1
|
Drmic D, Kolenc D, Ilic S, Bauk L, Sever M, Zenko Sever A, Luetic K, Suran J, Seiwerth S, Sikiric P. Celecoxib-induced gastrointestinal, liver and brain lesions in rats, counteraction by BPC 157 or L-arginine, aggravation by L-NAME. World J Gastroenterol 2017; 23:5304-5312. [PMID: 28839430 PMCID: PMC5550779 DOI: 10.3748/wjg.v23.i29.5304] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To counteract/reveal celecoxib-induced toxicity and NO system involvement.
METHODS Celecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter.
RESULTS This high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME).
CONCLUSION BPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs’ post-surgery application and NO system involvement.
Collapse
|
2
|
Saracyn M, Brytan M, Zdanowski R, Ząbkowski T, Dyrla P, Patera J, Wojtuń S, Kozłowski W, Wańkowicz Z. Hepatoprotective effect of nitric oxide in experimental model of acute hepatic failure. World J Gastroenterol 2014; 20:17407-17415. [PMID: 25516652 PMCID: PMC4265599 DOI: 10.3748/wjg.v20.i46.17407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/08/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of nitric oxide (NO) on the development and degree of liver failure in an animal model of acute hepatic failure (AHF).
METHODS: An experimental rat model of galactosamine-induced AHF was used. An inhibitor of NO synthase, nitroarginine methyl ester, or an NO donor, arginine, were administered at various doses prior to or after the induction of AHF.
RESULTS: All tested groups developed AHF. Following inhibition of the endogenous NO pathway, most liver parameters improved, regardless of the inhibitor dose before the induction of liver damage, and depending on the inhibitor dose after liver damage. Prophylactic administration of the inhibitor was more effective in improving liver function parameters than administration of the inhibitor after liver damage. An attempt to activate the endogenous NO pathway prior to the induction of liver damage did not change the observed liver function parameters. Stimulation of the endogenous NO pathway after liver damage, regardless of the NO donor dose used, improved most liver function parameters.
CONCLUSION: The endogenous NO pathway plays an important role in the development of experimental galactosamine-induced AHF.
Collapse
|
3
|
Yang YL, Li JJ, Ji R, Wei YY, Chen J, Dou KF, Wang YY. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury. PLoS One 2013; 8:e65194. [PMID: 23741482 PMCID: PMC3669273 DOI: 10.1371/journal.pone.0065194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/27/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr) in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE). The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun-Jie Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ru Ji
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Ke-Feng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Yun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Huang HC, Chang CC, Wang SS, Chan CY, Lee FY, Chuang CL, Hsin IF, Teng TH, Lin HC, Lee SD. Pravastatin for thioacetamide-induced hepatic failure and encephalopathy. Eur J Clin Invest 2012; 42:139-45. [PMID: 21749370 DOI: 10.1111/j.1365-2362.2011.02566.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nitric oxide (NO) inhibition aggravates hepatic damage and encephalopathy and increases mortality in rats with thioacetamide (TAA)-induced acute liver failure. Statins enhance NO production but whether they influence the above parameters are unknown. MATERIAL AND METHODS Male Sprague-Dawley rats were used. In the first series, TAA (350 mg/kg per day, i.p. for 3 days) was administered to induce acute liver failure. Control rats received saline. Rats received distilled water or pravastatin (20 mg/kg per day, p.o.) from 2 days before to 3 days after TAA or saline injection. In the second series, liver cirrhosis was induced by common bile duct ligation (BDL). Sham-operated rats served as controls. Rats received distilled water or pravastatin for 5 or 14 days until the 42nd day after operation. On the last day of treatment, survival, motor activities, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, ammonia and brain histology were evaluated. RESULTS Thioacetamide and BDL rats showed higher ALT, AST, bilirubin and ammonia levels and lower motor activity counts compared with their corresponding control groups. In TAA rats, pravastatin elicited higher total and ambulatory motor activity counts and lower AST and total bilirubin levels. Survival was improved, whereas brain H&E staining was not significantly different in TAA rats with or without pravastatin treatment. In BDL groups, rats with or without pravastatin treatment were not different in motor activity counts and liver biochemistry. CONCLUSIONS Pravastatin ameliorates hepatic encephalopathy and liver biochemistry and improves survival in rats with acute liver failure, but not in those with cirrhosis.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chang CC, Wang SS, Huang HC, Chan CY, Lee FY, Lin HC, Nong JY, Chuang CL, Lee SD. Selective cyclooxygenase inhibition improves hepatic encephalopathy in fulminant hepatic failure of rat. Eur J Pharmacol 2011; 666:226-32. [DOI: 10.1016/j.ejphar.2011.04.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 01/01/2023]
