1
|
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Biomedicines 2022; 10:biomedicines10061357. [PMID: 35740379 PMCID: PMC9219850 DOI: 10.3390/biomedicines10061357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches.
Collapse
|
2
|
Abstract
Apoptosis has been found in bladder affected by various types of voiding dysfunction. In animal studies, higher levels of apoptosis were observed in conditions of both detrusor overactivity and underactivity than in normal bladders. However, it has been difficult to establish the exact underlying mechanism of apoptosis in these conditions and to find new therapeutic targets because the causes of voiding dysfunction are diverse and the coexistence of various types of voiding problems is common. Furthermore, the lack of studies of the human detrusor contributes to our incomplete understanding of these issues. Therefore, this revies discuss the role of apoptosis in detrusor contractility based on previous studies.
Collapse
|
3
|
Rac1 silencing, NSC23766 and EHT1864 reduce growth and actin organization of bladder smooth muscle cells. Life Sci 2020; 261:118468. [PMID: 32961232 DOI: 10.1016/j.lfs.2020.118468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
AIMS RacGTPase-mediated proliferation and smooth muscle contraction in the lower urinary tract has been recently suggested and may offer putative targets for treamtment of lower urinary tract symptoms. However, RacGTPase function for proliferation of detrusor smooth muscle cells is unknown and the specificity of Rac inhibitors has been questioned. Here, we examined effects of Rac1 knockdown and of the Rac inhibitors NSC23766 and EHT1864 in human bladder smooth muscle cells (hBSMCs). MAIN METHODS Rac1 expression was silenced by shRNA expression. Effects of silencing and Rac inhibitors were assessed by CCK-8 assay, EdU staining, RT-PCR, colony formation assay, flow cytometry, and phalloidin staining. KEY FINDINGS Silencing of Rac1 expression reduced the viability (up to 83% compared to scramble shRNA) and proliferation (virtually completely in proliferation assay), increased apoptosis (124%) and the number of dead cells (51%), and caused breakdown of actin organization (56% reduction of polymerized actin compared to scramble shRNA). Effects on proliferation, viability, and actin organization were mimicked by NSC23766 and EHT1864, while both compounds showed divergent effects on cell death (32-fold increase of dead cells by EHT1864, but not NSC23766). Effects of NSC23766 and EHT1864 on viability of hBSMCs were not altered by Rac1 knockdown. SIGNIFICANCE Rac1 promotes proliferation, viability, and cytoskeletal organization, and suppresses apoptosis in bladder smooth muscle cells, which may be relevant in overactive bladder or diabetes-related bladder dysfunction. NSC23766 and EHT1864 mimick these effects, but may act Rac1-independently, by shared and divergent effects.
Collapse
|
4
|
Liu S, Tao R, Wang M, Tian J, Genin GM, Lu TJ, Xu F. Regulation of Cell Behavior by Hydrostatic Pressure. APPLIED MECHANICS REVIEWS 2019; 71:0408031-4080313. [PMID: 31700195 PMCID: PMC6808007 DOI: 10.1115/1.4043947] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/18/2019] [Indexed: 06/10/2023]
Abstract
Hydrostatic pressure (HP) regulates diverse cell behaviors including differentiation, migration, apoptosis, and proliferation. Abnormal HP is associated with pathologies including glaucoma and hypertensive fibrotic remodeling. In this review, recent advances in quantifying and predicting how cells respond to HP across several tissue systems are presented, including tissues of the brain, eye, vasculature and bladder, as well as articular cartilage. Finally, some promising directions on the study of cell behaviors regulated by HP are proposed.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ru Tao
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ming Wang
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Jin Tian
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information
Engineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Mechanical Engineering &
Materials Science,
National Science Foundation Science and
Technology Center for Engineering Mechanobiology,
Washington University,
St. Louis, MO 63130
| | - Tian Jian Lu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- Department of Structural Engineering & Mechanics,
Nanjing Center for Multifunctional LightweightMaterials and Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 21006, China;
