World J Gastroenterol 2022; 28:6702-6715. [PMID: 36620346 PMCID: PMC9813937 DOI: 10.3748/wjg.v28.i47.6702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/26/2022] [Indexed: 12/19/2022] Open
Abstract
The stomach is a hostile environment for most microbes because strong gastric acid kills indigenous microorganisms. Thus, the mass of indigenous microbes detected by traditional culturing method in a highly acidic stomach is reported to be very small. However, in a stomach with less acidity due to atrophic changes of the gastric mucosa, the number of live gastric microbiota dramatically increases and their composition changes. A probiotic is defined as a live microorganism that, when administered in adequate amounts, confers a health benefit on the host. The administration of probiotics to the stomach has thus far been considered impractical, mainly due to the strong acidity in the stomach. The identification of candidate probiotic strains with sufficient resistance to acidity and the ability to achieve close proximity to the gastric mucosa could enable the application of probiotics to the stomach. The utilization of probiotics alone for Helicobacter pylori (H. pylori) infection significantly improves gastric mucosal inflammation and decreases the density of H. pylori on the mucosa, although complete eradication of H. pylori has not yet been demonstrated. The use of probiotics in combination with antimicrobial agents significantly increases the H. pylori eradication rate, especially when the H. pylori strains are resistant to antimicrobial agents. While H. pylori has been considered the most important pathogenic bacterium for the development of gastric cancer, bacteria other than H. pylori are also suggested to be causative pathogens that promote the development of gastric cancer, even after the eradication of H. pylori. Increased non-H. pylori Gram-negative bacteria in the stomach with weak acidity accompanying atrophic gastritis may perpetuate gastric mucosal inflammation and accelerate carcinogenic progression, even after H. pylori eradication. Probiotics restore the acidity in this stomach environment and may therefore prevent the development of gastric cancer by termination of Gram-negative bacteria-induced inflammation. Functional dyspepsia (FD) is defined as the presence of symptoms that are thought to originate in the gastroduodenal region in the absence of any organic, systematic or metabolic diseases. Accumulating evidence has pointed out the duodenum as a target region underlying the pathophysiology of FD. A randomized placebo-controlled clinical trial using a probiotic strain (LG21) demonstrated a significant improving effect on major FD symptoms. One of the possible mechanisms of this effect is protection of the duodenal mucosa from injurious intestinal bacteria through the resolution of small intestinal bacterial over growth.
Collapse
Affiliation(s)
- Yasuhiro Koga
- Japanese Society for Probiotic Science, Isehara 259-1143, Japan
| |
Collapse
|
3
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
4
|
Effects of a Potential Probiotic Strain Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-Induced Inflammatory Response and Gene Expression in Coinfected Gastric Epithelial Cells. Probiotics Antimicrob Proteins 2020; 13:751-764. [PMID: 33206342 DOI: 10.1007/s12602-020-09721-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
In the present study, we aimed to investigate the modulatory effects of a potential probiotic bacterium Lactobacillus gasseri ATCC 33323 on Helicobacter pylori-induced inflammatory response and gene expression in human gastric adenocarcinoma (AGS) cell line. The gastric epithelial cells were coinfected with a collection of H. pylori clinical strains alone or in combination with L. gasseri at a multiplicity of infection (MOI) of 1:100 for each bacterium, and incubated for different time points of 3, 6, and 12 h. IL-8 secretion from coinfected AGS cells after incubation at each time point was measured by an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of IL-8, Bcl-2, β-catenin, integrin α5, and integrin β1 genes was determined by quantitative RT-PCR amplification of total RNA extracted from coinfected epithelial cells. L. gasseri significantly (P < 0.05 and P < 0.01) decreased the production of IL-8 in AGS cells coinfected with H. pylori strains at 6 h post-infection. We also detected that L. gasseri significantly (P < 0.05) down-regulated the gene expression level of IL-8 in H. pylori-stimulated AGS cells after 6 and 12 h of coinfection. Similarly, L. gasseri caused a significant decrease (P < 0.05) in mRNA expression of Bcl-2, β-catenin, integrin α5, and integrin β1 genes in AGS cells at 3 and 6 h after infection with H. pylori strains as compared with non-infected control cells. In conclusion, our results demonstrated that L. gasseri ameliorates H. pylori-induced inflammation and could be developed as a supplementation to the current treatment regimens administrated against H. pylori infection.
