1
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
2
|
Martínez-González L, Gonzalo-Consuegra C, Gómez-Almería M, Porras G, de Lago E, Martín-Requero Á, Martínez A. Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22168975. [PMID: 34445680 PMCID: PMC8396476 DOI: 10.3390/ijms22168975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3β is one of the protein kinases involved in TDP-43 phosphorylation. Up-regulation of its expression and activity is reported on spinal cord and cortex tissues of ALS patients. Here, we propose the repurposing of Tideglusib, an in-house non-ATP competitive GSK-3β inhibitor that is currently in clinical trials for autism and myotonic dystrophy, as a promising therapeutic strategy for ALS. With this aim we have evaluated the efficacy of Tideglusib in different experimental ALS models both in vitro and in vivo. Moreover, we observed that GSK-3β activity is increased in lymphoblasts from sporadic ALS patients, with a simultaneous increase in TDP-43 phosphorylation and cytosolic TDP-43 accumulation. Treatment with Tideglusib decreased not only phospho-TDP-43 levels but also recovered its nuclear localization in ALS lymphoblasts and in a human TDP-43 neuroblastoma model. Additionally, we found that chronic oral treatment with Tideglusib is able to reduce the increased TDP-43 phosphorylation in the spinal cord of Prp-hTDP-43A315T mouse model. Therefore, we consider Tideglusib as a promising drug candidate for ALS, being proposed to start a clinical trial phase II by the end of the year.
Collapse
Affiliation(s)
- Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
| | - Claudia Gonzalo-Consuegra
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
| | - Marta Gómez-Almería
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
| | - Gracia Porras
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
| | - Eva de Lago
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Ángeles Martín-Requero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (Á.M.-R.); (A.M.); Tel.: +34-918-37-12 (ext. 4222) (Á.M.-R.); +34-918-37-31-12 (ext. 4437) (A.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (Á.M.-R.); (A.M.); Tel.: +34-918-37-12 (ext. 4222) (Á.M.-R.); +34-918-37-31-12 (ext. 4437) (A.M.)
| |
Collapse
|
3
|
Spencer PS, Kisby GE. Role of Hydrazine-Related Chemicals in Cancer and Neurodegenerative Disease. Chem Res Toxicol 2021; 34:1953-1969. [PMID: 34379394 DOI: 10.1021/acs.chemrestox.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrazine-related chemicals (HRCs) with carcinogenic and neurotoxic potential are found in certain mushrooms and plants used for food and in products employed in various industries, including aerospace. Their propensity to induce DNA damage (mostly O6-, N7- and 8-oxo-guanine lesions) resulting in multiple downstream effects is linked with both cancer and neurological disease. For cycling cells, unrepaired DNA damage leads to mutation and uncontrolled mitosis. By contrast, postmitotic neurons attempt to re-enter the cell cycle but undergo apoptosis or nonapoptotic cell death. Biomarkers of exposure to HRCs can be used to explore whether these substances are risk factors for sporadic amyotrophic laterals sclerosis and other noninherited neurodegenerative diseases, which is the focus of this paper.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Glen E Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| |
Collapse
|
4
|
Extrinsic Apoptosis Pathway Altered by Glycogen Synthase Kinase-3 β Inhibitor Influences the Net Drug Effect on NSC-34 Motor Neuron-Like Cell Survival. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4163839. [PMID: 29082245 PMCID: PMC5610847 DOI: 10.1155/2017/4163839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) inhibitors have been suggested as a core regulator of apoptosis and have been investigated as therapeutic agents for neurodegenerative diseases, including amyotrophic lateral sclerosis. However, GSK-3β has an interesting paradoxical effect of being proapoptotic during mitochondrial-mediated intrinsic apoptosis but antiapoptotic during death receptor-mediated extrinsic apoptosis. We assessed the effect of low to high doses of a GSK-3β inhibitor on survival and apoptosis of the NSC-34 motor neuron-like cell line after serum withdrawal. Then, we identified changes in extrinsic apoptosis markers, including Fas, Fas ligand, cleaved caspase-8, p38α, and the Fas-Daxx interaction. The GSK-3β inhibitor had an antiapoptotic effect at the low dose but was proapoptotic at the high dose. Proapoptotic effect at the high dose can be explained by increased signals in cleaved caspase-8 and the motor neuron-specific p38α and Fas-Daxx interaction. Our results suggest that GSK-3β inhibitor dose may determine the summation effect of the intrinsic and extrinsic apoptosis pathways. The extrinsic apoptosis pathway might be another therapeutic target for developing a potential GSK-3β inhibitor.
