1
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
2
|
Bai H, Wang R, Li Y, Liang X, Zhang J, Sun N, Yang J. Network Pharmacology Analysis, Molecular Docking, and In Vitro Verification Reveal the Action Mechanism of Prunella vulgaris L. in Treating Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5481563. [PMID: 35990843 PMCID: PMC9385303 DOI: 10.1155/2022/5481563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Background Prunella vulgaris L. is effective in the treatment of breast cancer (BRCA); however, the underlying mechanism is still unclear. The aim of this study was to elucidate the mechanism of treatment of BRCA by P. vulgaris using network pharmacology and molecular docking technology, and to verify the experimental results using human BRCA MDA-MB-231 cells. Methods Active components and action targets of P. vulgaris were determined using the TCMSP™, SwissTarget Prediction™, and TargetNet™ databases. GeneCards™ and OMIM™ provided BRCA targets. After obtaining common targets, a protein-protein interaction (PPI) network was constructed using the STRING™ database, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using the Xiantao™ academic database. Cytoscape™ was used to construct "single drug-disease-component-target" and "single drug-disease-component-target-pathway" networks. The Human Protein Atlas™ was used to determine protein expression levels in BRCA cell lines. AutoDock tools™ were used to carry out molecular docking for the first 10 targets of quercetin and the PPI network. Finally, the abovementioned results were verified using cell experiments. Results We obtained 11 active components, 198 targets, and 179 common targets, including DUOX2, MET, TOP2A, and ERBB3. The results of KEGG pathway analysis screened 188 related signaling pathways and indicated the potential key role of PI3K-Akt and MAPK signaling pathways in the antibreast cancer process of P. vulgaris. The results of molecular docking showed that the first 10 targets of quercetin interacted well with the protein network. Cell experiments showed that quercetin effectively inhibited the proliferation of MDA-MB-231 cells by regulating apoptosis and cell cycle, which may be partly related to the MAPK signaling pathway. Conclusion Synergistic effects of multiple components, targets, and pathways on the anti-BRCA activity of P. vulgaris could provide a theoretical basis for further study on its complex anti-BRCA mechanism.
Collapse
Affiliation(s)
- Haotian Bai
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, Heilongjiang 150040, China
| | - Yalan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xiao Liang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Junhao Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Na Sun
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| |
Collapse
|
3
|
Hu Y, Tang C, Zhu W, Ye H, Lin Y, Wang R, Zhou T, Wen S, Yang J, Fang C. Identification of chromosomal instability-associated genes as hepatocellular carcinoma progression-related biomarkers to guide clinical diagnosis, prognosis and therapy. Comput Biol Med 2022; 148:105896. [PMID: 35868048 DOI: 10.1016/j.compbiomed.2022.105896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer characterized by high heterogeneity and a complex multistep progression process. Significantly-altered biomarkers for HCC need to be identified. Differentially expressed genes and weighted gene co-expression network analyses were used to identify progression-related biomarkers. LASSO-Cox regression and random forest algorithms were used to construct the progression-related prognosis (PRP) score. Three chromosomal instability-associated genes (KIF20A, TOP2A, and TTK) have been identified as progression-related biomarkers. The robustness of the PRP scores were validated using four independent cohorts. Immune status was observed using the single-sample gene set enrichment analysis (ssGSEA). Comprehensive analysis showed that the patients with high PRP score had wider genomic alterations, more malignant phenotypes, and were in a state of immunosuppression. The diagnostic models constructed via logistic regression based on the three genes showed satisfactory performances in distinguishing HCC from cirrhotic tissues or dysplastic nodules. The nomogram combining PRP scores with clinical factors had a better performance in predicting prognosis than the tumor node metastasis classification (TNM) system. We further confirmed that KIF20A, TOP2A, and TTK were highly expressed in HCC tissues than in cirrhotic tissues. Downregulation of all three genes aggravated chromosomal instabilities in HCC and suppressed HCC cells viability both in vitro and in vivo. Overall, our study highlights the important roles of chromosomal instability-associated genes during the progression of HCC and their potential clinical diagnosis and prognostic value and provides promising new ideas for developing therapeutic strategies to improve the outcomes of HCC patients.
