1
|
Wali G, Siow SF, Liyanage E, Kumar KR, Mackay-Sim A, Sue CM. Reduced acetylated α-tubulin in SPAST hereditary spastic paraplegia patient PBMCs. Front Neurosci 2023; 17:1073516. [PMID: 37144097 PMCID: PMC10152469 DOI: 10.3389/fnins.2023.1073516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
HSP-SPAST is the most common form of hereditary spastic paraplegia (HSP), a neurodegenerative disease causing lower limb spasticity. Previous studies using HSP-SPAST patient-derived induced pluripotent stem cell cortical neurons have shown that patient neurons have reduced levels of acetylated α-tubulin, a form of stabilized microtubules, leading to a chain of downstream effects eventuating in increased vulnerability to axonal degeneration. Noscapine treatment rescued these downstream effects by restoring the levels of acetylated α-tubulin in patient neurons. Here we show that HSP-SPAST patient non-neuronal cells, peripheral blood mononuclear cells (PBMCs), also have the disease-associated effect of reduced levels of acetylated α-tubulin. Evaluation of multiple PBMC subtypes showed that patient T cell lymphocytes had reduced levels of acetylated α-tubulin. T cells make up to 80% of all PBMCs and likely contributed to the effect of reduced acetylated α-tubulin levels seen in overall PBMCs. We further showed that mouse administered orally with increasing concentrations of noscapine exhibited a dose-dependent increase of noscapine levels and acetylated α-tubulin in the brain. A similar effect of noscapine treatment is anticipated in HSP-SPAST patients. To measure acetylated α-tubulin levels, we used a homogeneous time resolved fluorescence technology-based assay. This assay was sensitive to noscapine-induced changes in acetylated α-tubulin levels in multiple sample types. The assay is high throughput and uses nano-molar protein concentrations, making it an ideal assay for evaluation of noscapine-induced changes in acetylated α-tubulin levels. This study shows that HSP-SPAST patient PBMCs exhibit disease-associated effects. This finding can help expedite the drug discovery and testing process.
Collapse
|
2
|
Wali G, Kumar KR, Liyanage E, Davis RL, Mackay-Sim A, Sue CM. Mitochondrial Function in Hereditary Spastic Paraplegia: Deficits in SPG7 but Not SPAST Patient-Derived Stem Cells. Front Neurosci 2020; 14:820. [PMID: 32973427 PMCID: PMC7469654 DOI: 10.3389/fnins.2020.00820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in SPG7 and SPAST are common causes of hereditary spastic paraplegia (HSP). While some SPG7 mutations cause paraplegin deficiency, other SPG7 mutations cause increased paraplegin expression. Mitochondrial function has been studied in models that are paraplegin-deficient (human, mouse, and Drosophila models with large exonic deletions, null mutations, or knockout models) but not in models of mutations that express paraplegin. Here, we evaluated mitochondrial function in olfactory neurosphere-derived cells, derived from patients with a variety of SPG7 mutations that express paraplegin and compared them to cells derived from healthy controls and HSP patients with SPAST mutations, as a disease control. We quantified paraplegin expression and an extensive range of mitochondrial morphology measures (fragmentation, interconnectivity, and mass), mitochondrial function measures (membrane potential, oxidative phosphorylation, and oxidative stress), and cell proliferation. Compared to control cells, SPG7 patient cells had increased paraplegin expression, fragmented mitochondria with low interconnectivity, reduced mitochondrial mass, decreased mitochondrial membrane potential, reduced oxidative phosphorylation, reduced ATP content, increased mitochondrial oxidative stress, and reduced cellular proliferation. Mitochondrial dysfunction was specific to SPG7 patient cells and not present in SPAST patient cells, which displayed mitochondrial functions similar to control cells. The mitochondrial dysfunction observed here in SPG7 patient cells that express paraplegin was similar to the dysfunction reported in cell models without paraplegin expression. The p.A510V mutation was common to all patients and was the likely species associated with increased expression, albeit seemingly non-functional. The lack of a mitochondrial phenotype in SPAST patient cells indicates genotype-specific mechanisms of disease in these HSP patients.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Molecular Medicine Laboratory, Department of Neurology, Concord Hospital, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Erandhi Liyanage
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alan Mackay-Sim
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
3
|