Collapse
|
5
|
Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016; 56:269-283. [DOI: 10.1016/j.neuro.2016.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
6
|
Natarajan P, Priyadarshini V, Pradhan D, Manne M, Swargam S, Kanipakam H, Bhuma V, Amineni U. E-pharmacophore-based virtual screening to identify GSK-3β inhibitors. J Recept Signal Transduct Res 2015; 36:445-58. [PMID: 27305963 DOI: 10.3109/10799893.2015.1122043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase which has attracted significant attention during recent years in drug design studies. The deregulation of GSK-3β increased the loss of hippocampal neurons by triggering apoptosis-mediating production of neurofibrillary tangles and alleviates memory deficits in Alzheimer's disease (AD). Given its role in the formation of neurofibrillary tangles leading to AD, it has been a major therapeutic target for intervention in AD, hence was targeted in the present study. Twenty crystal structures were refined to generate pharmacophore models based on energy involvement in binding co-crystal ligands. Four common e-pharmacophore models were optimized from the 20 pharmacophore models. Shape-based screening of four e-pharmacophore models against nine established small molecule databases using Phase v3.9 had resulted in 1800 compounds having similar pharmacophore features. Rigid receptor docking (RRD) was performed for 1800 compounds and 20 co-crystal ligands with GSK-3β to generate dock complexes. Interactions of the best scoring lead obtained through RRD were further studied with quantum polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area. Comparing the obtained leads to 20 co-crystal ligands resulted in 18 leads among them, lead1 had the lowest docking score, lower binding free energy and better binding orientation toward GSK-3β. The 50 ns MD simulations run confirmed the stable nature of GSK-3β-lead1 docking complex. The results from RRD, QPLD, IFD and MD simulations confirmed that lead1 might be used as a potent antagonist for GSK-3β.
Collapse
Affiliation(s)
- Pradeep Natarajan
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Vani Priyadarshini
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Dibyabhaba Pradhan
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Munikumar Manne
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Sandeep Swargam
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Hema Kanipakam
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Vengamma Bhuma
- b Department of Neurology , SVIMS University , Tirupati , India
| | - Umamaheswari Amineni
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| |
Collapse
|
7
|
Reis LC, Ramos-Sanchez EM, Goto H. The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages. Parasite Immunol 2014; 35:239-44. [PMID: 23668415 PMCID: PMC3746123 DOI: 10.1111/pim.12041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/07/2013] [Indexed: 11/26/2022]
Abstract
Previously, we showed in Leishmania infections that extrinsic insulin-like growth factor (IGF)-I favored Leishmania proliferation and leishmaniasis development. In this study, the interaction of intrinsically expressed IGF-I and Leishmania (Leishmania) major in macrophages was addressed, and a key finding was the observation, using confocal microscopy, of the co-localization of IGF-I and parasites within macrophages. Following stimulation with interferon-γ (IFN-γ), which is known to inhibit IGF-I production in macrophages, we observed a reduction in the expression of both IGF-I mRNA and protein. This reduced expression was accompanied by a reduction in the cellular parasite load that was completely recovered with the addition of extrinsic IGF-I, which suggests an essential role for IGF-I in Leishmania growth.