Collapse
Affiliation(s)
- Yueyang Hu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chuanyu Tang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Hanjie Ye
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Yuxing Lin
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Ruixuan Wang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Tianjun Zhou
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Sai Wen
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Jian Yang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Digital Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Wang K, Chen Y, Zhao Z, Feng M, Zhang S. Identification of potential core genes and miRNAs in testicular seminoma via bioinformatics analysis. Mol Med Rep 2019; 20:4013-4022. [PMID: 31545448 PMCID: PMC6797975 DOI: 10.3892/mmr.2019.10684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Testicular seminoma is one of the most common tumours in the field of urology, and its aetiology is still unclear. The aim of the present study was to identify the factors responsible for the development of testicular cancer and to investigate whether mutations in these genes were primarily congenital or acquired. To identify the key genes and miRNAs linked to testicular seminoma, as well as their potential molecular mechanisms, the GSE15220, GSE1818 and GSE59520 microarray datasets were analysed. A total of 5,195 and 1,163 differentially expressed genes (DEGs) were identified after analysing the GSE15220 and GSE1818 datasets, respectively. Among them, 287 genes were common between the two datasets. Of these, 110 were upregulated and 177 were downregulated. Five differentially expressed microRNAs (miRs; DEMs) that were downregulated in seminoma were identified after analysing the GSE59520 dataset. Following protein-protein interaction network and Gene Ontology analysis, the five nodes with the highest degrees were screened as hub genes. Among them, the high expression of hub genes, such as protein tyrosine phosphatase receptor type C (PTPRC), was associated with worse overall survival. We also predicted the potential target genes of the DEMs. DNA topoisomerase II α (TOP2A), marker of proliferation Ki-67 (MKI67), PTPRC and ubiquitin conjugating enzyme E2 C were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. In addition, hsa-miR-650 and hsa-miR-665 were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. Additionally, TOP2A and MKI67 were strongly associated with the target genes hsa-miR-650 and hsa-miR-665, respectively. We proposed that the hub genes reported in the present study may have a certain impact on cellular proliferation and migration in testicular seminoma. The roles of these hub genes in seminoma may provide novel insight to improve the diagnosis and treatment of patients with seminoma.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Zhao
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Meiying Feng
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
5
|
Liu T, Zhang H, Yi S, Gu L, Zhou M. Mutual regulation of MDM4 and TOP2A in cancer cell proliferation. Mol Oncol 2019; 13:1047-1058. [PMID: 30672125 PMCID: PMC6487731 DOI: 10.1002/1878-0261.12457] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
MDM4 and topoisomerase IIα (TOP2A) are overexpressed in various human cancers. MDM4 acts as an oncoprotein which promotes cancer progression by inhibiting tumor suppressor p53. As a DNA replication- and cell division-regulating enzyme, TOP2A is the main target of many anticancer therapy regimens; however, the exact role of TOP2A in cancer remains elusive. Herein, we report that MDM4 and TOP2A bind to each other and are mutually upregulated at the post-translational level, leading to TOP2A protein stabilization, inhibition of p53, and increased tumor-cell proliferation. We demonstrate that the C-terminal region (CTR) of TOP2A binds to a unique sequence (residues: 188-238) of MDM4, which contains an auto-inhibitory segment regulating the MDM4-p53 interaction. TOP2A binding in turn activates MDM4 for p53 binding, resulting in enhanced inhibition of p53 and cancer cell proliferation. Conversely, binding of the MDM4 sequence to the CTR of TOP2A stabilizes TOP2A protein, leading to increased TOP2A protein expression. These results reveal novel functions of MDM4 and TOP2A as well as their interactions in oncogenesis, suggesting that inhibition of the MDM4-TOP2A interaction may represent a novel strategy in specifically and simultaneously targeting TOP2A and MDM4 for cancer treatment.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Hailong Zhang
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sha Yi
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Mizuno K, Mataki H, Arai T, Okato A, Kamikawaji K, Kumamoto T, Hiraki T, Hatanaka K, Inoue H, Seki N. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet 2017; 62:671-678. [DOI: 10.1038/jhg.2017.27] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
|
7
|
Liao Q, Liu W, Liu Y, Wang F, Wang C, Zhang J, Chu M, Jiang D, Xiao L, Shao W, Sheng Z, Tao X, Huo L, Yin CC, Zhang Y, Lee G, Huang J, Li Z, Qiu X. Aberrant high expression of immunoglobulin G in epithelial stem/progenitor-like cells contributes to tumor initiation and metastasis. Oncotarget 2015; 6:40081-94. [PMID: 26472025 PMCID: PMC4741881 DOI: 10.18632/oncotarget.5542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
High expression of immunoglobulin G (IgG) in many non-B cell malignancies and its non-conventional roles in promoting proliferation and survival of cancer cells have been demonstrated. However, the precise function of non-B IgG remains incompletely understood. Here we define the antigen specificity of RP215, a monoclonal antibody that specifically recognizes the IgG in cancer cells. Using RP215, our study shows that IgG is overexpressed in cancer cells of epithelial lineage, especially cells with cancer stem/progenitor cell-like features. The RP215-recognized IgG is primarily localized on the cell surface, particularly lamellipodia-like structures. Cells with high IgG display higher migration, increased invasiveness and metastasis, and enhanced self-renewal and tumorgenecity ability in vitro and in vivo. Importantly, depletion of IgG in breast cancer leads to reduced adhesion, invasion and self-renewal and increased apoptosis of cancer cells. We conclude that high expression of IgG is a novel biomarker of tumor progression, metastasis and cancer stem cell maintenance and demonstrate the potential therapeutic benefits of RP215-recognized IgG targeted strategy.
