1
|
Thorenoor N, Umstead TM, Zhang X, Phelps DS, Floros J. Survival of Surfactant Protein-A1 and SP-A2 Transgenic Mice After Klebsiella pneumoniae Infection, Exhibits Sex-, Gene-, and Variant Specific Differences; Treatment With Surfactant Protein Improves Survival. Front Immunol 2018; 9:2404. [PMID: 30459763 PMCID: PMC6232836 DOI: 10.3389/fimmu.2018.02404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein A (SP-A) is involved in lung innate host defense and surfactant-related functions. The human SFTPA1 and SFTPA2 genes encode SP-A1 and SP-2 proteins, and each gene has been identified with numerous genetic variants. SP-A1 and SP-A2 differentially enhance bacterial phagocytosis. Sex differences have been observed in pulmonary disease and in survival of wild type and SP-A knockout (KO) mice. The impact of human SP-A variants on survival after infection is unknown. In this study, we determined whether SP-A variants differentially affect survival of male and female mice infected with Klebsiella pneumoniae. Transgenic (TG) mice, where each carries a different human (h) SP-A1 (6A2, 6A4), SP-A2 (1A0, 1A3) variant or both variants SP-A1/SP-A2 (6A2/1A0, co-ex), and SP-A- KO, were utilized. The hTG and KO mice were infected intratracheally with K. pneumoniae bacteria, and groups of KO mice were treated with SP-A1 or SP-A2 either prior to and/or at the time of infection and survival for both experimental groups was monitored over 14 days. The binding of purified SP-A1 and SP-A2 proteins to phagocytic and non-phagocytic cells and expression of cell surface proteins in alveolar macrophages (AM) from SP-A1 and SP-A2 mice was examined. We observed gene-, variant-, and sex-specific (except for co-ex) differences with females showing better survival: (a) Gene-specific differences: co-ex = SP-A2 > SP-A1 > KO (both sexes); (b) Variant-specific survival co-ex (6A2/1A0) = 1A0 > 1A3 = 6A2 > 6A4 (both sexes); (c) KO mice treated with SPs (SP-A1 or SP-A2) proteins exhibit significantly (p < 0.05) better survival; (d) SP-A1 and SP-A2 differentially bind to phagocytic, but not to non-phagocytic cells, and AM from SP-A1 and SP-A2 hTG mice exhibit differential expression of cell surface proteins. Our results indicate that sex and SP-A genetics differentially affect survival after infection and that exogenous SP-A1/SP-A2 treatment significantly improves survival. We postulate that the differential SP-A1/SP-A2 binding to the phagocytic cells and the differential expression of cell surface proteins that bind SP-A by AM from SP-A1 and SP-A2 mice play a role in this process. These findings provide insight into the importance of sex and innate immunity genetics in survival following infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M Umstead
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Shetty N, Ahn P, Park H, Bhujbal S, Zemlyanov D, Cavallaro A, Mangal S, Li J, Zhou Q(T. Improved Physical Stability and Aerosolization of Inhalable Amorphous Ciprofloxacin Powder Formulations by Incorporating Synergistic Colistin. Mol Pharm 2018; 15:4004-4020. [PMID: 30028947 PMCID: PMC6205724 DOI: 10.1021/acs.molpharmaceut.8b00445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aimed to develop dry powder inhaler (DPI) combination formulations of ciprofloxacin and colistin for use in respiratory infections. Effects of colistin on physical stability and aerosolization of spray-dried ciprofloxacin were examined. The combination DPI formulations were produced by co-spray drying colistin and ciprofloxacin in mass ratios of 1:1, 1:3, and 1:9. Colistin and ciprofloxacin were also co-sprayed with l-leucine in the mass ratio of 1:1:1. The physical and aerosolization stability of the selected co-sprayed formulations stored at 20, 55, and 75% relative humidity (RH) were examined. Formulation characterizations were carried out using powder X-ray diffraction (PXRD) for crystallinity, scanning electron microscopy for morphology and particle size distribution, and dynamic vapor sorption for moisture sorption. Particle surface analysis was performed using X-ray photoelectron spectroscopy, energy dispersive X-ray spectrometry, and nano-time-of-flight secondary ion mass spectrometry. Potential intermolecular interactions were studied using Fourier-transform infrared spectroscopy (FTIR). Aerosol performance was evaluated using a multistage liquid impinger with a RS01 monodose inhaler device. PXRD diffractograms showed that the co-spray-dried colistin-ciprofloxacin formulation in the mass ratio (1:1) was amorphous at 55% RH for up to 60 days; whereas the co-spray-dried colistin-ciprofloxacin (1:3) and colistin-ciprofloxacin (1:9) crystallized after storage for 3 days at 55% RH. However, the extent of crystallization for the combination formulations was less as compared to the spray-dried