State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail:
| |
Collapse
|
5
|
Pingyu Z, Binglei J, Qilong J, Tao W, Wei T. Cyclic Stretch Promotes Proliferation and Contraction of Human Bladder Smooth Muscle Cells by Cajal-Mediated c-kit Expression in Interstitial Cells. Med Sci Monit 2019; 25:4784-4792. [PMID: 31249285 PMCID: PMC6612242 DOI: 10.12659/msm.917549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background The present study was performed to assess the effect of mechanical stretch on the proliferation and contractile function of hBSMCs. Material/Methods hBSMCs and ICCs were seeded at 8×104 cells/well in 6-well silicone elastomer-bottomed culture plates coated with type I collagen, and grown to 80% confluence in DMEM/10% FBS and a 5% CO2 humidified atmosphere at 37°C. Cells of hBSMCs and hBSMCs/ICCs of co-culture were then subjected to continuous cycles of stretch-relaxation using a computer-driven, stretch-inducing device. The treated concentration of imatinib was 10 μM. Mechanisms underlying observed hBSMCs contraction were examined using Western blotting and RT-PCR. The 0.1 μM carbachol was separately added to the experimental groups, and 300 s was recorded by laser scanning confocal microscope. Results We found that mechanical stretch increased contraction and proliferation of hBSMCs. Calcium ion activity increased significantly after mechanical stretch. The number of hBSMCs was significantly increased after the combination mechanical stretch with ICCs treatment. After combination mechanical stretch with hBSMCs/ICCs treatment, the mRNA and protein level of M2, M3, and c-kit were significantly increased. After combination of mechanical stretch with no imatinib treatment, the proliferation of hBSMCs was higher than others, and the mRNA and protein level of M2 and M3 were significantly increased. Conclusions We revealed that ICCs could promote hBSMC proliferation and contraction, and cyclic stretch could promote acetylcholine receptor M2 and M3 caused by c-kit in the ICCs, which promoted the contraction of hBSMCs.
Collapse
Affiliation(s)
- Zhu Pingyu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland).,Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Jiang Binglei
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Jiang Qilong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wu Tao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tang Wei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
6
|
Lai J, Ai J, Luo D, Jin T, Liao B, Zhou L, Feng S, Jin X, Li H, Wang K. β-Adrenoceptor signaling regulates proliferation and contraction of human bladder smooth muscle cells under pathological hydrostatic pressure. J Cell Biochem 2019; 120:17872-17886. [PMID: 31161623 DOI: 10.1002/jcb.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Partial bladder outlet obstruction (PBOO) promotes bladder detrusor hyperplasia, increases bladder pressure, and decreases bladder compliance. To extensively explore its underlying mechanism, our study aimed to investigate the effect of pathological hydrostatic pressure on human bladder smooth muscle cell (hBSMC) proliferation and contraction through β-adrenoceptor (ADRB) signaling in vitro. METHODS hBSMCs were subjected to pathological hydrostatic pressure (100 cm H2 O) to investigate the effect of ADRBs on the proliferation and contraction of hBSMCs treated with its agonists and/or antagonists. RESULTS Firstly, exposure to 100 cm H2 O hydrostatic pressure significantly upregulated the expression of α-smooth muscle actin (α-SMA) in hBSMCs at 6 hours, and promoted cell proliferation at 24 hours. When subjected to hydrostatic pressure alone, hBSMCs treated with ADRB2 and ADRB3 agonists for 6 hours inhibited α-SMA expression compared with untreated cells. By contrast, hBSMCs treated with ADRB2 agonists for 24 hours suppressed cell proliferation compared with untreated cells. The two classical pathways of ADRB, protein kinase A (PKA), and exchange factor directly activated by cAMP (EPAC) inhibited the contraction of hBSMCs under hydrostatic pressure via regulating mothers against decapentaplegic homolog 2 (SMAD2) activity. The proliferation of hBSMCs was mainly regulated by the EPAC pathway through extracellular signal-regulated kinase 1/2 (ERK1/2) activity. CONCLUSION The contraction of hBSMCs under hydrostatic pressure was regulated by ADRB2 and ADRB3 via the PKA/EPAC-SMAD2 pathway, and the proliferation of hBSMCs was regulated by ADRB2 via the EPAC-ERK1/2 pathway. Compared with ADRB3, ADRB2 played a predominant role under pathological hydrostatic pressure. These findings markedly uncovered the underlying mechanism of ADRBs in PBOO and provided new insights into the efficient treatment of patients with PBOO.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Deyi Luo
