1
|
Gill R, Rojas‐Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise? Exp Physiol 2023; 108:1080-1091. [PMID: 37341687 PMCID: PMC10988431 DOI: 10.1113/ep091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.
Collapse
Affiliation(s)
- Rebecka Gill
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Andrés Rojas‐Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université LavalDépartement de médecineQuébecCanada
| |
Collapse
|
2
|
Shaw NC, Kicic A, Fletcher S, Wilton SD, Stick SM, Schultz A. Primary Nasal Epithelial Cells as a Surrogate Cell Culture Model for Type-II Alveolar Cells to Study ABCA-3 Deficiency. Front Med (Lausanne) 2022; 9:827416. [PMID: 35265641 PMCID: PMC8899037 DOI: 10.3389/fmed.2022.827416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
ATP Binding Cassette Subfamily A Member 3 (ABCA-3) is a lipid transporter protein highly expressed in type-II alveolar (AT-II) cells. Mutations in ABCA3 can result in severe respiratory disease in infants and children. To study ABCA-3 deficiency in vitro, primary AT-II cells would be the cell culture of choice although sample accessibility is limited. Our aim was to investigate the suitability of primary nasal epithelial cells, as a surrogate culture model for AT-II cells, to study ABCA-3 deficiency. Expression of ABCA3, and surfactant protein genes, SFTPB and SFTPC, was detected in primary nasal epithelial cells but at a significantly lower level than in AT-II cells. ABCA-3, SP-B, and SP-C were detected by immunofluorescence microscopy in primary nasal epithelial cells. However, SP-B and SP-C were undetectable in primary nasal epithelial cells using western blotting. Structurally imperfect lamellar bodies were observed in primary nasal epithelial cells using transmission electron microscopy. Functional assessment of the ABCA-3 protein demonstrated that higher concentrations of doxorubicin reduced cell viability in ABCA-3 deficient nasal epithelial cells compared to controls in an assay-dependent manner. Our results indicate that there may be a role for primary nasal epithelial cell cultures to model ABCA-3 deficiency in vitro, although additional cell culture models that more effectively recapitulate the AT-II phenotype may be required.
Collapse
Affiliation(s)
- Nicole C Shaw
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Stephen D Wilton
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Stephen M Stick
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - André Schultz
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
3
|
Lee GKC, Beeler-Marfisi J, Viel L, Piché É, Kang H, Sears W, Bienzle D. Bronchial brush cytology, endobronchial biopsy, and SALSA immunohistochemistry in severe equine asthma. Vet Pathol 2021; 59:100-111. [PMID: 34903109 PMCID: PMC8679176 DOI: 10.1177/03009858211048635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Horses with severe equine asthma (SEA), also known as heaves and recurrent airway
obstruction, have persistent neutrophilic inflammation of the lower airways.
Cytologic evaluation of bronchoalveolar lavage (BAL) fluid is commonly used to
confirm the clinical diagnosis of SEA. However, the utility of microscopic
assessment of bronchial brushings, endobronchial biopsies, and
immunohistochemical detection of disease-associated biomarkers for the diagnosis
of SEA remain poorly characterized. Salivary scavenger and agglutinin (SALSA)
has anti-inflammatory properties and downregulated gene expression in SEA;
therefore, it was investigated as a tissue biomarker for airway and systemic
inflammation. Six asthmatic and 6 non-asthmatic horses were exposed to an
inhaled challenge. Before and after challenge, samples of BAL fluid, bronchial
brushing, and endobronchial biopsy were collected. Location of SALSA in biopsies
was determined, and immunohistochemical label intensity was computed using image
analysis software. Serum amyloid A (SAA) was measured to assess systemic
inflammation. After challenge, neutrophil proportions were significantly higher
in asthmatic versus non-asthmatic horses in BAL fluid (least squares means, 95%
confidence interval: 80.9%, 57.2% to 93.1%, vs 3.6%, 1.1% to 10.7%) and in brush
cytology slides (39.5%, 7.7% to 83.6%, vs 0.2%, 0% to 2.3%), illustrating the
potential of brush cytology as an alternate modality to BAL for assessing
intraluminal inflammation. Bronchial histopathologic findings and intensity of
SALSA immunolabeling in surface and glandular epithelium were similar in
asthmatic and non-asthmatic horses, indicating limited changes in bronchial
tissue from the inhaled challenge. Increases in SAA indicated systemic
inflammation, but SALSA immunolabeling did not change significantly.
