1
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
2
|
Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
|
3
|
Li Q, Wu T, Li S. MiR-181b serves as diagnosis and prognosis biomarker in severe community-acquired pneumonia. Genet Mol Biol 2021; 44:e20200431. [PMID: 34460893 PMCID: PMC8404775 DOI: 10.1590/1678-4685-gmb-2020-0431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Severe community-acquired pneumonia (SCAP) is a common critical disease in the intensive care unit (ICU). This study aims to evaluate the clinical significance of miR-181b in SCAP, which has been revealed to be dysregulated in acute respiratory distress syndrome events due to SCAP. There were 50 SCAP patients and 26 healthy volunteers were recruited in this study. The expression of miR-181b was detected by RT-qPCR and the difference between SCAP and healthy controls was evaluated. The diagnosis and prognosis value of miR-181b was assessed by the receiver operating characteristics (ROC), Kaplan-Meier, and Cox regression analysis. miR-181b was significantly downregulated in SCAP compared with healthy controls. The downregulation of miR-181b showed a significant association with the white blood cell count, absolute neutrophils, and the C-reactive protein of patients. The downregulation of miR-181b could distinguish SCAP patients from healthy controls and predicate the poor prognosis of SCAP patients. Downregulated miR-181b serves as a diagnosis and prognosis biomarker for SCAP, which may be useful biological information for the early detection and risk estimation of SCAP.
Collapse
Affiliation(s)
- Qiaolian Li
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| | - Tingting Wu
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| | - Song Li
- Shanxian Dongda Hospital, Department of Respiratory and Critical Care Medicine, Heze, China
| |
Collapse
|
4
|
Abstract
The phylogenetically ancient, pentraxin family of plasma proteins, comprises C-reactive protein (CRP) and serum amyloid P component (SAP) in humans and the homologous proteins in other species. They are composed of five, identical, non-covalently associated protomers arranged with cyclic pentameric symmetry in a disc-like configuration. Each protomer has a calcium dependent site that mediates the particular specific ligand binding responsible for all the rigorously established functional properties of these proteins. No genetic deficiency of either human CRP or SAP has been reported, nor even any sequence polymorphism in the proteins themselves. Although their actual functions in humans are therefore unknown, gene deletion studies in mice demonstrate that both proteins can contribute to innate immunity. CRP is the classical human acute phase protein, routinely measured in clinical practice worldwide to monitor disease activity. Human SAP, which is not an acute phase protein, is a universal constituent of all human amyloid deposits as a result of its avid specific binding to amyloid fibrils of all types. SAP thereby contributes to amyloid formation and persistence in vivo. Whole body radiolabelled SAP scintigraphy safely and non-invasively localizes and quantifies systemic amyloid deposits, and has transformed understanding of the natural history of amyloidosis and its response to treatment. Human SAP is also a therapeutic target, both in amyloidosis and Alzheimer's disease. Our drug, miridesap, depletes SAP from the blood and the brain and is currently being tested in the DESPIAD clinical trial in Alzheimer's disease. Meanwhile, the obligate therapeutic partnership of miridesap, to deplete circulating SAP, and dezamizumab, a humanized monoclonal anti-SAP antibody that targets residual SAP in amyloid deposits, produces unprecedented removal of amyloid from the tissues and improves organ function. Human CRP binds to dead and damaged cells in vivo and activates complement and this can exacerbate pre-existing tissue damage. The adverse effects of CRP are completely abrogated by compounds that block its binding to autologous ligands and we are developing CRP inhibitor drugs. The present personal and critical perspective on the pentraxins reports, for the first time, the key role of serendipity in our work since 1975. (345 words).