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Gao X, Wei T, Liao B, Ai J, Zhou L, Gong L, Chen Y, He Q, Cheng L, Wang K. Physiological stretch induced proliferation of human urothelial cells via integrin α6-FAK signaling pathway. Neurourol Urodyn 2018; 37:2114-2120. [PMID: 29953644 DOI: 10.1002/nau.23572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023]
Abstract
AIMS To test a kind of stretch pattern which is the optimum stress parameter to promote human urothelial cells (HUCs) proliferation, and to investigate the roles of integrin subunits and their pathway in the HUCs proliferation induced by physiological stretch. METHODS HUCs were seeded on silicone membrane, and subjected to four kinds of stretch (0,5%,10%,15% elongation) for 24 h, as controlled by a BioDynamic® bioreactor. Cell proliferation, viability and cycle distribution were examined using Cell Counting Kit-8 and flow cytometry, respectively. The gene and protein expression of integrin subunits and focal adhesion kinase (FAK) in each group were assessed by Real-time PCR(RT-PCR) and western blot, respectively. Small interfering RNAs (siRNA) were applied to knockdown integrin α6 and FAK expression in HUCs, and FAK inhibitor was used to validate the role of α6 and FAK in cell proliferation under physiological stretch. RESULTS The proliferation of HUCs were highest in the 5% elongation group compared to static control, 10% and 15% elongation group. RT-PCR and western blot showed that 5% cyclic stretch significantly promoted the expression of integrin α6 and FAK. The stretch-induced cell proliferation and FAK expression was inhibited by siRNA of integrin α6. Further study with FAK inhibitor revealed that elongation promoted proliferation though integrin α6 and FAK signaling pathway. CONCLUSIONS Physiological stretch induced HUCs proliferation via integrin α6-FAK signaling pathway, and 5% elongation may be the optimal stress parameter to promote the cell proliferation.
Collapse
Affiliation(s)
- Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Tangqiang Wei
- Department of Urology, Nanchong Central Hospital, The Second School of Clinical Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lina Gong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yuntian Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liang Cheng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
8
|
Fusco F, Creta M, De Nunzio C, Iacovelli V, Mangiapia F, Li Marzi V, Finazzi Agrò E. Progressive bladder remodeling due to bladder outlet obstruction: a systematic review of morphological and molecular evidences in humans. BMC Urol 2018; 18:15. [PMID: 29519236 PMCID: PMC5844070 DOI: 10.1186/s12894-018-0329-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bladder outlet obstruction is a common urological condition. We aimed to summarize available evidences about bladder outlet obstruction-induced molecular and morphological alterations occurring in human bladder. METHODS We performed a literature search up to December 2017 including clinical and preclinical basic research studies on humans. The following search terms were combined: angiogenesis, apoptosis, bladder outlet obstruction, collagen, electron microscopy, extracellular matrix, fibrosis, hypoxia, histology, inflammation, innervation, ischemia, pressure, proliferation, remodeling, suburothelium, smooth muscle cells, stretch, urothelium. RESULTS We identified 36 relevant studies. A three-stages model of bladder wall remodeling can be hypothesized involving an initial hypertrophy phase, a subsequent compensation phase and a later decompensation. Histological and molecular alterations occur in the following compartments: urothelium, suburothelium, detrusor smooth muscle cells, detrusor extracellular matrix, nerves. Cyclic stretch, increased hydrostatic and cyclic hydrodynamic pressure and hypoxia are stimuli capable of modulating multiple signaling pathways involved in this remodeling process. CONCLUSIONS Bladder outlet obstruction leads to progressive bladder tissue remodeling in humans. Multiple signaling pathways are involved.
