1
|
Mitori H, Izawa T, Kuwamura M, Matsumoto M, Yamate J. Gene expression profile in retinal excitotoxicity induced by L-glutamate in neonatal rats. J Toxicol Pathol 2018; 31:301-306. [PMID: 30393434 PMCID: PMC6206281 DOI: 10.1293/tox.2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022] Open
Abstract
In neonatal rats, glutamate could induce retinal thinning depending on the development
stage, and the severity peaked at treatment on postnatal day (PND) 8. To elucidate the
molecular mechanism of retinal thinning induced by L-glutamate in neonatal rats, we
investigated the time-course gene expression profile in the developing retina in addition
to initial histopathological changes. Histopathologically, apoptotic cells in the inner
retina were observed at 6 hours after treatment on PNDs 4, 6 and 8, and inflammatory cell
infiltration was noted at 24 hours. Comprehensive gene expression analysis conducted on
PNDs 4 and 8 indicated that cell death/proliferation- and inflammation-related genes were
upregulated and that neuron development- and neurotransmitter-related genes were
downregulated. Furthermore, quantitative RT-PCR analysis of apoptosis- and
inflammation-related genes performed on PNDs 4, 6, 8, 10 and 12 showed that the
time-course changes of the gene expression ratios of Gadd45b and
Ccl3 seemed to be related to histopathological changes of the retina
induced by L-glutamate. These results revealed that the association of initial
histopathological changes with the gene expression profile in the retina induced by
L-glutamate and that Gadd45b and Ccl3 are considered to
participate in retinal thinning induced by L-glutamate in neonatal rats.
Collapse
Affiliation(s)
- Hikaru Mitori
- Drug Safety Research Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan.,Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| | - Masahiro Matsumoto
- Drug Safety Research Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita 1-58 Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|
2
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
3
|
Mitori H, Izawa T, Kuwamura M, Matsumoto M, Yamate J. Developing Stage-dependent Retinal Toxicity Induced by l-glutamate in Neonatal Rats. Toxicol Pathol 2016; 44:1137-1145. [PMID: 28245157 DOI: 10.1177/0192623316676424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neurotransmitter glutamate causes excitotoxicity in the human retina. In neonatal rats, the degree of glutamate-induced retinal damage depends on age at administration. To elucidate the sensitivity to glutamate on various developing stage of retina, we investigated glutamate-induced retinal damage and glutamate target cells on each postnatal day (PND). Newborn rats received a single subcutaneous administration of l-glutamate on PNDs 1 to 14. Retinal cell apoptosis characterized as pyknotic and terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick end labeling-positive nuclei was analyzed at 6 hr after treatment, and sequential morphological features of retina were evaluated on PND 21. The inner retina on PND 21 exhibited thinning in rats treated after PND 2. The thinning was most severe in rats treated on PND 8 and the number of apoptotic cells also peaked. No thinning was observed in rats treated on PND 14. In the inner nuclear layer, glutamate target cells were mainly amacrine cells; additionally, bipolar cells and horizontal cells were damaged on PND 8. These retinal changes were more severe in central retina than those in peripheral retina on PND 8. Our findings indicate the morphological consequences of glutamate-induced retinal excitotoxicity and glutamate target cells on each PND and reveal that glutamate-induced retinal damage depends on developing stage.
Collapse
Affiliation(s)
- Hikaru Mitori
- 1 Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Japan.,2 Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Takeshi Izawa
- 2 Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Mitsuru Kuwamura
- 2 Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| | | | - Jyoji Yamate
- 2 Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Japan
| |
Collapse
|
4
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
5
|
Lee K, Hong S, Seong GJ, Kim CY. Cigarette Smoke Extract Causes Injury in Primary Retinal Ganglion Cells via Apoptosis and Autophagy. Curr Eye Res 2016; 41:1367-1372. [PMID: 27044350 DOI: 10.3109/02713683.2015.1119856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/25/2015] [Accepted: 11/08/2015] [Indexed: 01/07/2023]
Abstract
AIMS To investigate whether tobacco smoke directly injures retinal ganglion cells (RGCs) and to evaluate the mechanisms of cell death. METHODS Primary rat RGCs were harvested from 3- or 4-day-old newborn rats and exposed to cigarette smoke extract (CSE). Cell viability was determined by adenosine 5'-triphosphate (ATP) assay. Apoptosis was evaluated by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) and real-time reverse transcription polymerase chain reaction (RT-PCR) for Bcl-2 family. Autophagy was also assessed by Western immunoblots for light chain (LC) 3B. RESULTS When the primary RGCs were exposed to CSE for 2 h, cell viability decreased in a dose-dependent manner, as measured by ATP assay. In the presence of 0.05% CSE, the RGC viability was 77.68% ± 7.60% compared to the control cells; in the presence of 1.0% CSE, viability was 47.48% ± 2.56% of the control cells. As determined by TUNEL, CSE increased the apoptotic RGCs in a dose-dependent manner. In the presence of 0.05% CSE, the apoptosis was 26.55% ± 1.97% of the control cells; in the presence of 2.5% CSE, it was 41.07% ± 3.75% of the control cells. When apoptosis was evaluated using real-time RT-PCR, exposure to 0.05% CSE resulted in significantly increased expression of Bad, Bax, Bcl-2, and Bcl-XL mRNA. When autophagy was assessed by Western immunoblots, exposure to 0.05% CSE significantly increased the expression of LC3B II. CONCLUSIONS Our data suggest that CSE directly injures primary RGCs, and both cell death mechanisms of apoptosis and autophagy seem to be related to this CSE-induced RGC damage.