Collapse
Affiliation(s)
- Mark. B. Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
5
|
Zacho J, Benfield T, Tybjærg-Hansen A, Nordestgaard BG. Increased Baseline C-Reactive Protein Concentrations Are Associated with Increased Risk of Infections: Results from 2 Large Danish Population Cohorts. Clin Chem 2015; 62:335-42. [PMID: 26721294 DOI: 10.1373/clinchem.2015.249680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The acute-phase reactant C-reactive protein (CRP) increases rapidly during an infection. We tested the hypothesis that chronic low-level increases in CRP are associated with an increased risk of infectious disease. METHODS We studied 9660 individuals from a prospective general population cohort, including 3592 in whom infectious disease developed, and another 60 896 individuals from a cross-sectional general population study, of whom 13 332 developed infectious disease; 55% were women, and the mean age was 57 years. Hospital diagnoses of infections in 1977-2010 were based on International Classification of Diseases-coded discharge records from the national Danish Patient Registry. We measured CRP concentrations and conducted genotyping for 4 CRP polymorphisms that increase CRP. Individuals with CRP >10 mg/L were excluded because of possible ongoing infection at the time of testing. RESULTS Individuals with CRP >3 mg/L had 1.2 and 1.7 times increased risk of infectious disease, in the prospective general population cohort and the cross-sectional general population study, respectively, compared with individuals with CRP <1 mg/L. In the combined populations, individuals in the highest CRP tertile (compared with the lowest) had an increased risk of bacterial diseases (hazard ratio 1.7, 95% CI 1.6-1.8), but not viral, mycosis, and parasitic diseases. The increased risk was mainly carried by pneumonia, sepsis, and particularly gram-negative infections. None of the genotype combinations examined conferred an increased risk of infectious disease. CONCLUSIONS Chronic low-level CRP increases were associated with increased risk of bacterial infections, gram-negative infections in particular. Genotypes associated with increases in CRP were not associated with increased risk of infection.
Collapse
Affiliation(s)
- Jeppe Zacho
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark; The Copenhagen City Heart Study, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Simons JP, Loeffler JM, Al-Shawi R, Ellmerich S, Hutchinson WL, Tennent GA, Petrie A, Raynes JG, de Souza JB, Lawrence RA, Read KD, Pepys MB. C-reactive protein is essential for innate resistance to pneumococcal infection. Immunology 2014; 142:414-20. [PMID: 24673624 PMCID: PMC4080957 DOI: 10.1111/imm.12266] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/26/2023] Open
Abstract
No deficiency of human C-reactive protein (CRP), or even structural polymorphism of the protein, has yet been reported so its physiological role is not known. Here we show for the first time that CRP-deficient mice are remarkably susceptible to Streptococcus pneumoniae infection and are protected by reconstitution with isolated pure human CRP, or by anti-pneumococcal antibodies. Autologous mouse CRP is evidently essential for innate resistance to pneumococcal infection before antibodies are produced. Our findings are consistent with the significant association between clinical pneumococcal infection and non-coding human CRP gene polymorphisms which affect CRP expression. Deficiency or loss of function variation in CRP may therefore be lethal at the first early-life encounter with this ubiquitous virulent pathogen, explaining the invariant presence and structure of CRP in human adults.
Collapse
Affiliation(s)
- J Paul Simons
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Salnikova LE, Smelaya TV, Golubev AM, Rubanovich AV, Moroz VV. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications. Mol Biol Rep 2013; 40:6163-76. [PMID: 24068433 DOI: 10.1007/s11033-013-2727-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
Abstract
This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow, 117971, Russia,
| | | | | | | | | |
Collapse
|
8
|
Salnikova LE, Smelaya TV, Moroz VV, Golubev AM, Rubanovich AV. Functional polymorphisms in the CYP1A1, ACE, and IL-6 genes contribute to susceptibility to community-acquired and nosocomial pneumonia. Int J Infect Dis 2013; 17:e433-42. [PMID: 23411129 DOI: 10.1016/j.ijid.2013.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/20/2012] [Accepted: 01/06/2013] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES To establish the contribution of genetic host factors to the risk of community-acquired pneumonia (CAP) and nosocomial pneumonia (NP) in the population of the Russian Federation. METHODS A total of 796 subjects (CAP: 334 patients, 134 controls; NP: 216 critically ill patients with NP, 105 critically ill patients without NP) were included in two case-control studies. We analyzed 13 polymorphisms in 11 genes (IL-6, TNF-α, MBL2, CCR5, NOS3, CYP1A1 (three sites), GSTM1, GSTT1, ABCB1, ACE, and MTHFR) using a tetra-primer allele-specific PCR method. RESULTS Individual single nucleotide polymorphism (SNP) analysis revealed a strong association between CYP1A1 rs2606345 and CAP (p=3.9 × 10(-5), odds ratio (OR) 0.42, 95% confidence interval (CI) 0.27-0.63). Three genes (CYP1A1, ACE, and IL-6) were identified that account for part of the increase in vulnerability to both diseases, CAP and NP. The carriage of three predisposing genotypes versus protective genotypes increased the CAP risk (p=0.001, OR 7.01, 95% CI 1.99-24.70) and NP risk (p=0.028, OR 4.34, 95% CI 1.15-16.45). CONCLUSIONS Genetic predisposition to CAP and NP is attributed to the cumulative contribution of polymorphisms at the CYP1A1, IL-6, and ACE genes, independently of age, gender, causative pathogen, and the use of mechanical ventilation, in patients in the Russian Federation.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 117971, Russia.