Wali G, Liyanage E, Blair NF, Sutharsan R, Park JS, Mackay-Sim A, Sue CM. Oxidative Stress-Induced Axon Fragmentation Is a Consequence of Reduced Axonal Transport in Hereditary Spastic Paraplegia SPAST Patient Neurons. Front Neurosci 2020; 14:401. [PMID: 32457567 PMCID: PMC7221066 DOI: 10.3389/fnins.2020.00401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited disorders characterized by progressive spasticity and paralysis of the lower limbs. Autosomal dominant mutations in SPAST gene account for ∼40% of adult-onset patients. We have previously shown that SPAST patient cells have reduced organelle transport and are therefore more sensitive to oxidative stress. To test whether these effects are present in neuronal cells, we first generated 11 induced pluripotent stem (iPS) cell lines from fibroblasts of three healthy controls and three HSP patients with different SPAST mutations. These cells were differentiated into FOXG1-positive forebrain neurons and then evaluated for multiple aspects of axonal transport and fragmentation. Patient neurons exhibited reduced levels of SPAST encoded spastin, as well as a range of axonal deficits, including reduced levels of stabilized microtubules, lower peroxisome transport speed as a consequence of reduced microtubule-dependent transport, reduced number of peroxisomes, and higher density of axon swellings. Patient axons fragmented significantly more than controls following hydrogen peroxide exposure, suggesting for the first time that the SPAST patient axons are more sensitive than controls to the deleterious effects of oxidative stress. Treatment of patient neurons with tubulin-binding drugs epothilone D and noscapine rescued axon peroxisome transport and protected them against axon fragmentation induced by oxidative stress, showing that SPAST patient axons are vulnerable to oxidative stress-induced degeneration as a consequence of reduced axonal transport.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Erandhi Liyanage
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas F Blair
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Ratneswary Sutharsan
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Alan Mackay-Sim
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2019; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
5
|
Kadnikova VA, Rudenskaya GE, Stepanova AA, Sermyagina IG, Ryzhkova OP. Mutational Spectrum of Spast (Spg4) and Atl1 (Spg3a) Genes In Russian Patients With Hereditary Spastic Paraplegia. Sci Rep 2019; 9:14412. [PMID: 31594988 PMCID: PMC6783457 DOI: 10.1038/s41598-019-50911-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neurodegenerative disorders, it share common symptom - of progressive lower spastic paraparesis. The most common autosomal dominant (AD) forms of HSP are SPG4 (SPAST gene) and SPG3 (ATL1 gene). In the current research we investigated for the first time the distribution of pathogenic mutations in SPAST and ATL1 genes within a large cohort of Russian HSP patients (122 probands; 69 famillial cases). We determined the frequencies of genetic abnormalities using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and Next Generation Sequencing (NGS) of targeted gene panels. As a result, SPG4 was diagnosed in 30.3% (37/122) of HSP cases, where the familial cases represented 37.7% (26/69) of SPG4. In total 31 pathogenic and likely pathogenic variants were detected in SPAST, with 14 new mutations. Among all detected SPAST variants, 29% were gross deletions and duplications. The proportion of SPG3 variants in Russian cohort was 8.2% (10/122) that were all familial cases. All 10 detected ATL1 mutations were missense substitutions, most of which were in the mutational hot spots of 4, 7, 8, 12 exons, with 2 novel mutations. This work will be helpful for the populational genetics of HSP understanding.
Collapse
Affiliation(s)
- V A Kadnikova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia.
| | - G E Rudenskaya
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - A A Stepanova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - I G Sermyagina
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - O P Ryzhkova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| |
Collapse
|
6
|
Kang C, Liang C, Ahmad KE, Gu Y, Siow SF, Colebatch JG, Whyte S, Ng K, Cremer PD, Corbett AJ, Davis RL, Roscioli T, Cowley MJ, Park JS, Sue CM, Kumar KR. High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia. THE CEREBELLUM 2019; 18:137-146. [PMID: 30078120 DOI: 10.1007/s12311-018-0969-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic testing strategies such as next-generation sequencing (NGS) panels and whole genome sequencing (WGS) can be applied to the hereditary cerebellar ataxias (HCAs), but their exact role in the diagnostic pathway is unclear. We aim to determine the yield from genetic testing strategies and the genetic and phenotypic spectrum of HCA in Australia by analysing real-world data. We performed a retrospective review on 87 HCA cases referred to the Neurogenetics Clinic at the Royal North Shore Hospital, Sydney, Australia. Probands underwent triplet repeat expansion testing; those that tested negative had NGS-targeted panels and WGS testing when available. In our sample, 58.6% were male (51/87), with an average age at onset of 37.1 years. Individuals with sequencing variants had a prolonged duration of illness compared to those with a triplet repeat expansion. The detection rate in probands for routine repeat expansion panels was 13.8% (11/80). NGS-targeted panels yielded a further 11 individuals (11/32, 34.4%), with WGS yielding 1 more diagnosis (1/3, 33.3%). NGS panels and WGS improved the overall diagnostic rate to 28.8% (23/80) in 14 known HCA loci. The genetic findings included novel variants in ANO10, CACNA1A, PRKCG and SPG7. Our findings highlight the genetic heterogeneity of HCAs and support the use of NGS approaches for individuals who were negative on repeat expansion testing. In comparison to repeat disorders, individuals with sequencing variants may have a prolonged duration of illness, consistent with slower progression of disease.