Collapse
Affiliation(s)
- Ferdinando Fusco
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Massimiliano Creta
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Cosimo De Nunzio
- Dipartimento di Urologia, Ospedale Sant’Andrea, Università Degli Studi di Roma “La Sapienza”, Rota, Italy
| | - Valerio Iacovelli
- Dipartimento di Medicina Sperimentale e Chirurgia, Università Degli Studi di Roma “Tor Vergata”, Roma, Italy
| | - Francesco Mangiapia
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università Degli Studi Di Napoli Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Vincenzo Li Marzi
- Dipartimento di Urologia, Ospedale Careggi, Università Degli Studi di Firenze, Firenze, Italy
| | - Enrico Finazzi Agrò
- Dipartimento di Medicina Sperimentale e Chirurgia, Università Degli Studi di Roma “Tor Vergata”, Roma, Italy
| |
Collapse
|
9
|
Chen S, Peng C, Wei X, Luo D, Lin Y, Yang T, Jin X, Gong L, Li H, Wang K. Simulated physiological stretch increases expression of extracellular matrix proteins in human bladder smooth muscle cells via integrin α4/αv-FAK-ERK1/2 signaling pathway. World J Urol 2016; 35:1247-1254. [DOI: 10.1007/s00345-016-1993-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
|
10
|
Sun Y, Luo D, Zhu Y, Wang K. MicroRNA 4323 induces human bladder smooth muscle cell proliferation under cyclic hydrodynamic pressure by activation of erk1/2 signaling pathway. Exp Biol Med (Maywood) 2016; 242:169-176. [PMID: 27651435 DOI: 10.1177/1535370216669837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We cultivated human bladder smooth muscle cells (HBSMCs) under pressures of 0 or 200 cm H2O pressure for 24 h, before using microarray technology to extract and analyze the different expressions of miRNAs and mRNAs in the two groups. We also predicted the target mRNA of the miDNA and performed functional forecasting. Changes in miRNA were identified by quantitative real-time polymerase chain reaction (qRT-PCR) after overexpressing miRNA by transfection. We used flow cytometry to examine HBSMC proliferation, and we used qRT-PCR and Western blot analyses to quantify the expression and activation of mRNAs and proteins. There were nine upregulated and four downregulated miRNAs involved in cell proliferation, including miR 4323, which was identified by qRT-PCR ( p = 0.027). In addition, miR 4323 was shown to inhibit LYN ( p = 0.031), decrease lyn kinase ( p = 0.037), and promotes the phosphorylation of extracellular regulated protein kinases 1 and 2 (Erk1/2) ( p = 0.004). Moreover, overexpression of miR 4323 activated the proliferation pathway regulated by Erk1/2. Then, miR 4323 was shown to stimulate the proliferation of HBSMCs, with the proliferation index improving from 30.84 ± 4.57 to 52.13 ± 3.41 ( p = 0.001). In summary, when the miRNA miR 4323 was overexpressed under cyclic hydrodynamic pressure, LYN is decreased and the Erk1/2 signaling pathway is activated; in addition, miR 4323 is involved in HBSMC proliferation when under hydrodynamic pressure.
Collapse
Affiliation(s)
- Yi Sun
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.,2 West China Medicine Center, Sichuan University, Chengdu 610041, Sichuan, China
| | - Deyi Luo
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchun Zhu
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kunjie Wang
- 1 Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
MiR 3180-5p promotes proliferation in human bladder smooth muscle cell by targeting PODN under hydrodynamic pressure. Sci Rep 2016; 6:33042. [PMID: 27608612 PMCID: PMC5017130 DOI: 10.1038/srep33042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/18/2016] [Indexed: 02/05/2023] Open
Abstract
Human bladder smooth muscle cells (HBSMCs) were subjected to pressure cycles of up to 200 cm H2O to a pressure of 0 cm H2O for 24 hours. The total RNA extracted from each group was subjected to microarray analysis. miR-3180-5p emerged as the most overexpressed of all the differentially expressed microRNAs, and this finding was validated by PCR. We then used CCK-8 to quantify cell proliferation after liposome-mediated transfection. Subsequently, we investigated the change in PODN and its downstream signaling proteins, including cyclin-dependent kinase 2 (cdk2) and p21. In addition, flow cytometry was performed to quantify cell-cycle distribution. The results show that miR-3180-5p, the microRNA that was most overexpressed in response to HP, reduced the expression of PODN and podocan (p = 0.004 and p = 0.041, respectively). Silencing of PODN via miR-3180-5p overexpression revealed a significant promotion of cell proliferation increased in the CCK-8 experiment, p = 0.00077). This cell proliferation was accompanied by an increase in cdk2 expression (p = 0.00193) and a decrease in p21 expression (p = 0.0095). The percentage of cells in (S + G2/M) improved after transfection (p = 0.002). It was apparent that HP upregulates miR-3180-5p, which inhibits the expression of PODN and promotes HBSMC proliferation via the cdk2 signaling pathway.