|
6
|
Ilic S, Drmic D, Zarkovic K, Kolenc D, Brcic L, Radic B, Djuzel V, Blagaic AB, Romic Z, Dzidic S, Kalogjera L, Seiwerth S, Sikiric P. Ibuprofen hepatic encephalopathy, hepatomegaly, gastric lesion and gastric pentadecapeptide BPC 157 in rats. Eur J Pharmacol 2011; 667:322-9. [PMID: 21645505 DOI: 10.1016/j.ejphar.2011.05.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/12/2011] [Accepted: 05/22/2011] [Indexed: 02/07/2023]
Abstract
Chronic ibuprofen (0.4 g/kg intraperitoneally, once daily for 4 weeks) evidenced a series of pathologies, not previously reported in ibuprofen-dosed rats, namely hepatic encephalopathy, gastric lesions, hepatomegaly, increased AST and ALT serum values with prolonged sedation/unconsciousness, and weight loss. In particular, ibuprofen toxicity was brain edema, particularly in the cerebellum, with the white matter being more affected than in gray matter. In addition, damaged and red neurons, in the absence of anti-inflammatory reaction was observed, particularly in the cerebral cortex and cerebellar nuclei, but was also present although to a lesser extent in the hippocampus, dentate nucleus and Purkinje cells. An anti-ulcer peptide shown to have no toxicity, the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, 10 μg, 10 ng/kg) inhibited the pathology seen with ibuprofen (i) when given intraperitoneally, immediately after ibuprofen daily or (ii) when given in drinking water (0.16 μg, 0.16 ng/ml). Counteracted were all adverse effects, such as hepatic encephalopathy, the gastric lesions, hepatomegaly, increased liver serum values. In addition, BPC 157 treated rats showed no behavioral disturbances and maintained normal weight gain. Thus, apart from efficacy in inflammatory bowel disease and various wound treatments, BPC 157 was also effective when given after ibuprofen.
Collapse
Affiliation(s)
- Spomenko Ilic
- Department of Pharmacology and Pathology Medical Faculty University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ilic S, Drmic D, Franjic S, Kolenc D, Coric M, Brcic L, Klicek R, Radic B, Sever M, Djuzel V, Filipovic M, Djakovic Z, Stambolija V, Blagaic AB, Zoricic I, Gjurasin M, Stupnisek M, Romic Z, Zarkovic K, Dzidic S, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 and its effects on a NSAID toxicity model: diclofenac-induced gastrointestinal, liver, and encephalopathy lesions. Life Sci 2011; 88:535-42. [PMID: 21295044 DOI: 10.1016/j.lfs.2011.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
AIMS We attempted to fully antagonize the extensive toxicity caused by NSAIDs (using diclofenac as a prototype). MAIN METHODS Herein, we used the stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419), an anti-ulcer peptide shown to be efficient in inflammatory bowel disease clinical trials (PL 14736) and various wound treatments with no toxicity reported. This peptide was given to antagonize combined gastrointestinal, liver, and brain toxicity induced by diclofenac (12.5mg/kg intraperitoneally, once daily for 3 days) in rats. KEY FINDINGS Already considered a drug that can reverse the toxic side effects of NSAIDs, BPC 157 (10 μg/kg, 10 ng/kg) was strongly effective throughout the entire experiment when given (i) intraperitoneally immediately after diclofenac or (ii) per-orally in drinking water (0.16 μg/mL, 0.16 ng/mL). Without BPC 157 treatment, at 3h following the last diclofenac challenge, we encountered a complex deleterious circuit of diclofenac toxicity characterized by severe gastric, intestinal and liver lesions, increased bilirubin, aspartate transaminase (AST), alanine transaminase (ALT) serum values, increased liver weight, prolonged sedation/unconsciousness (after any diclofenac challenge) and finally hepatic encephalopathy (brain edema particularly located in the cerebral cortex and cerebellum, more in white than in gray matter, damaged red neurons, particularly in the cerebral cortex and cerebellar nuclei, Purkinje cells and less commonly in the hippocampal neurons). SIGNIFICANCE The very extensive antagonization of diclofenac toxicity achieved with BPC 157 (μg-/ng-regimen, intraperitoneally, per-orally) may encourage its further use as a therapy to counteract diclofenac- and other NSAID-induced toxicity.