Collapse
Affiliation(s)
- Kwanghyun Lee
- a Department of Ophthalmology, Severance Hospital , Institute of Vision Research, Yonsei University College of Medicine , Seoul , Korea
| | - Samin Hong
- a Department of Ophthalmology, Severance Hospital , Institute of Vision Research, Yonsei University College of Medicine , Seoul , Korea
| | - Gong Je Seong
- a Department of Ophthalmology, Severance Hospital , Institute of Vision Research, Yonsei University College of Medicine , Seoul , Korea
| | - Chan Yun Kim
- a Department of Ophthalmology, Severance Hospital , Institute of Vision Research, Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
6
|
Binley KE, Ng WS, Barde YA, Song B, Morgan JE. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur J Neurosci 2016; 44:2028-39. [PMID: 27285957 PMCID: PMC4988502 DOI: 10.1111/ejn.13295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
Abstract
We used cultured adult mouse retinae as a model system to follow and quantify the retraction of dendrites using diolistic labelling of retinal ganglion cells (RGCs) following explantation. Cell death was monitored in parallel by nuclear staining as ‘labelling’ with RGC and apoptotic markers was inconsistent and exceedingly difficult to quantify reliably. Nuclear staining allowed us to delineate a lengthy time window during which dendrite retraction can be monitored in the absence of RGC death. The addition of brain‐derived neurotrophic factor (BDNF) produced a marked reduction in dendritic degeneration, even when application was delayed for 3 days after retinal explantation. These results suggest that the delayed addition of trophic factors may be functionally beneficial before the loss of cell bodies in the course of conditions such as glaucoma.
Collapse
Affiliation(s)
- Kate E Binley
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Wai S Ng
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Yves-Alain Barde
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff, UK
| | - Bing Song
- School of Dentistry, Cardiff University, Heath Park, Cardiff, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
7
|
Wyse Jackson AC, Cotter TG. The synthetic progesterone Norgestrel is neuroprotective in stressed photoreceptor-like cells and retinal explants, mediating its effects via basic fibroblast growth factor, protein kinase A and glycogen synthase kinase 3β signalling. Eur J Neurosci 2016; 43:899-911. [PMID: 26750157 DOI: 10.1111/ejn.13166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 01/19/2023]
Abstract
The synthetic progesterone Norgestrel has been shown to have proven neuroprotective efficacy in two distinct models of retinitis pigmentosa: the rd10/rd10 (B6.CXBI-Pde6b(rd10)/J) mouse model and the Balb/c light-damage model. However, the cellular mechanism underlying this neuroprotection is still largely unknown. Therefore, this study aimed to examine the downstream signalling pathways associated with Norgestrel both in vitro and ex vivo. In this work, we identify the potential of Norgestrel to rescue stressed 661W photoreceptor-like cells and ex vivo retinal explants from cell death over 24 h. Norgestel is thought to work through an upregulation of neuroprotective basic fibroblast growth factor (bFGF). Analysis of 661W cells in vitro by real-time polymerase chain reaction (rt-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blotting revealed an upregulation of bFGF in response to Norgestrel over 6 h. Specific siRNA knockdown of bFGF abrogated the protective properties of Norgestrel on damaged photoreceptors, thus highlighting the crucial importance of bFGF in Norgestrel-mediated protection. Furthermore, Norgestrel initiated a bFGF-dependent inactivation of glycogen synthase kinase 3β (GSK3β) through phosphorylation at serine 9. The effects of Norgestrel on GSK3β were dependent on protein kinase A (PKA) pathway activation. Specific inhibition of both the PKA and GSK3β pathways prevented Norgestrel-mediated neuroprotection of stressed photoreceptor cells in vitro. Involvement of the PKA pathway following Norgestrel treatment was also confirmed ex vivo. Therefore, these results indicate that the protective efficacy of Norgestrel is, at least in part, due to the bFGF-mediated activation of the PKA pathway, with subsequent inactivation of GSK3β.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| | - Thomas G Cotter
- Biochemistry Department, Cell Development and Disease Laboratory, Bioscience Research Institute, University College Cork, College Road, Cork City Centre, Cork, Ireland
| |
Collapse
|
8
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Asami Y, Nakahara T, Asano D, Kurauchi Y, Mori A, Sakamoto K, Ishii K. Age-dependent changes in the severity of capillary degeneration in rat retina following N-methyl-D-aspartate-induced neurotoxicity. Curr Eye Res 2014; 40:549-53. [PMID: 24979611 DOI: 10.3109/02713683.2014.933851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Previous studies have shown that injury to the retinal vasculature, including capillary degeneration, occurs following N-methyl-d-aspartate (NMDA)-induced neuronal cell loss, but it is unclear whether there are age-dependent differences in the severity of vascular damage. The purpose of the present study was to determine age-related changes in retinal capillary degeneration in NMDA-induced retinal damage rat model. MATERIALS AND METHODS A single intravitreal injection of NMDA (200 nmol/eye) was performed in 1-, 2-, 3-, 7- and 15-week-old male Sprague-Dawley rats. Seven days after NMDA injection, damage to retinal neurons and blood vessels were assessed by measuring the number of cells in the ganglion cell layer and the length of empty basement membrane sleeves, left behind by regressing endothelial cells, respectively. RESULTS At all ages examined, the NMDA-induced neurotoxicity exhibited similar levels of ganglion cell death. However, the degeneration of capillaries in NMDA-treated retina was severe during the early stages of retinal vascular development, and the degree of capillary degeneration decreased with age. CONCLUSION The degree of retinal capillary degeneration in NMDA-induced retinal damage rat model decreases in an age-dependent manner. Retinal capillaries may be resistant to retinal neuronal damage in young adults.