Collapse
Affiliation(s)
| | | | | | - Érica Piché
- University of Guelph, Guelph, Ontario, Canada
| | - Heng Kang
- University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
4
|
Is There An Explanation for How An Irritant Causes A Nonallergic Asthmatic Disorder Such as Reactive Airways Dysfunction Syndrome (RADS)? J Occup Environ Med 2021; 62:e139-e141. [PMID: 31934909 DOI: 10.1097/jom.0000000000001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Goussard P, Pohunek P, Eber E, Midulla F, Di Mattia G, Merven M, Janson JT. Pediatric bronchoscopy: recent advances and clinical challenges. Expert Rev Respir Med 2021; 15:453-475. [PMID: 33512252 DOI: 10.1080/17476348.2021.1882854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: During the last 40 years equipment has been improved with smaller instruments and sufficient size working channels. This has ensured that bronchoscopy offers therapeutic and interventional options.Areas covered: We provide a review of recent advances and clinical challenges in pediatric bronchoscopy. This includes single-use bronchoscopes, endobronchial ultrasound, and cryoprobe. Bronchoscopy in persistent preschool wheezing and asthma is included. The indications for interventional bronchoscopy have amplified and included balloon dilatation, endoscopic intubation, the use of airway stents, whole lung lavage, closing of fistulas and air leak, as well as an update on removal of foreign bodies. Others include the use of laser and microdebrider in airway surgery. Experience with bronchoscope during the COVID-19 pandemic has been included in this review. PubMed was searched for articles on pediatric bronchoscopy, including rigid bronchoscopy as well as interventional bronchoscopy with a focus on reviewing literature in the past 5 years.Expert opinion: As the proficiency of pediatric interventional pulmonologists continues to grow more interventions are being performed. There is a scarcity of published evidence in this field. Courses for pediatric interventional bronchoscopy need to be developed. The COVID-19 experience resulted in safer bronchoscopy practice for all involved.
Collapse
Affiliation(s)
- P Goussard
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - P Pohunek
- Division of Pediatric Respiratory Diseases, Pediatric Department, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - E Eber
- Department of Paediatrics and Adolescent Medicine, Head, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - F Midulla
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - G Di Mattia
- Department of Maternal Infantile and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - M Merven
- Department Otorhinolaryngology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - J T Janson
- Department of Surgical Sciences, Division of Cardio-Thoracic Surgery, Stellenbosch University, and Tygerberg Hospital, Tygerberg, South Africa
| |
Collapse
|
6
|
Douglas TA, Pooley JA, Shields L, Stick SM, Branch-Smith C. Early disease surveillance in young children with cystic fibrosis: A qualitative analysis of parent experiences. J Cyst Fibros 2020; 20:511-515. [PMID: 33268308 DOI: 10.1016/j.jcf.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sensitive measures of early lung disease are being integrated into therapeutic trials and clinical practice in cystic fibrosis (CF). The impact of early disease surveillance (EDS) using these novel and often intensive techniques on young children and their families is not well researched. METHODS The Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) has operated a combined clinical and research early disease surveillance program, based around annual chest CT scan, bronchoscopy and lung function from newborn screening diagnosis until age 6 years, for over two-decades. To explore parental experiences of EDS in their child, a qualitative study was conducted using audio-recorded, semi-structured interviews in n=46 mothers and n=21 fathers of children (aged 3-months to six years) attending CF centres in Perth and Melbourne, Australia. Themes were developed iteratively using thematic analysis and assessed for validity and confirmability. RESULTS Parents' experiences were positive overall; affording a sense of control over CF, disease knowledge, and belief that EDS was in the best interests of their child. Challenges included poor understanding about EDS measures leading to anxiety and distress, self-blame surrounding adverse findings, and emotional burden of surveillance visits. Tailored information regarding the practical and psychosocial aspects of EDS were endorsed. CONCLUSION While experiences were generally positive there is need for information and psychosocial support for parents to mitigate anxiety and develop positive coping strategies surrounding surveillance procedures and results. Managing expectations regarding risks and benefits of disease surveillance in clinical and research settings are important aspects of care.
Collapse
Affiliation(s)
- Tonia A Douglas
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, Australia; Centre for Children's Health Research, School of Medicine, The University of Queensland, Australia.
| | - Julie Ann Pooley
- School of Arts and Humanities, Edith Cowan University, Western Australia Faculty of Medicine, The University of Queensland, Australia
| | - Linda Shields
- Faculty of Medicine, The University of Queensland, Australia; School of Nursing, Midwifery and Paramedicine, University of the Sunshine Coast, Queensland, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Australia
| | - Cindy Branch-Smith
- School of Arts and Humanities, Edith Cowan University, Western Australia Faculty of Medicine, The University of Queensland, Australia; Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Australia
| | | |
Collapse
|
7
|
Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E, Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Sci Rep 2017; 7:17971. [PMID: 29269735 PMCID: PMC5740081 DOI: 10.1038/s41598-017-17952-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
Collapse
Affiliation(s)
- Kelly M Martinovich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole C Shaw
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Samuel Montgomery
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francis J Lannigan
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia. .,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia. .,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia. .,Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia.
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Garratt LW, Sutanto EN, Ling KM, Looi K, Iosifidis T, Martinovich KM, Shaw NC, Buckley AG, Kicic-Starcevich E, Lannigan FJ, Knight DA, Stick SM, Kicic A. Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. Am J Respir Cell Mol Biol 2016. [PMID: 26221769 DOI: 10.1165/rcmb.2015-0074oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.