| | | | | | | | | |
Collapse
|
9
|
Salnikova LE, Smelaya TV, Moroz VV, Golubev AM, Rubanovich AV. Host genetic risk factors for community-acquired pneumonia. Gene 2012; 518:449-56. [PMID: 23107763 DOI: 10.1016/j.gene.2012.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/04/2012] [Accepted: 10/21/2012] [Indexed: 11/27/2022]
Abstract
This study was conducted to establish the contribution of genetic host factors in the susceptibility to community acquired pneumonia (CAP) in the Russian population. Patients with CAP (n=334), volunteers without a previous history of CAP, constantly exposed to infectious agents, control A group (n=141) and a second control group B consisted of healthy persons (n=314) were included in the study. All subjects were genotyped for 13 polymorphic variants in the genes of xenobiotics detoxification CYP1A1 (rs2606345, rs4646903, and rs1048943), GSTM1 (Ins/del), GSTT1 (Ins/del), ABCB1 rs1045642); immune and inflammation response IL-6 (rs1800795), TNF-a (rs1800629), MBL2 (rs7096206), CCR5 (rs333), NOS3 (rs1799983), angiotensin-converting enzyme ACE (rs4340), and occlusive vascular disease/hyperhomocysteinemia MTHFR (rs1801133). Seven polymorphic variants in genes CYP1A1, GSTM1, ABCB1, NOS3, IL6, CCR5 and ACE were associated with CAP. For two genes CYP1A1 and GSTM1 associations remained significant after correction for multiple comparisons. Multiple analysis by the number of all risk genotypes showed a highly significant association with CAP (P=2.4×10(-7), OR=3.03, 95% CI 1.98-4.64) with the threshold for three risk genotypes. Using the ROC-analysis, the AUC value for multi-locus model was estimated as 68.38.
Collapse
Affiliation(s)
- Lyubov E Salnikova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, Moscow 117971, Russia.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Genetic variations, in part, determine individual susceptibility to sepsis and pneumonia. Advances in genetic sequence analysis as well as high throughput platform analysis of gene expression has allowed for a better understanding of immunopathogenesis during sepsis. Differences in genes can also modulate immune and inflammatory response during sepsis thereby translating to differences in clinical outcomes. An increasing number of candidate genes have been implicated to play a role in sepsis susceptibility, most of which are controversial with few exceptions. This does not refute the significance of genetic polymorphisms in sepsis, but rather highlights the difficulties and pitfalls related to genetic association studies. These difficulties include differences in study design such as heterogeneous patient cohorts and differences in pathogenic organisms, linkage disequilibrium, and lack of power for detailed haplotype analysis or examination of gene-gene interactions. There is extensive diversity in the pathways of inflammation and immune response during sepsis making it even harder to prove the functional and clinical significance of one single genetic polymorphism which could be easily masqueraded or compensated by other upstream or downstream events of the pathway involved. The majority of studies have analysed candidate genes in isolation from other possible polymorphisms. It is likely that susceptibility to sepsis is the result of polymorphisms from multiple genes rather than one single mutation. Future studies should aim for multi-centered collaborative approach looking at genome wide association or gene profiling to provide a more complete appraisal of the key genetic players in determining genetic susceptibility to sepsis. This review paper will summarise the prominent candidate gene polymorphisms with known functional changes or those with haplotype data. In addition, a summary of the expanding research in the field of epigenetics and post-sepsis immunosuppression will be discussed.
Collapse
Affiliation(s)
- Li Ping Chung
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia
| | | |
Collapse
|
11
|
LEUNG CHICHIU, FELLER-KOPMAN DAVID, NIEDERMAN MICHAELS, SPIRO STEPHENG. Year in review 2010: Tuberculosis, pleural diseases, respiratory infections. Respirology 2011; 16:564-73. [DOI: 10.1111/j.1440-1843.2011.01940.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|