Collapse
|
12
|
Liang Z, Xin W, Qiang L, Xiang C, Bang-Hua L, Jin Y, De-Yi L, Hong L, Kun-Jie W. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells. Neurourol Urodyn 2016; 36:1261-1269. [PMID: 27576172 DOI: 10.1002/nau.23104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Zhou Liang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Wei Xin
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Liu Qiang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Cai Xiang
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Liao Bang-Hua
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Yang Jin
- Department of Urology; Affiliated Hospital/Clinical Medical College of Chengdu University; Chengdu P.R. China
| | - Luo De-Yi
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Li Hong
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| | - Wang Kun-Jie
- Department of Urology, West China Hospital; Sichuan University; Chengdu P.R. China
| |
Collapse
|
13
|
Wang Y, Kunit T, Ciotkowska A, Rutz B, Schreiber A, Strittmatter F, Waidelich R, Liu C, Stief CG, Gratzke C, Hennenberg M. Inhibition of prostate smooth muscle contraction and prostate stromal cell growth by the inhibitors of Rac, NSC23766 and EHT1864. Br J Pharmacol 2015; 172:2905-17. [PMID: 25631101 PMCID: PMC4439884 DOI: 10.1111/bph.13099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, or prostate growth. However, current therapeutic options are insufficient. Here, we investigated the role of Rac in the control of smooth muscle tone in human prostates and growth of prostate stromal cells. EXPERIMENTAL APPROACH Experiments were performed using human prostate tissues from radical prostatectomy and cultured stromal cells (WPMY-1). Expression of Rac was examined by Western blot and fluorescence staining. Effects of Rac inhibitors (NSC23766 and EHT1864) on contractility were assessed in the organ bath. The effects of Rac inhibitors were assessed by pull-down, cytotoxicity using a cell counting kit, cytoskeletal organization by phalloidin staining and cell growth using an 5-ethynyl-2'-deoxyuridine assay. KEY RESULTS Expression of Rac1-3 was observed in prostate samples from each patient. Immunoreactivity for Rac1-3 was observed in the stroma, where it colocalized with the smooth muscle marker, calponin. NSC23766 and EHT1864 significantly reduced contractions of prostate strips induced by noradrenaline, phenylephrine or electrical field stimulation. NSC23766 and EHT1864 inhibited Rac activity in WPMY-1 cells. Survival of WPMY-1 cells ranged between 64 and 81% after incubation with NSC23766 (50 or 100 μM) or EHT1864 (25 μM) for 24 h. NSC23766 and EHT1864 induced cytoskeletal disorganization in WPMY-1 cells. Both inhibitors impaired the growth of WPMY-1 cells. CONCLUSIONS AND IMPLICATIONS Rac may be a link connecting the control of prostate smooth muscle tone with proliferation of smooth muscle cells. Improvements in LUTS suggestive of BPH by Rac inhibitors appears possible.