Collapse
Affiliation(s)
- Luke W Garratt
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute
| | - Erika N Sutanto
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | | | - Kevin Looi
- 1 School of Paediatrics and Child Health
| | - Thomas Iosifidis
- 1 School of Paediatrics and Child Health.,4 Centre for Cell Therapy and Regenerative Medicine, and
| | | | | | - Alysia G Buckley
- 2 Telethon Kids Institute.,5 Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- 2 Telethon Kids Institute.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Francis J Lannigan
- 1 School of Paediatrics and Child Health.,6 School of Medicine, Notre Dame University, Fremantle, Perth, Western Australia, Australia
| | - Darryl A Knight
- 7 School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,8 Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,9 Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Stick
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Anthony Kicic
- 1 School of Paediatrics and Child Health.,2 Telethon Kids Institute.,4 Centre for Cell Therapy and Regenerative Medicine, and.,3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,10 Department of Respiratory Medicine, Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia; and.,11 Murdoch Childrens Research Institute, Parkville, Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Garratt LW, Sutanto EN, Foo CJ, Ling KM, Looi K, Kicic-Starcevich E, Iosifidis T, Martinovich KM, Lannigan FJ, Stick SM, Kicic A. Determinants of culture success in an airway epithelium sampling program of young children with cystic fibrosis. Exp Lung Res 2014; 40:447-59. [PMID: 25191759 DOI: 10.3109/01902148.2014.946631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM OF THE STUDY The bronchial brushing technique presents an opportunity to establish a gold standard in vitro model of Cystic Fibrosis (CF) airway disease. However, unique obstacles exist when establishing CF airway epithelial cells (pAECCF). We aimed to identify determinants of culture success through retrospective analysis of a program of routinely brushing children with CF. MATERIALS AND METHODS Anaesthetised children (CF and non-CF) had airway samples taken which were immediately processed for cell culture. Airway data for the CF cohort was obtained from clinical records and the AREST CF database. RESULTS Of 260 brushings processed for culture, 114 (43.8%) pAECCF successfully cultured to passage one (P1) and 63 (24.2% of total) progressed to passage two (P2). However, >80% of non-CF specimens (pAECnon-CF) cultured to P2 from similar cell numbers. Within the CF cohort, specimens successfully cultured to P2 had a higher initial cell count and lower proportion of severe CF mutation phenotype than those that did not proliferate beyond initial seeding. Elevated airway IL-8 concentration was also negatively associated with culture establishment. Contamination by opportunistic pathogens was observed in 81 (31.2% of total) cultures and brushings from children with lower respiratory tract infections were more likely to co-culture contaminating flora. CONCLUSIONS Lower passage rates of pAECCF cultures uniquely contrasts with pAECnon-CF despite similar cell numbers. An equivalent establishment rate of CF nasal epithelium reported elsewhere, significant associations to CFTR mutation phenotype, elevated airway IL-8 and opportunistic pathogens all suggest this is likely related to the CF disease milieu.
Collapse
Affiliation(s)
- Luke W Garratt
- 1School of Paediatrics and Child Health, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Iwanaga K, Elliott MS, Vedal S, Debley JS. Urban particulate matter induces pro-remodeling factors by airway epithelial cells from healthy and asthmatic children. Inhal Toxicol 2014; 25:653-60. [PMID: 24102466 DOI: 10.3109/08958378.2013.827283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Chronic exposure to ambient particulate matter pollution during childhood is associated with decreased lung function growth and increased prevalence of reported respiratory symptoms. The role of airway epithelium-derived factors has not been well determined. OBJECTIVE To determine if urban particulate matter (UPM) stimulates production of vascular endothelial growth factor (VEGF) and transforming growth factor-β2 (TGF-β2), and gene expression of mucin 5AC (MUC5AC) and interleukin-(IL)-8 by primary airway epithelial cells (AECs) obtained from carefully phenotyped healthy and atopic asthmatic school-aged children. METHODS Primary AECs from 9 healthy and 14 asthmatic children were differentiated in air--liquid interface (ALI) culture. The apical surface was exposed to UPM suspension or phosphate buffered saline (PBS) vehicle control for 96 h. VEGF and TGF-β2 concentrations in cell media at baseline, 48 and 96 h were measured via ELISA. MUC5AC and IL-8 expression by AECs at 96 h was measured via quantitative polymerase chain reaction. RESULTS Baseline concentrations of VEGF, but not TGF-β2, were significantly higher in asthmatic versus healthy cultures. UPM stimulated production of VEGF, but not TGF-β2, at 48 and 96 h; the magnitude of change was comparable across groups. At 96 h there was greater MUC5AC and IL-8 expression by UPM exposed compared to PBS exposed AECs. CONCLUSIONS Induction of the pro-remodeling cytokine VEGF may be a potential mechanism by which UPM influences lung function growth in children irrespective of asthma status. Respiratory morbidity associated with UPM exposure in children may be related to increased expression of MUC5AC and IL-8.
Collapse
Affiliation(s)
- Kensho Iwanaga
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of California, San Francisco School of Medicine , San Francisco, CA , USA
| | | | | | | |
Collapse
|
11
|
Knight DA, Yang IA, Ko FWS, Lim TK. Year in review 2011: asthma, chronic obstructive pulmonary disease and airway biology. Respirology 2012; 17:563-72. [PMID: 22248232 DOI: 10.1111/j.1440-1843.2012.02126.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Darryl A Knight
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|