1
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Caceres PS, Mendez M, Haque MZ, Ortiz PA. Vesicle-associated Membrane Protein 3 (VAMP3) Mediates Constitutive Trafficking of the Renal Co-transporter NKCC2 in Thick Ascending Limbs: ROLE IN RENAL FUNCTION AND BLOOD PRESSURE. J Biol Chem 2016; 291:22063-22073. [PMID: 27551042 PMCID: PMC5063989 DOI: 10.1074/jbc.m116.735167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 02/04/2023] Open
Abstract
Renal cells of the thick ascending limb (TAL) reabsorb NaCl via the apical Na+/K+/2Cl- co-transporter NKCC2. Trafficking of NKCC2 to the apical surface regulates NKCC2-mediated NaCl absorption and blood pressure. The molecular mechanisms by which NKCC2 reaches the apical surface and their role in renal function and maintenance of blood pressure are poorly characterized. Here we report that NKCC2 interacts with the vesicle fusion protein VAMP3, and they co-localize at the TAL apical surface. We observed that silencing VAMP3 in vivo blocks constitutive NKCC2 exocytic delivery, decreasing the amount of NKCC2 at the TAL apical surface. VAMP3 is not required for cAMP-stimulated NKCC2 exocytic delivery. Additionally, genetic deletion of VAMP3 in mice decreased total expression of NKCC2 in the TAL and lowered blood pressure. Consistent with these results, urinary excretion of water and electrolytes was higher in VAMP3 knock-out mice, which produced more diluted urine. We conclude that VAMP3 interacts with NKCC2 and mediates its constitutive exocytic delivery to the apical surface. Additionally, VAMP3 is required for normal NKCC2 expression, renal function, and blood pressure.
Collapse
Affiliation(s)
- Paulo S Caceres
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Department of Physiology, Wayne State University, Detroit, Michigan 48202, and
| | - Mariela Mendez
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202
| | - Mohammed Z Haque
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, 16060 Doha, Qatar
| | - Pablo A Ortiz
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, the Department of Physiology, Wayne State University, Detroit, Michigan 48202, and
| |
Collapse
|
3
|
Seyberth HW. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 2016; 31:407-18. [PMID: 26178649 DOI: 10.1007/s00467-015-3143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
At least three renal tubular segments are involved in the pathophysiology of salt-losing tubulopathies (SLTs). Whether the pathogenesis starts either in the thick ascending limb of the loop of Henle (TAL) or in the distal convoluted tubule (DCT), it is the function of the downstream-localized aldosterone sensitive distal tubule (ASDT) to contribute to the adaptation process. In isolated TAL defects (loop disorders) ASDT adaptation is supported by upregulation of DCT, whereas in DCT disorders the ASDT is complemented by upregulation of TAL function. This upregulation has a major impact on the clinical presentation of SLT patients. Taking into account both the symptoms and signs of primary tubular defect and of the secondary reactions of adaptation, a clinical diagnosis can be made that eventually leads to an appropriate therapy. In addition to salt wasting, as occurs in all SLTs, characteristic features of loop disorders are hypo- or isosthenuric polyuria and hypercalciuria, whereas characteristics of DCT disorders are hypokalemia and (symptomatic) hypomagnesemia. In both SLT categories, replacement of urinary losses is the primary goal of treatment. In loop disorders COX inhibitors are also recommended to mitigate polyuria, and in DCT disorders magnesium supplementation is essential for effective treatment. Of note, the combination of a salt- and potassium-rich diet together with an adequate fluid intake is always the basis of long-term treatment in all SLTs.
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany. .,, Lazarettgarten 23, 76829, Landau, Germany.
| |
Collapse
|
4
|
Deschênes G, Fila M. Primary molecular disorders and secondary biological adaptations in bartter syndrome. Int J Nephrol 2011; 2011:396209. [PMID: 21941653 PMCID: PMC3177086 DOI: 10.4061/2011/396209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/01/2011] [Indexed: 12/17/2022] Open
Abstract
Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.
Collapse
Affiliation(s)
- Georges Deschênes
- Pediatric Nephrology Unit, Hôpital Robert-Debré, 48 Bd Sérurier, 75019 Paris, France
| | | |
Collapse
|
5
|
Castrop H, Schnermann J. Isoforms of renal Na-K-2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 2008; 295:F859-66. [PMID: 18495801 DOI: 10.1152/ajprenal.00106.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal Na-K-2Cl cotransporter (NKCC2, BSC1) is selectively expressed in the apical membrane of cells of the thick ascending limb of the loop of Henle (TAL) and macula densa. NKCC2-dependent salt transport constitutes the major apical entry pathway for transepithelial salt reabsorption in the TAL. Although NKCC2 is encoded by a single gene (Slc12a1), differential splicing of the NKCC2 pre-mRNA results in the formation of several alternate transcripts. Thus three full-length splice isoforms of NKCC2 differ in their variable exon 4, resulting in transcripts for NKCC2B, NKCC2A, and NKCC2F. In addition to full-length isoforms, variants with truncated COOH-terminal ends have been described. The various splice isoforms of NKCC2 differ in their localization along the TAL and in their transport characteristics. Data in the literature are reviewed to assess the principles of NKCC2 differential splicing, the localization of NKCC2 splice isoforms along the TAL in various species, and the functional characteristics of the splice isoforms. In addition, we discuss the functional significance of NKCC2 isoforms for TAL salt retrieval and for the specific salt sensor function of macula densa cells based on studies using isoform-specific NKCC2-knockout mice. We suggest that different NKCC2 splice variants cooperate in salt retrieval along the TAL and that the coexpression of two splice variants (NKCC2B and NKCC2A) in the macula densa cells facilitates efficient salt sensing over wide ranges of fluctuating salt concentrations.