Collapse
Affiliation(s)
- L C Reis
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, IMTSP-USP, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:808-18. [PMID: 24418258 DOI: 10.1016/j.ajpath.2013.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Abstract
Tau-tubulin kinase-1 (TTBK1) is a central nervous system (CNS)-specific protein kinase implicated in the pathological phosphorylation of tau. TTBK1-transgenic mice show enhanced neuroinflammation in the CNS. Double-transgenic mice expressing TTBK1 and frontotemporal dementia with parkinsonism-17-linked P301L (JNPL3) tau mutant (TTBK1/JNPL3) show increased accumulation of oligomeric tau protein in the CNS and enhanced loss of motor neurons in the ventral horn of the lumbar spinal cord. To determine the role of TTBK1-induced neuroinflammation in tauopathy-related neuropathogenesis, age-matched TTBK1/JNPL3, JNPL3, TTBK1, and non-transgenic littermates were systematically characterized. There was a striking switch in the activation phenotype and population of mononuclear phagocytes (resident microglia and infiltrating macrophages) in the affected spinal cord region: JNPL3 mice showed accumulation of alternatively activated microglia, whereas TTBK1 and TTBK1/JNPL3 mice showed accumulation of classically activated infiltrating peripheral monocytes. In addition, expression of chemokine ligand 2, a chemokine important for the recruitment of peripheral monocytes, was enhanced in TTBK1 and TTBK1/JNPL3 but not in other groups in the spinal cord. Furthermore, primary cultured mouse motor neurons showed axonal degeneration after transient expression of the TTBK1 gene or treatment with conditioned media derived from lipopolysaccharide-stimulated microglia; this was partially blocked by silencing of the endogenous TTBK1 gene in neurons. These data suggest that TTBK1 accelerates motor neuron neurodegeneration by recruiting proinflammatory monocytes and enhancing sensitivity to neurotoxicity in inflammatory conditions.
Collapse
|
9
|
Effect of JGK-263 as a new glycogen synthase kinase-3β inhibitor on extrinsic apoptosis pathway in motor neuronal cells. Biochem Biophys Res Commun 2013; 439:309-14. [DOI: 10.1016/j.bbrc.2013.07.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 12/28/2022]
|
10
|
Yin F, Ye F, Tan L, Liu K, Xuan Z, Zhang J, Wang W, Zhang Y, Jiang X, Zhang DY. Alterations of signaling pathways in muscle tissues of patients with amyotrophic lateral sclerosis. Muscle Nerve 2012; 46:861-70. [PMID: 22996383 DOI: 10.1002/mus.23411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS), a degenerative disorder of the central nervous system, manifests as progressive weakening of muscles. The diagnosis and prognosis of ALS are often unclear, so useful biomarkers are needed. METHODS Total proteins were extracted from muscle samples from 36 ALS, 17 spinal muscular atrophy (SMA), and 36 normal individuals. The expression levels of 134 proteins and phosphoproteins were assessed using protein pathway array analysis. RESULTS Seventeen proteins were differentially expressed between ALS and normal muscle, and 9 proteins were differentially expressed between ALS and SMA muscle. The low-level expression of Akt and Factor XIIIB correlates with unfavorable survival, and the risk score calculated based on these proteins predicts the survival of each individual patient. CONCLUSIONS Some proteins could be selected as clinically useful biomarkers. Specifically, Akt and Factor XIIIB were found to be promising biomarkers for estimating prognosis in ALS.
Collapse
Affiliation(s)
- Fei Yin
- Department of Neurology, First Hospital, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012; 2012:930710. [PMID: 22675363 PMCID: PMC3364548 DOI: 10.1155/2012/930710] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023] Open
Abstract
Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.
Collapse
|
12
|
Is neurodegenerative disease a long-latency response to early-life genotoxin exposure? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3889-921. [PMID: 22073019 PMCID: PMC3210588 DOI: 10.3390/ijerph8103889] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 01/03/2023]
Abstract
Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer's disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease.