Collapse
|
5
|
Suzuki T, Nishiyama K, Kawata K, Sugimoto K, Isome M, Suzuki S, Nozawa R, Ichikawa Y, Watanabe Y, Suzutani T. Effect of the Lactococcus Lactis 11/19-B1 Strain on Atopic Dermatitis in a Clinical Test and Mouse Model. Nutrients 2020; 12:nu12030763. [PMID: 32183266 PMCID: PMC7146114 DOI: 10.3390/nu12030763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/18/2022] Open
Abstract
Some lactic acid bacteria (LAB) are known to improve atopic dermatitis (AD) through the regulation and stimulation of the host immune system. In this study, we found that ingestion of yogurt containing Lactococcus lactis 11/19-B1 strain (L. lactis 11/19-B1) daily for 8 weeks significantly improved the severity scoring of atopic dermatitis (SCORAD) system score from 38.8 ± 14.4 to 24.2 ± 12.0 in children suffering from AD. We tried to identify which LAB species among the five species contained in the test yogurt contributed to the improvement in AD pathology using an AD mouse model induced by repeated application of 1-fluoro-2, 4-dinitrobenzene (DNFB). AD-like skin lesions on the dorsal skin and ear were most improved by L. lactis 11/19-B1 intake among the five LAB species. In addition, analysis of CD4+ T cell subsets in Peyer’s patches (PPs) and cervical lymph nodes (CLNs) indicated that the intake of L. lactis 11/19-B1 generally suppressed all subsets related to inflammation, i.e., Th1, Th2 and Th17, instead of activating the suppressive system, Treg, in the AD mouse model. Histological observations showed ingestion of L. lactis 11/19-B1 significantly suppressed severe inflammatory findings, such as inflammatory cell filtration, epidermal erosion and eosinophil infiltration. These results suggest that the immunomodulatory effects of L. lactis 11/19-B1 contribute to improvements in AD pathology.
Collapse
Affiliation(s)
- Takato Suzuki
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (K.N.)
| | - Kyoko Nishiyama
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (K.N.)
| | - Koji Kawata
- Laboratory Animal Research Center, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Kotaro Sugimoto
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Masato Isome
- Isome Children’s Clinic, Fukushima 960-8165, Japan;
| | - Shigeo Suzuki
- Department of Pediatrics, Ohara General Hospital, Fukushima 960-8611, Japan;
| | - Ruriko Nozawa
- Department of Pediatrics, Fujita General Hospital, Kunimi, Date, Fukushima 969-1793, Japan;
| | | | | | - Tatsuo Suzutani
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.S.); (K.N.)
- Correspondence: ; Tel.: +81-24-547-1158
| |
Collapse
|
6
|
A Double-Blind Controlled Study to Evaluate the Effects of Yogurt Enriched with Lactococcus lactis 11/19-B1 and Bifidobacterium lactis on Serum Low-Density Lipoprotein Level and Antigen-Specific Interferon-γ Releasing Ability. Nutrients 2018; 10:nu10111778. [PMID: 30453487 PMCID: PMC6266548 DOI: 10.3390/nu10111778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
In order to clarify the effects of the Lactococcus lactis (L. lactis) 11/19-B1 strain, a double-blind controlled study of yogurt fermented with the strain was carried out. For the study, two kinds of yogurt, the control and test yogurt, were prepared; the control yogurt was fermented with Streptococcus thermophiles, Lactobacillus delbrueckii subspecies bulgaricus, and Lactobacillus acidophilus, and the test yogurt was enriched with L. lactis 11/19-B1 and Bifidobacterium lactis (B. lactis) BB-12 strains. Seventy-six volunteers who had not received treatment with pharmaceuticals were randomly divided into two groups with each group ingesting 80 g of either the test or control yogurt every day for 8 weeks. Before and after yogurt intake, fasting blood was taken and blood sugar, blood lipids, and anti-cytomegalovirus cellular immunity were estimated. In the test yogurt group, low-density lipoprotein (LDL) was significantly decreased (159.1 ± 25.7 to 149.3 ± 24.4; p = 0.02), but this effect was not observed in the control yogurt group. When the test yogurt group was divided into two groups based on LDL levels of over or under 120 mg/dL, this effect was only observed in the high LDL group. No LDL-lowering effect of B. lactis BB-12 strain was previously reported; therefore, the hypocholesterolemic effects observed in this study are thought to be caused by the L. lactis 11/19-B1 strain alone or its combination with the B. lactis BB-12 strain.