Collapse
Affiliation(s)
- Qinyuan Liao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wei Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Fulin Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chong Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Jingxuan Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Dongyang Jiang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Lin Xiao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Wenwei Shao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zhengzuo Sheng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xia Tao
- Department of Gynecology, Peking University First Hospital, Beijing, 100034, China
| | - Lei Huo
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Science, Beijing, 100021, China
| | - Gregory Lee
- Andrology Lab, University of British Columbia Centre for Reproductive Health, Vancouver, BC V5Z 4H4, Canada
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Peking University Center for Human Disease Genomics, Beijing, 100191, China
- Key Laboratory of Medical Immunology, Ministry of Health, Beijing, 100191, China
| |
Collapse
|
8
|
TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin: TOP2A as marker of response to PLD in ovarian cancer. Gynecol Oncol 2015; 138:627-33. [PMID: 26100858 DOI: 10.1016/j.ygyno.2015.06.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The treatment of platinum resistant/refractory epithelial ovarian cancer (EOC) is a challenge for oncologists. One of the most utilized drugs in these patients is pegylated liposomal doxorubicin (PLD). As PLD is active only in a small subset of patients and causes side effects, selection of responsive patients is an unmet need and might be guided by the status of the DNA topoisomerase II alpha (TOP2A) that is poisoned by the drug. METHODS From 176 ovarian cancers treated in three institutions, we selected 38 patients treated with PLD monotherapy as second/third line of treatment. TOP2A gene copies were measured using Fluorescent In Situ Hybridization (FISH) and expression evaluated using immunohistochemistry. Patients' derived xenografts (PDXs) of ovarian cancers were used to assess the correlation between TOP2A protein expression and response to PLD. RESULTS Clinical data showed that TOP2A gene gain that is paralleled by increased expression of the protein, was associated with a higher probability of clinical benefit from PLD. Treatment of PDXs demonstrated that only xenografts showing a high percentage of TOP2A expressing cells underwent tumor shrinkage when treated with PLD. CONCLUSIONS These data show that TOP2A gene gain and protein over-expression might predict activity of PLD in platinum resistant/refractory EOC.
Collapse
|
9
|
Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2014; 34:4019-31. [PMID: 25328138 PMCID: PMC4404185 DOI: 10.1038/onc.2014.332] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may play a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors have been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
Collapse
Affiliation(s)
- T Chen
- 1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Department of Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kopetz
- Department of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim Biophys Acta Rev Cancer 2013; 1836:146-57. [PMID: 23628726 DOI: 10.1016/j.bbcan.2013.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/20/2022]
Abstract
HER2 gene amplification is observed in about 15% of breast cancers. The subgroup of HER2-positive breast cancers appears to be heterogeneous and presents complex patterns of gene amplification at the locus on chromosome 17q12-21. The molecular variations within the chromosome 17q amplicon and their clinical implications remain largely unknown. Besides the well-known TOP2A gene encoding Topoisomerase IIA, other genes might also be amplified and could play functional roles in breast cancer development and progression. This review will focus on the current knowledge concerning the HER2 amplicon heterogeneity, its clinical and biological impact and the pitfalls associated with the evaluation of gene amplifications at this locus, with particular attention to TOP2A and the link between TOP2A and anthracycline benefit. In addition it will discuss the clinical and biological implications of the amplification of ten other genes at this locus (MED1, STARD3, GRB7, THRA, RARA, IGFPB4, CCR7, KRT20, KRT19 and GAST) in breast cancer.
Collapse
|
11
|
Kiyose S, Igarashi H, Nagura K, Kamo T, Kawane K, Mori H, Ozawa T, Maeda M, Konno K, Hoshino H, Konno H, Ogura H, Shinmura K, Hattori N, Sugimura H. Chromogenicin situhybridization (CISH) to detectHER2gene amplification in breast and gastric cancer: Comparison with immunohistochemistry (IHC) and fluorescencein situhybridization (FISH). Pathol Int 2012; 62:728-34. [DOI: 10.1111/j.1440-1827.2012.02862.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|