Collapse
Affiliation(s)
- Yasuyuki Asami
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences , Tokyo , Japan , and
| | | | | | | | | | | | | |
Collapse
|
10
|
Iwamoto K, Birkholz P, Schipper A, Mata D, Linn DM, Linn CL. A nicotinic acetylcholine receptor agonist prevents loss of retinal ganglion cells in a glaucoma model. Invest Ophthalmol Vis Sci 2014; 55:1078-87. [PMID: 24458148 DOI: 10.1167/iovs.13-12688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to analyze the neuroprotective effect of an α7 nAChR agonist, PNU-282987, using an in vivo model of glaucoma in Long Evans rats. METHODS One eye in each animal was surgically manipulated to induce glaucoma in control untreated animals and in animals that were treated with intravitreal injections of PNU-282987. To induce glaucoma-like conditions, 0.05 mL of 2 M NaCl was injected into the episcleral veins of right eyes in each rat to create scar tissue and increase intraocular pressure. The left eye in each rat acted as an internal control. One month following NaCl injection, rats were euthanized, retinas were removed, flatmounted, fixed, and nuclei were stained with cresyl violet or RGCs were immunostained with an antibody against Thy 1.1 or against Brn3a. Stained nuclei in the RGC layer and labeled RGCs in NaCl-injected retinas were counted and compared with cell counts from untreated retinas in the same animal. RESULTS NaCl injections into the episcleral veins caused a significant loss of cells by an average of 27.35% (± 2.12 SEM) in the RGC layer within 1 month after NaCl injection, which corresponded to a significant loss of RGCs. This loss of RGCs was eliminated if 5 μL of 100 μM PNU-282987 was injected into the right eye an hour before NaCl injection. CONCLUSIONS The results from this study support the hypothesis that the α7 agonist, PNU-282987, has a neuroprotective effect in the rat retina. PNU-282987 may be a viable candidate for future therapeutic treatments of glaucoma.
Collapse
Affiliation(s)
- Kazuhiro Iwamoto
- Western Michigan University, Department of Biological Sciences, Kalamazoo, Michigan
| | | | | | | | | | | |
Collapse
|
11
|
Steinhart MR, Cone-Kimball E, Nguyen C, Nguyen TD, Pease ME, Chakravarti S, Oglesby EN, Quigley HA. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice. Exp Eye Res 2013; 119:54-60. [PMID: 24368172 DOI: 10.1016/j.exer.2013.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Abstract
The purpose of this research was to study the effects of age and genetic alterations in key connective tissue proteins on susceptibility to experimental glaucoma in mice. We used mice haploinsufficient in the elastin gene (EH) and mice without both alleles of the fibromodulin gene (FM KO) and their wild type (WT) littermates of B6 and CD1 strains, respectively. FM KO mice were tested at two ages: 2 months and 12 months. Intraocular pressure (IOP) was measured by Tonolab tonometer, axial lengths and widths measured by digital caliper post-enucleation, and chronic glaucoma damage was measured using a bead injection model and optic nerve axon counts. IOP in EH mice was not significantly different from WT, but FM KO were slightly lower than their controls (p = 0.04). Loss of retinal ganglion cell (RGC) axons was somewhat, but not significantly greater in young EH and younger or older FM KO strains than in age-matched controls (p = 0.48, 0.34, 0.20, respectively, multivariable regression adjusting for IOP exposure). Older CD1 mice lost significantly more RGC axons than younger CD1 (p = 0.01, multivariable regression). The CD1 mouse strain showed age-dependence of experimental glaucoma damage to RGC in the opposite, and more expected, direction than in B6 mice in which older mice are more resistant to damage. Genetic alteration in two genes that are constituents of sclera, fibromodulin and elastin do not significantly affect RGC loss.
Collapse
Affiliation(s)
- Matthew R Steinhart
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Elizabeth Cone-Kimball
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Cathy Nguyen
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Thao D Nguyen
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Mary E Pease
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Shukti Chakravarti
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Ericka N Oglesby
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States
| | - Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States.
| |
Collapse
|
12
|
Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:481-94. [DOI: 10.1007/s00210-012-0735-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|