Collapse
Affiliation(s)
- Spomenko Ilic
- Department of Pharmacology and Pathology Medical Faculty, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hsu CY, Lee FY, Huo TI, Chan CY, Huang HC, Lin HC, Chang CC, Teng TH, Wang SS, Lee SD. Lack of therapeutic effects of gabexate mesilate on the hepatic encephalopathy in rats with acute and chronic hepatic failure. J Gastroenterol Hepatol 2010; 25:1321-8. [PMID: 20594263 DOI: 10.1111/j.1440-1746.2010.06235.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Inflammation plays a pivotal role in liver injury. Gabexate mesilate (GM, a protease inhibitor) inhibits inflammation by blocking various serine proteases. This study examined the effects of GM on hepatic encephalopathy in rats with acute and chronic liver failure. METHODS Acute and chronic liver failure (cirrhosis) were induced by intraperitoneal TAA administration (350 mg/kg/day for 3 days) and common bile duct ligation, respectively, in male Sprague-Dawley rats. Rats were randomized to receive either GM (50 mg/10 mL/kg) or saline intraperitoneally for 5 days. Severity of encephalopathy was assessed by the Opto-Varimex animal activity meter and hemodynamic parameters, mean arterial pressure and portal pressure, were measured (only in chronic liver failure rats). Plasma levels of liver biochemistry, ammonia, nitrate/nitrite, interleukins (IL) and tumor necrosis factor (TNF)-alpha were determined. RESULTS In rats with acute liver failure, GM treatment significantly decreased the plasma levels of alanine aminotransferase (P = 0.02), but no significant difference of motor activity, plasma levels of ammonia, IL-1beta, IL-6, IL-10 and TNF-alpha or survival was found. In chronic liver failure rats, GM significantly lowered the plasma TNF-alpha levels (P = 0.04). However, there was no significant difference of motor activity, other biochemical tests or survival found. GM-treated chronic liver failure rats had higher portal pressure (P = 0.04) but similar mean arterial pressure in comparison with saline-treated rats. CONCLUSIONS Chronic GM treatment does not have a major effect on hepatic encephalopathy in rats with TAA-induced acute liver failure and rats with chronic liver failure induced by common bile duct ligation.
Collapse
Affiliation(s)
- Chia-Yang Hsu
- Divisions of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tuñón MJ, Alvarez M, Culebras JM, González-Gallego J. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol 2009; 15:3086-98. [PMID: 19575487 PMCID: PMC2705730 DOI: 10.3748/wjg.15.3086] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/23/2009] [Accepted: 05/30/2009] [Indexed: 02/06/2023] Open
Abstract
Acute hepatic failure (AHF) is a severe liver injury accompanied by hepatic encephalopathy which causes multiorgan failure with an extremely high mortality rate, even if intensive care is provided. Management of severe AHF continues to be one of the most challenging problems in clinical medicine. Liver transplantation has been shown to be the most effective therapy, but the procedure is limited by shortage of donor organs. Although a number of clinical trials testing different liver assist devices are under way, these systems alone have no significant effect on patient survival and are only regarded as a useful approach to bridge patients with AHF to liver transplantation. As a result, reproducible experimental animal models resembling the clinical conditions are still needed. The three main approaches used to create an animal model for AHF are: surgical procedures, toxic liver injury and infective procedures. Most common models are based on surgical techniques (total/partial hepatectomy, complete/transient devascularization) or the use of hepatotoxic drugs (acetaminophen, galactosamine, thioacetamide, and others), and very few satisfactory viral models are available. We have recently developed a viral model of AHF by means of the inoculation of rabbits with the virus of rabbit hemorrhagic disease. This model displays biochemical and histological characteristics, and clinical features that resemble those in human AHF. In the present article an overview is given of the most widely used animal models of AHF, and their main advantages and disadvantages are reviewed.
Collapse
|