Collapse
|
7
|
Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells. Hum Cell 2017; 30:258-266. [PMID: 28434172 DOI: 10.1007/s13577-017-0172-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
Helicobacter (H.) pylori infection is an important risk factor for gastric cancer that causes gastric inflammation. Inflammatory chemokines such as interleukin (IL)-8 and regulated on activation normal T cell expressed and secreted (RANTES) are elevated in the gastric mucosa by H. pylori. This study aimed to investigate the effects of Lactobacillus paracasei strain 06TCa19, a probiotic strain, on IL-8 and RANTES expression and production induced by H. pylori using human gastric epithelial cell lines. Strain 06TCa19 was shown to suppress H. pylori-mediated elevation of gene expression related to these chemokines in MKN45 cells. The strain also suppressed the increase in IL-8 and RANTES products induced by H. pylori in AGS cells as well as in MKN45 cells. In MKN45 cells inoculated with H. pylori, strain 06TCa19 was shown to downregulate the activation of NF-κB and p38 MAPK signaling pathways. Additionally, the level of the CagA virulence protein of H. pylori in the MKN45 cells and the number of viable H. pylori adhering to MKN45 cells decreased with the addition of strain 06TCa19. Moreover, the strain 06TCa19 notably increased lactic acid in the supernatant of MKN45 cells. Thus, lactic acid released from strain 06TCa19 might have inhibited the adhesion of H. pylori to MKN45 cells and prevented the insertion of H. pylori CagA into the cells, and elevation of IL-8 and RANTES genes and proteins might be suppressed by downregulating the NF-κB and p38 MAPK pathways. Therefore, use of strain 06TCa19 may prevent H. pylori-associated gastric inflammation.
Collapse
|
8
|
Panpetch W, Spinler JK, Versalovic J, Tumwasorn S. Characterization of Lactobacillus salivarius strains B37 and B60 capable of inhibiting IL-8 production in Helicobacter pylori-stimulated gastric epithelial cells. BMC Microbiol 2016; 16:242. [PMID: 27756217 PMCID: PMC5070129 DOI: 10.1186/s12866-016-0861-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022] Open
Abstract
Background Interleukin (IL)-8 is the key agent for initiating an inflammatory response to infection with Helicobacter pylori. Some strains of Lactobacillus spp. are known to colonize the stomach and suppress inflammation caused by H. pylori. In this study, we characterized two gastric-derived lactobacilli, Lactobacillus salivarius (LS) strains B37 and B60, capable of inhibiting H. pylori-induced IL-8 production by gastric epithelial cells. Results Conditioned media from LS-B37 and LS-B60 suppressed H. pylori-induced IL-8 production and mRNA expression from AGS cells without inhibiting H. pylori growth. These conditioned media suppressed the activation of NF-κB but did not suppress c-Jun activation. IL-8 inhibitory substances in conditioned media of LS-B37 and LS-B60 are heat-stable and larger than 100 kDa in size. The inhibitory activity of LS-B37 was abolished when the conditioned medium was treated with α-amylase but still remained when treated with either proteinase K, trypsin, lipase or lysozyme. The activity of LS-B60 was abolished when the conditioned medium was treated with either amylase or proteinase K but still remained when treated with lysozyme. Treatment with lipase and trypsin also significantly affected the inhibitory activity of LS-B60 although the conditioned medium retained IL-8 suppression statistically different from media control. Conclusions These results suggest that L. salivarius strains B37 and B60 produce different immunomodulatory factors capable of suppressing H. pylori-induced IL-8 production from gastric epithelial cells. Our results suggest that the large, heat-stable immunomodulatory substance(s) present in the LCM of LS-B37 is a polysaccharide, while the one(s) of LS-B60 is either complex consisting of components of polysaccharide, lipid and protein or includes multiple components such as glycoprotein and lipoprotein. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0861-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jennifer K Spinler