ciprofloxacin alone formulation. Surface morphology of the co-spray-dried formulations at different concentrations did not change even after storage at 55% RH for 60 days, unlike the spray-dried ciprofloxacin alone powder which became rougher after 3 days of storage at 55% RH. Surface analysis data indicated surface enrichment of colistin in the co-spray-dried formulations. Increasing colistin concentration on the composite particles surfaces improved aerosol performance of ciprofloxacin. FTIR data demonstrated intermolecular interactions between colistin and ciprofloxacin, thereby delaying and/or preventing crystallization of ciprofloxacin when co-spray-dried. Co-spray drying ciprofloxacin with colistin in the mass ratio (1:1) completely prevented crystallization of ciprofloxacin at 55% RH for up to 60 days. However, the colistin-ciprofloxacin formulation (1:1) began to fuse when stored at 75% RH due to moisture absorption resulting in a compromised aerosol performance. In contrast, the colistin-ciprofloxacin-leucine (1:1:1) formulation demonstrated no particle fusion, enabling a stable aerosol performance at 75% RH for 7 days. This study demonstrated that incorporation of colistin in the spray-dried formulations can improve physical stability and aerosolization of amorphous ciprofloxacin at 55% RH. At 75% RH, further addition of l-leucine in the formulation prevented particle fusion and deterioration in aerosol performance, attributed to the enrichment of nonhygroscopic l-leucine on the particle surface.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Patricia Ahn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sonal Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Ngan LTM, Jang MJ, Kwon MJ, Ahn YJ. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses. PLoS One 2015; 10:e0121629. [PMID: 25860871 PMCID: PMC4393083 DOI: 10.1371/journal.pone.0121629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM) and HRV-4 (17.33 μM) in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3->8.5). The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h), the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor), inflammatory cytokines (interleukin (IL)-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β), and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV.
Collapse
Affiliation(s)
- Luong Thi My Ngan
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh, Vietnam
| | - Myeong Jin Jang
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Min Jung Kwon
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Young Joon Ahn
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Park SW, Kwon MJ, Yoo JY, Choi HJ, Ahn YJ. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:171. [PMID: 24885569 PMCID: PMC4052798 DOI: 10.1186/1472-6882-14-171] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/21/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cause billions of USD annually in medical visits and school and work absenteeism. An assessment was made of the cytotoxic and antiviral activities and possible mode of action of the tannin ellagic acid from the leaves of Lagerstroemia speciosa toward HeLa cells and three rhinoviruses, HRV-2, -3, and -4. METHODS The antiviral property and mechanism of action of ellagic acid were evaluated using a sulforhodamine B assay and real-time reverse transcription-PCR (RT-PCR) with SYBR Green dye. Results were compared with those of the currently used broad-spectrum antiviral agent, ribavirin. RESULTS As judged by 50% inhibitory concentration values, natural ellagic acid was 1.8, 2.3, and 2.2 times more toxic toward HRV-2 (38 μg/mL), HRV-3 (31 μg/mL), and HRV-4 (29 μg/mL) than ribavirin, respectively. The inhibition rate of preincubation with 50 μg/mL ellagic acid was 17%, whereas continuous presence of ellagic acid during infection led to a significant increase in the inhibition (70%). Treatment with 50 μg/mL ellagic acid considerably suppressed HRV-4 infection only when added just after the virus inoculation (0 h) (87% inhibition), but not before -1 h or after 1 h or later (<20% inhibition). These findings suggest that ellagic acid does not interact with the HRV-4 particles and may directly interact with the human cells in the early stage of HRV infections to protect the cells from the virus destruction. Furthermore, RT-PCR analysis revealed that 50 μg/mL ellagic acid strongly inhibited the RNA replication of HRV-4 in HeLa cells, suggesting that ellagic acid inhibits virus replication by targeting on cellular molecules, rather than virus molecules. CONCLUSIONS Global efforts to reduce the level of antibiotics justify further studies on L. speciosa leaf-derived materials containing ellagic acid as potential anti-HRV products or a lead molecule for the prevention or treatment of HRV infection.