Collapse
|
13
|
The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner. PLoS One 2011; 6:e20911. [PMID: 21731631 PMCID: PMC3121718 DOI: 10.1371/journal.pone.0020911] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/16/2011] [Indexed: 02/02/2023] Open
Abstract
Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of adult C57BL6 wild-type mice treated with a single systemic dose of MAM acetate display DNA damage (O6-methyldeoxyguanosine lesions, O6-mG) that remains constant up to 7 days post-treatment. By contrast, MAM-treated mice lacking a functional gene encoding the DNA repair enzyme O6-mG DNA methyltransferase (MGMT) showed elevated O6-mG DNA damage starting at 48 hours post-treatment. The DNA damage was linked to changes in the expression of genes in cell-signaling pathways associated with cancer, human neurodegenerative disease, and neurodevelopmental disorders. These data are consistent with the established developmental neurotoxic and carcinogenic properties of MAM in rodents. They also support the hypothesis that early-life exposure to MAM-glucoside (cycasin) has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for food or medicine, or both. These findings suggest environmental genotoxins, specifically MAM, target common pathways involved in neurodegeneration and cancer, the outcome depending on whether the cell can divide (cancer) or not (neurodegeneration). Exposure to MAM-related environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimer's disease.
Collapse
|
14
|
McGeer PL, Steele JC. The ALS/PDC syndrome of Guam: potential biomarkers for an enigmatic disorder. Prog Neurobiol 2011; 95:663-9. [PMID: 21527311 DOI: 10.1016/j.pneurobio.2011.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The ALS/parkinsonism-dementia complex of Guam is a long latency disease with a diverse phenotypic expression characteristic of classical ALS, parkinsonism and dementia. It is remarkably similar to a syndrome localized to the Kii Peninsula of Japan. There are as yet no identified pathological features that will clearly distinguish the Guam or Kii ALS/PDC syndrome from other degenerative neurological disorders. At present, ALS/PDC of Guam and the Kii Peninsula can be confirmed only by postmortem examination. The most prominent pathological hallmark is the widespread occurrence of neurofibrillary tangles which express the same balance of 3R and 4R tau that is found in Alzheimer disease. They both show an increased prevalence of a peculiar retinal disorder termed linear retinal pigmentary epitheliopathy. The disorders are both highly familial. Several environmental factors have been proposed but no supportive evidence for an environmental or dietary factor has been found. Genome searches have so far failed to identify causative genes although two single nuclear polymorphisms related to MAPT that increase the risk of the Guam syndrome have been located. The two syndromes are clearly unique, and clues as to their causation could be beneficial in understanding the etiology of similar, but much more prevalent disorders in North America, Europe and Asia. Identification of biomarkers for premortem diagnosis would be helpful in management as well as in revealing the true etiology.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
15
|
Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways. Exp Neurol 2011; 230:114-22. [PMID: 21530509 DOI: 10.1016/j.expneurol.2011.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 12/13/2022]
Abstract
Excitotoxic degeneration of spinal cord motoneurons has been proposed as a pathogenic mechanism in amyotrophic lateral sclerosis (ALS). Recently, we have reported that ghrelin, an endogenous ligand for growth hormone secretagogue receptor (GHS-R) 1a, functions as a neuroprotective factor in various animal models of neurodegenerative diseases. In this study, the potential neuroprotective effects of ghrelin against chronic glutamate-induced cell death were studied by exposing organotypic spinal cord cultures (OSCC) to threohydroxyaspartate (THA), as a model of excitotoxic motoneuron degeneration. Ghrelin receptor was expressed on spinal cord motoneurons. Exposure of OSCC to THA for 3 weeks resulted in a significant loss of motoneurons. However, THA-induced loss of motoneurons was significantly reduced by treatment of ghrelin. Exposure of OSCC to the receptor-specific antagonist D-Lys-3-GHRP-6 abolished the protective effect of ghrelin against THA. Treatment of spinal cord cultures with ghrelin caused rapid phosphorylation of extracellular signal-regulated kinase 1/2, Akt, and glycogen synthase kinase-3β (GSK-3β). The effect of ghrelin on motoneuron survival was blocked by the MEK inhibitor PD98059 and the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. Taken together, these findings indicate that ghrelin has neuroprotective effects against chronic glutamate toxicity by activating the MAPK and PI3K/Akt signaling pathways and suggest that administration of ghrelin may have the potential therapeutic value for the prevention of motoneuron degeneration in human ALS. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β in motoneurons contributes to the protective effect of ghrelin.
Collapse
|
16
|
Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling. Apoptosis 2010; 15:1470-9. [DOI: 10.1007/s10495-010-0547-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|