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Takeda S, Takeshita M, Matsusaki T, Kikuchi Y, Tsend-ayush C, Oyunsuren T, Miyata M, Maeda K, Yasuda S, Aiba Y, Koga Y, Igoshi K. <i>In Vitro</i> and <i>In Vivo</i> Anti-<i>Helicobacter pylori</i> Activity of Probiotics Isolated from Mongolian Dairy Products. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015; 21:399-406. [DOI: 10.3136/fstr.21.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Shiro Takeda
- Research and Development Division, Minami Nihon Rakuno Kyodo Co. Ltd
| | | | - Tastuya Matsusaki
- Research and Development Division, Minami Nihon Rakuno Kyodo Co. Ltd
| | - Yukiharu Kikuchi
- Research and Development Division, Minami Nihon Rakuno Kyodo Co. Ltd
| | | | | | - Masahiko Miyata
- Department of Bioscience, School of Agriculture, Tokai University
| | - Ken Maeda
- Department of Bioscience, School of Agriculture, Tokai University
| | - Shin Yasuda
- Department of Bioscience, School of Agriculture, Tokai University
| | - Yuji Aiba
- Laboratory for Infectious Diseases, School of Medicine, Tokai University
| | - Yasuhiro Koga
- Laboratory for Infectious Diseases, School of Medicine, Tokai University
| | - Keiji Igoshi
- Department of Bioscience, School of Agriculture, Tokai University
| |
Collapse
|
10
|
Deguchi R, Nakaminami H, Rimbara E, Noguchi N, Sasatsu M, Suzuki T, Matsushima M, Koike J, Igarashi M, Ozawa H, Fukuda R, Takagi A. Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy. J Gastroenterol Hepatol 2012; 27:888-92. [PMID: 22098133 PMCID: PMC3504346 DOI: 10.1111/j.1440-1746.2011.06985.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Helicobacter pylori eradication clearly decreases peptic ulcer recurrence rates. H. pylori eradication is achieved in 70-90% of cases, but treatment failures due to poor patient compliance and resistant organisms do occur. Lactobacillus gasseri can suppress both clarithromycin-susceptible and -resistant strains of H. pylori in vitro. The aim of this study was to determine the effect of pretreatment with L. gasseri- containing yogurt on H. pylori eradication. We conducted a randomized, controlled clinical trial in patients with H. pylori infection. METHODS A total of 229 patients were randomized into either a 1-week triple therapy of rabeprazole (10 mg bid), amoxicillin (750 mg bid), and clarithromycin (200 mg bid) or triple therapy plus L. gasseri-containing yogurt. In the yogurt-plus-triple therapy groups, yogurt containing L. gasseri OLL2716 (112 g) was given twice daily for 4 weeks (3 weeks pretreatment and also 1 week during eradication therapy). Clarithromycin resistance was determined by the detection of a mutation in 23S rRNA using nested polymerase chain reaction and the direct sequencing of DNA from pretreatment feces. H. pylori eradication was diagnosed based on the urea breath test and a stool antigen test after 8 weeks of eradication. RESULTS The status of H. pylori susceptibility to clarithromycin was successively determined in 188 out of 229 samples. The rate of infection with clarithromycin-resistant strains of H. pylori was 27.1%. Overall eradication (intention to treat/per protocol) was 69.3/74.5% for the triple-only group, and 82.6/85.6% for the yogurt-plus-triple group (P = 0.018/P = 0.041). Eradication of primary clarithromycin-resistant strains tended to be higher for yogurt-plus-triple therapy than triple-only therapy (38.5 vs 28.0%, respectively, P = 0.458). CONCLUSION This study confirmed that the major cause of treatment failure is resistance to clarithromycin. A 4-week treatment with L. gasseri-containing yogurt improves the efficacy of triple therapy in patients with H. pylori infection.