Collapse
Affiliation(s)
- Y Wang
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - T Kunit
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
- University Hospital for Urology and AndrologySalzburg, Austria
| | - A Ciotkowska
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - B Rutz
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - A Schreiber
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - F Strittmatter
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - R Waidelich
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - C Liu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - C G Stief
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - C Gratzke
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| | - M Hennenberg
- Department of Urology, Ludwig Maximilian UniversityMunich, Germany
| |
Collapse
|
14
|
Bu S, Zhu Y, Peng C, Cai X, Cao C, Tan H, Cheng J, Zhang J, Liu J, Li H, Wang K. Simulated physiological stretch-induced proliferation of human bladder smooth muscle cells is regulated by MMPs. Arch Biochem Biophys 2014; 564:197-202. [DOI: 10.1016/j.abb.2014.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/01/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
|
15
|
Wei TQ, Luo DY, Chen L, Wu T, Wang KJ. Cyclic hydrodynamic pressure induced proliferation of bladder smooth muscle cells via integrin alpha5 and FAK. Physiol Res 2013; 63:127-34. [PMID: 24182341 DOI: 10.33549/physiolres.932506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
According to previous studies, integrins play an important role in the mechanotransduction. The aim of this study was to examine the role of integrin subunits and its down-stream signaling molecules in the cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle cells (HBSMCs) cultured in scaffolds. The HBSMCs cultured in scaffolds were subjected to four different levels of cyclic hydrodynamic pressure for 24 hours, which were controlled by a BOSE BioDynamic bioreactor. Flow cytometry was used to examine cell cycle distribution. Real-time RT-PCR and western blotting were used to examine the expression levels of integrin subunits and their downstream signaling molecules. Integrin alpha5 siRNA was applied to validate the role of integrin alpha5 in cell proliferation. Here, we showed that cyclic hydrodynamic pressure promoted proliferation of HBSMCs. The cyclic hydrodynamic pressure also increased expression of integrin alpha5 and phosphorylation of FAK, the key mediator of integrin alpha5 signaling, but not that of integrin alpha1, alpha3, alpha4, alphav, beta1 and beta3. Moreover, inhibition of integrin alpha5 decreased the level of p-FAK and abolished proliferation of HBSMCs stimulated by cyclic hydrodynamic pressure. Taken together, we demonstrate for the ?rst time that the integrin alpha5-FAK signaling pathway controls the proliferation of HBSMCs in response to cyclic hydrodynamic pressure.
Collapse
Affiliation(s)
- T-Q Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.C.
| | | | | | | | | |
Collapse
|
16
|
TIAN YE, YUE XUAN, LUO DEYI, WAZIR ROMEL, WANG JIANZHONG, WU TAO, CHEN LIN, LIAO ANGHUA, WANG KUNJIE. Increased proliferation of human bladder smooth muscle cells is mediated by physiological cyclic stretch via the PI3K-SGK1-Kv1.3 pathway. Mol Med Rep 2013; 8:294-8. [DOI: 10.3892/mmr.2013.1473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/07/2013] [Indexed: 11/06/2022] Open
|
17
|
Luo DY, Wazir R, Tian Y, Yue X, Wei TQ, Wang KJ. Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol 2013; 190:1421-9. [PMID: 23587631 DOI: 10.1016/j.juro.2013.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE The requirement of integrins for mechanotransduction has been recognized for some time. We investigated the role of integrin subunits and their pathway in the physiological stretch induced contractility and proliferation of human bladder smooth muscle cells. MATERIALS AND METHODS Human bladder smooth muscle cells were seeded on silicone membrane and subjected to stretch, simulating bladder cycles of various stretches and times, as controlled by customized software on a modified BioDynamic bioreactor. Cell proliferation, viability and cycle were determined by BrdU incorporation assay, the Cell Counting Kit-8 (Beyotime Institute of Biotechnology, Haimen, People's Republic of China) and flow cytometry, respectively. Cell contractility was determined using a collagen gel contraction assay. RESULTS Physiological stretch increased cell contractility, proliferation and viability. Knockdown of integrin αv but not α4 in the cells disrupted the enhanced contractility induced by stretch. Under physiological stretch conditions, the integrin αv level and phospho-FAK/FAK ratio correlated positively with cell stretch induced enhanced contractility. Further examination revealed that contractile marker expression was associated with integrin αv activation through the FAK pathway. At the same time integrin α4 but not integrin αv mediated stretch induced cell proliferation and viability. CONCLUSIONS These data revealed that different integrins have different roles in the contractility and proliferation of human bladder smooth muscle cells under physiological stretch. This suggests that different integrins may become specific therapeutic targets in patients with voiding dysfunction. They may also be used to design a specific microenvironment for optimal bladder tissue regeneration.
Collapse
Affiliation(s)
- De-Yi Luo
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|