Collapse
Affiliation(s)
- Sang Wook Park
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Min Jung Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Ji Young Yoo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Hwa-Jung Choi
- Department of Infection Biology, Zoonosis Research Center, Wonkwang University School of Medicine, Iksan 570-749, Jeollabuk-do, Republic of Korea
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
5
|
The Rhinovirus subviral a-particle exposes 3'-terminal sequences of its genomic RNA. J Virol 2014; 88:6307-17. [PMID: 24672023 DOI: 10.1128/jvi.00539-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Enteroviruses, which represent a large genus within the family Picornaviridae, undergo important conformational modifications during infection of the host cell. Once internalized by receptor-mediated endocytosis, receptor binding and/or the acidic endosomal environment triggers the native virion to expand and convert into the subviral (altered) A-particle. The A-particle is lacking the internal capsid protein VP4 and exposes N-terminal amphipathic sequences of VP1, allowing for its direct interaction with a lipid bilayer. The genomic single-stranded (+)RNA then exits through a hole close to a 2-fold axis of icosahedral symmetry and passes through a pore in the endosomal membrane into the cytosol, leaving behind the empty shell. We demonstrate that in vitro acidification of a prototype of the minor receptor group of common cold viruses, human rhinovirus A2 (HRV-A2), also results in egress of the poly(A) tail of the RNA from the A-particle, along with adjacent nucleotides totaling ∼700 bases. However, even after hours of incubation at pH 5.2, 5'-proximal sequences remain inside the capsid. In contrast, the entire RNA genome is released within minutes of exposure to the acidic endosomal environment in vivo. This finding suggests that the exposed 3'-poly(A) tail facilitates the positioning of the RNA exit site onto the putative channel in the lipid bilayer, thereby preventing the egress of viral RNA into the endosomal lumen, where it may be degraded. IMPORTANCE For host cell infection, a virus transfers its genome from within the protective capsid into the cytosol; this requires modifications of the viral shell. In common cold viruses, exit of the RNA genome is prepared by the acidic environment in endosomes converting the native virion into the subviral A-particle. We demonstrate that acidification in vitro results in RNA exit starting from the 3'-terminal poly(A). However, the process halts as soon as about 700 bases have left the viral shell. Conversely, inside the cell, RNA egress completes in about 2 min. This suggests the existence of cellular uncoating facilitators.
Collapse
|
6
|
Productive entry pathways of human rhinoviruses. Adv Virol 2012; 2012:826301. [PMID: 23227049 PMCID: PMC3513715 DOI: 10.1155/2012/826301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/18/2012] [Indexed: 12/20/2022] Open
Abstract
Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic compartments, the icosahedral HRV capsid expands by ~4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established, the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed. The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.
Collapse
|
7
|
Togami K, Chono S, Morimoto K. Aerosol-based efficient delivery of azithromycin to alveolar macrophages for treatment of respiratory infections. Pharm Dev Technol 2012; 18:1361-5. [DOI: 10.3109/10837450.2012.705296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Aerosol-Based Efficient Delivery of Clarithromycin, a Macrolide Antimicrobial Agent, to Lung Epithelial Lining Fluid and Alveolar Macrophages for Treatment of Respiratory Infections. J Aerosol Med Pulm Drug Deliv 2012; 25:110-5. [DOI: 10.1089/jamp.2011.0894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
9
|
Durrani F, Phelps DS, Weisz J, Silveyra P, Hu S, Mikerov AN, Floros J. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection. Exp Lung Res 2012; 38:165-72. [PMID: 22394250 DOI: 10.3109/01902148.2011.654045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Survival of mice after Klebsiella pneumoniae infection and phagocytosis by alveolar macrophages (AMs), in the presence or absence of ozone (O(3)) exposure prior to infection, is sex dependent. The objective of this work was to study the role of gonadal hormones, 5α-dihydrotestosterone (DHT) and 17β-estradiol (E(2)), on mouse survival after filtered air (FA) or O(3) exposure. Gonadectomized female (G×F) and male (G×M) mice implanted with control or hormone pellets (DHT in G×F, or E(2) in G×M), exposed to O(3) (2 ppm, 3h) or FA, and infected with K. pneumoniae were monitored for survival. Survival in G×F was identical after FA or O(3) exposure; in G×M O(3) exposure resulted in lower survival compared to FA. In O(3)-exposed females, gonadectomy resulted in increased survival compared to intact females or to G×M+E(2). A similar effect was observed in G×F+DHT. The combined negative effect of oxidative stress and hormone on survival was higher for E(2). Gonadectomy eliminated (females) or minimized (males) the previously observed sex differences in survival in response to oxidative stress, and hormone treatment restored them. These findings indicate that gonadal hormones and/or oxidative stress have a significant effect on mouse survival.
Collapse
Affiliation(s)
- Faryal Durrani
- Center for Host defense, Inflammation, and Lung Disease (CHILD), Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Zinman G, Brower-Sinning R, Emeche CH, Ernst J, Huang GTW, Mahony S, Myers AJ, O'Dee DM, Flynn JL, Nau GJ, Ross TM, Salter RD, Benos PV, Bar Joseph Z, Morel PA. Large scale comparison of innate responses to viral and bacterial pathogens in mouse and macaque. PLoS One 2011; 6:e22401. [PMID: 21789257 PMCID: PMC3138787 DOI: 10.1371/journal.pone.0022401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens.
Collapse
Affiliation(s)
- Guy Zinman
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rachel Brower-Sinning
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chineye H. Emeche
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason Ernst
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Grace Tzu-Wei Huang
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaun Mahony
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dawn M. O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gerard J. Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ted M. Ross
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Russell D. Salter
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Panayiotis V. Benos
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar Joseph
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PAM); (ZBJ)
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PAM); (ZBJ)
| |
Collapse
|