Collapse
Affiliation(s)
- Hayo Castrop
- Physiologisches Institut der Universität Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany.
| | | |
Collapse
|
6
|
Proesmans W. Threading through the mizmaze of Bartter syndrome. Pediatr Nephrol 2006; 21:896-902. [PMID: 16773399 DOI: 10.1007/s00467-006-0113-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 01/31/2006] [Accepted: 01/31/2006] [Indexed: 12/14/2022]
Abstract
The story, described here in detail, started in 1962 with the publication of a seminal paper by Frederic Bartter et al. in the December issue of the American Journal of Medicine. The authors reported two pediatric patients with hitherto undescribed features, namely growth and developmental delay associated with hypokalemic alkalosis and normal blood pressure despite high aldosterone production. It soon became clear that this condition was not so exceptional. The syndrome named after Bartter was actually identified in children as well as in adults, females as well as males and in all five continents. It took almost four decades to clarify the exact nature of the disease. Bartter disease is an autosomal recessive disorder with four genotypes and mainly two phenotypes. Moreover, there are acquired secondary forms of Bartter syndrome as well as pseudo-Bartter syndromes. The history demonstrates the power of genetics but also illustrates the fundamental and irreplaceable contributions from nephrologists and renal physiologists.
Collapse
Affiliation(s)
- Willem Proesmans
- Pediatric Nephrology, University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Vargas-Poussou R, Feldmann D, Vollmer M, Konrad M, Kelly L, van den Heuvel LP, Tebourbi L, Brandis M, Karolyi L, Hebert SC, Lemmink HH, Deschênes G, Hildebrandt F, Seyberth HW, Guay-Woodford LM, Knoers NV, Antignac C. Novel molecular variants of the Na-K-2Cl cotransporter gene are responsible for antenatal Bartter syndrome. Am J Hum Genet 1998; 62:1332-40. [PMID: 9585600 PMCID: PMC1377151 DOI: 10.1086/301872] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Antenatal Bartter syndrome is a variant of inherited renal-tubular disorders associated with hypokalemic alkalosis. This disorder typically presents as a life-threatening condition beginning in utero, with marked fetal polyuria that leads to polyhydramnios and premature delivery. Another hallmark of this variant is a marked hypercalciuria and, as a secondary consequence, the development of nephrocalcinosis and osteopenia. We have analyzed 15 probands belonging to 13 families and have performed SSCP analysis of the coding sequence and the exon-intron boundaries of the NKCC2 gene; and we report 14 novel mutations in patients with antenatal Bartter syndrome, as well as the identification of three isoforms of human NKCC2 that arise from alternative splicing.
Collapse
|
8
|
Abstract
An infant is reported with the "neonatal variant" of Bartter syndrome, presenting at 5 weeks of age with metabolic acidosis associated with a life-threatening water and electrolyte depletion. Alkalosis was first shown after 2 weeks of vigorous fluid, sodium, and potassium substitution. We suggest that the extreme fluid and electrolyte losses associated with the "neonatal form" of Bartter syndrome could lead to acidosis more often than previously suspected, and may cause underdiagnosis of a possibly fatal condition.
Collapse
Affiliation(s)
- A Ammenti
- Clinica Pediatrica, University of Parma, Italy
| | | |
Collapse
|
9
|
Rudin A, Aurell M, Wilske J. Low urinary calcium excretion in Bartter's syndrome. SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY 1988; 22:35-9. [PMID: 3387909 DOI: 10.1080/00365599.1988.11690381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The urinary calcium excretion has been determined in 19 patients with Bartter's syndrome and found to be significantly lower than the calcium excretion in 92 healthy subjects (1.16 +/- 0.82 vs. 4.36 +/- 2.71 mmol/24 h, p less than 0.001). There were no differences in height, weight, glomerular filtration rate, urinary sodium excretion or serum calcium concentration between the patients and the control subjects to account for the disparity in calcium excretion. In the patients, the concentrations for ionized calcium, PTH, 25-OH vitamin D and 1,25-(OH)2 vitamin D were normal. A low urinary calcium excretion appears to be a characteristic feature of Bartter's syndrome. The cause remains unexplained.
Collapse
Affiliation(s)
- A Rudin
- Department of Endocrinology, University of Göteborg, Sweden
| | | | | |
Collapse
|