1
|
Quarta E, Chiappi M, Adamiano A, Tampieri A, Wang W, Tetley TD, Buttini F, Sonvico F, Catalucci D, Colombo P, Iafisco M, Degli Esposti L. Inhalable Microparticles Embedding Biocompatible Magnetic Iron-Doped Hydroxyapatite Nanoparticles. J Funct Biomater 2023; 14:189. [PMID: 37103279 PMCID: PMC10145219 DOI: 10.3390/jfb14040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications.
Collapse
Affiliation(s)
- Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Michele Chiappi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Weijie Wang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Teresa D. Tetley
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 0AZ, UK
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Catalucci
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), UOS Milan and IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Paolo Colombo
- PlumeStars srl, Parco Area Delle Scienze, 27/A, 43125 Parma, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramic Materials (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
3
|
Stocke NA, Meenach SA, Arnold SM, Mansour HM, Hilt JZ. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm 2014; 479:320-8. [PMID: 25542988 DOI: 10.1016/j.ijpharm.2014.12.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022]
Abstract
Targeted pulmonary delivery facilitates the direct application of bioactive materials to the lungs in a controlled manner and provides an exciting platform for targeting magnetic nanoparticles (MNPs) to the lungs. Iron oxide MNPs remotely heat in the presence of an alternating magnetic field (AMF) providing unique opportunities for therapeutic applications such as hyperthermia. In this study, spray drying was used to formulate magnetic nanocomposite microparticles (MnMs) consisting of iron oxide MNPs and d-mannitol. The physicochemical properties of these MnMs were evaluated and the in vitro aerosol dispersion performance of the dry powders was measured by the Next Generation Impactor(®). For all powders, the mass median aerosol diameter (MMAD) was <5μm and deposition patterns revealed that MnMs could deposit throughout the lungs. Heating studies with a custom AMF showed that MNPs retain excellent thermal properties after spray drying into composite dry powders, with specific absorption ratios (SAR)>200W/g, and in vitro studies on a human lung cell line indicated moderate cytotoxicity of these materials. These inhalable composites present a class of materials with many potential applications and pose a promising approach for thermal treatment of the lungs through targeted pulmonary administration of MNPs.
Collapse
Affiliation(s)
- Nathanael A Stocke
- College of Engineering, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Samantha A Meenach
- College of Engineering, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA; College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Susanne M Arnold
- College of Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Heidi M Mansour
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | - J Zach Hilt
- College of Engineering, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
4
|
Yang IA, Ko FWS, Lim TK, Hancox RJ. Year in review 2012: asthma and chronic obstructive pulmonary disease. Respirology 2013; 18:565-72. [PMID: 23316705 DOI: 10.1111/resp.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Ian A Yang
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia.
| | | | | | | |
Collapse
|
5
|
Amorim A, Gamboa F, Azevedo P. New advances in the therapy of non-cystic fibrosis bronchiectasis. REVISTA PORTUGUESA DE PNEUMOLOGIA 2013; 19:266-75. [PMID: 23850192 DOI: 10.1016/j.rppneu.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/21/2013] [Indexed: 12/15/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis remains a common and important respiratory disease to date. It is a chronic pathology and consequently the patients usually require continuous treatment. In recent decades therapies that do not have scientific evidence of their benefits have been commonly used in non-cystic fibrosis bronchiectasis. Cystic fibrosis has provided the experience to extrapolate therapeutic approaches to other bronchiectasis patients. Finally, in the last few years some trials have been carried out specifically in non-cystic fibrosis bronchiectasis which aim to assess the efficacy of some of the treatments which are commonly used but sometimes without clear indication. This review will discuss the recent results from these trials, namely mucoactive, anti-inflammatory and antibiotic therapy. Several trials are ongoing and we hope they will be able to add clarification to the management of these patients.
Collapse
Affiliation(s)
- A Amorim
- Pneumology Department, Centro Hospitalar São João, EPE, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
6
|
Bucior I, Abbott J, Song Y, Matthay MA, Engel JN. Sugar administration is an effective adjunctive therapy in the treatment of Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L352-63. [PMID: 23792737 DOI: 10.1152/ajplung.00387.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of acute and chronic pulmonary infections caused by opportunistic pathogen Pseudomonas aeruginosa is limited by the increasing frequency of multidrug bacterial resistance. Here, we describe a novel adjunctive therapy in which administration of a mix of simple sugars-mannose, fucose, and galactose-inhibits bacterial attachment, limits lung damage, and potentiates conventional antibiotic therapy. The sugar mixture inhibits adhesion of nonmucoid and mucoid P. aeruginosa strains to bronchial epithelial cells in vitro. In a murine model of acute pneumonia, treatment with the sugar mixture alone diminishes lung damage, bacterial dissemination to the subpleural alveoli, and neutrophil- and IL-8-driven inflammatory responses. Remarkably, the sugars act synergistically with anti-Pseudomonas antibiotics, including β-lactams and quinolones, to further reduce bacterial lung colonization and damage. To probe the mechanism, we examined the effects of sugars in the presence or absence of antibiotics during growth in liquid culture and in an ex vivo infection model utilizing freshly dissected mouse tracheas and lungs. We demonstrate that the sugar mixture induces rapid but reversible formation of bacterial clusters that exhibited enhanced susceptibility to antibiotics compared with individual bacteria. Our findings reveal that sugar inhalation, an inexpensive and safe therapeutic, could be used in combination with conventional antibiotic therapy to more effectively treat P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Iwona Bucior
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Kim C, Kim DG. Bronchiectasis. Tuberc Respir Dis (Seoul) 2012; 73:249-57. [PMID: 23236316 PMCID: PMC3517943 DOI: 10.4046/trd.2012.73.5.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 06/30/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023] Open
Abstract
The frequency of diagnosing bronchiectasis is increasing around the world. Cystic fibrosis is the most common inherited cause of bronchiectasis, but there is increasing recognition of significant numbers of patients with bronchiectasis from various causes. With increasing awareness of bronchiectasis, a significant number of research, concerning the causes and treatments, were published over the past few years. Investigation of the underlying cause of bronchiectasis is the most important key to effective management. The purpose of this report is to review the immunological abnormalities that cause bronchiectasis in those that the cystic fibrosis has been excluded, identify the available evidences of current management, and discuss several controversies in the treatment of this disorder.
Collapse
Affiliation(s)
- Changhwan Kim
- Department of Internal Medicine and Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | | |
Collapse
|