Collapse
Affiliation(s)
- Ryuzo Deguchi
- Gastroenterology, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life ScienceHorinouchi, Hachioji, Tokyo, Japan
| | - Emiko Rimbara
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life ScienceHorinouchi, Hachioji, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life ScienceHorinouchi, Hachioji, Tokyo, Japan
| | - Masanori Sasatsu
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life ScienceHorinouchi, Hachioji, Tokyo, Japan
| | - Takayoshi Suzuki
- Gastroenterology, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Masashi Matsushima
- Gastroenterology, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Jun Koike
- Gastroenterology, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Muneki Igarashi
- Gastroenterology, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Hideki Ozawa
- General Internal Medicine, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Ryuki Fukuda
- General Internal Medicine, Tokai University School of MedicineIsehara, Kanagawa, Japan
| | - Atsushi Takagi
- General Internal Medicine, Tokai University School of MedicineIsehara, Kanagawa, Japan
| |
Collapse
|
11
|
Role of indigenous lactobacilli in gastrin-mediated acid production in the mouse stomach. Appl Environ Microbiol 2011; 77:6964-71. [PMID: 21803885 DOI: 10.1128/aem.05230-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is known that the stomach is colonized by indigenous lactobacilli in mice. The aim of this study was to examine the role of such lactobacilli in the development of the stomach. For a DNA microarray analysis, germ-free BALB/c mice were orally inoculated with 10(9) CFU lactobacilli, and their stomachs were excised after 10 days to extract RNA. As a result, lactobacillus-associated gnotobiotic mice showed dramatically decreased expression of the gastrin gene in comparison to germ-free mice. The mean of the log(2) fold change in the gastrin gene was -4.3. Immunohistochemistry also demonstrated the number of gastrin-positive (gastrin(+)) cells to be significantly lower in the lactobacillus-associated gnotobiotic mice than in the germ-free mice. However, there was no significant difference in the number of somatostatin(+) cells in these groups of mice. Consequently, gastric acid secretion also decreased in the mice colonized by lactobacilli. In addition, an increase in the expression of the genes related to muscle system development, such as nebulin and troponin genes, was observed in lactobacillus-associated mice. Moreover, infection of germ-free mice with Helicobacter pylori also showed the down- and upregulation of gastrin and muscle genes, respectively, in the stomach. These results thus suggested that indigenous lactobacilli in the stomach significantly affect the regulation of gastrin-mediated gastric acid secretion without affecting somatostatin secretion in mice, while H. pylori also exerts such an effect on the stomach.
Collapse
|
12
|
Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol 2009; 75:6340-51. [PMID: 19666732 DOI: 10.1128/aem.00195-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gassericin A is a circular bacteriocin produced by Lactobacillus gasseri strain LA39. We found a 33,333-bp plasmid, designated pLgLA39, in this strain. pLgLA39 contained 44 open reading frames, including seven genes related to gassericin A production/immunity (gaa), as well as genes for replication, plasmid maintenance, and conjugative transfer. pLgLA39 was transferred from LA39 to the type strain of L. gasseri (JCM 1131) by filter mating. The transconjugant exhibited >30-fold-higher more resistance to gassericin A and produced antibacterial activity. Lactobacillus reuteri LA6, the producer of reutericin 6, was proved to harbor a plasmid indistinguishable from pLgLA39 and carrying seven genes 100% identical to gaa. This suggests that pLgLA39 might have been transferred naturally between L. gasseri LA39 and L. reuteri LA6. The seven gaa genes of pLgLA39 were cloned into a plasmid vector to construct pGAA. JCM 1131(T) transformed with pGAA expressed antibacterial activity and resistance to gassericin A. pGAA was segregationally more stable than a pGAA derivative plasmid from which gaaA was deleted and even was more stable than the vector. This suggests the occurrence of postsegregational host killing by the gaa genes. pLgLA39 carried a pemIK homolog, and segregational stabilization of a plasmid by the pLgLA39-type pemIK genes was also confirmed. Thus, pLgLA39 was proved to carry the genes for at least two plasmid maintenance mechanisms, i.e., gaa and pemIK. Plasmids containing a repA gene similar to pLgLA39 repA were distributed in several L. gasseri strains.
Collapse
|