Collapse
Affiliation(s)
- Ce Kang
- Faculty of Medicine and Health, Kolling Institute of Medical Research, University of Sydney Northern Clinical School, St Leonards, Australia
| | - Christina Liang
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Kate E Ahmad
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Yufan Gu
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Sue-Faye Siow
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - James G Colebatch
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Australia.,Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, Australia
| | - Scott Whyte
- Department of Neurology, Gosford Hospital, Gosford, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Philip D Cremer
- Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Alastair J Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, Australia
| | - Ryan L Davis
- Faculty of Medicine and Health, Kolling Institute of Medical Research, University of Sydney Northern Clinical School, St Leonards, Australia.,Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia
| | - Tony Roscioli
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Australia.,Department of Clinical Genetics, Sydney Children's Hospital, Randwick, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Experimental Animal Research, Seoul National University Hospital, Biomedical Research Institute, Seoul, Republic of Korea
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia. .,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia. .,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.
| |
Collapse
|
7
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Wali G, Sue CM, Mackay-Sim A. Patient-Derived Stem Cell Models in SPAST HSP: Disease Modelling and Drug Discovery. Brain Sci 2018; 8:E142. [PMID: 30065201 PMCID: PMC6120041 DOI: 10.3390/brainsci8080142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hereditary spastic paraplegia is an inherited, progressive paralysis of the lower limbs first described by Adolph Strümpell in 1883 with a further detailed description of the disease by Maurice Lorrain in 1888. Today, more than 100 years after the first case of HSP was described, we still do not know how mutations in HSP genes lead to degeneration of the corticospinal motor neurons. This review describes how patient-derived stem cells contribute to understanding the disease mechanism at the cellular level and use this for discovery of potential new therapeutics, focusing on SPAST mutations, the most common cause of HSP.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia.
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
9
|
Akhmetgaleyeva AF, Khidiyatova IM, Saifullina EV, Idrisova RF, Magzhanov RV, Khusnutdinova EK. Two novel mutations in gene SPG4 in patients with autosomal dominant spastic paraplegia. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416060028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Sci Rep 2016; 6:27004. [PMID: 27229699 PMCID: PMC4882512 DOI: 10.1038/srep27004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is an inherited neurological condition that leads to progressive spasticity and gait abnormalities. Adult-onset HSP is most commonly caused by mutations in SPAST, which encodes spastin a microtubule severing protein. In olfactory stem cell lines derived from patients carrying different SPAST mutations, we investigated microtubule-dependent peroxisome movement with time-lapse imaging and automated image analysis. The average speed of peroxisomes in patient-cells was slower, with fewer fast moving peroxisomes than in cells from healthy controls. This was not because of impairment of peroxisome-microtubule interactions because the time-dependent saltatory dynamics of movement of individual peroxisomes was unaffected in patient-cells. Our observations indicate that average peroxisome speeds are less in patient-cells because of the lower probability of individual peroxisome interactions with the reduced numbers of stable microtubules: peroxisome speeds in patient cells are restored by epothilone D, a tubulin-binding drug that increases the number of stable microtubules to control levels. Patient-cells were under increased oxidative stress and were more sensitive than control-cells to hydrogen peroxide, which is primarily metabolised by peroxisomal catalase. Epothilone D also ameliorated patient-cell sensitivity to hydrogen-peroxide. Our findings suggest a mechanism for neurodegeneration whereby SPAST mutations indirectly lead to impaired peroxisome transport and oxidative stress.
Collapse
|
11
|
Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - An analysis of 58 probands. J Neurol Sci 2016; 364:116-21. [PMID: 27084228 DOI: 10.1016/j.jns.2016.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases with progressive lower limb spasticity and weakness. The aim of this study is to determine the frequency of different SPG mutations in Hungarian patients, and to provide further genotype-phenotype correlations for the known HSP causing genes. METHODS We carried out genetic testing for 58 probands with clinical characteristics of HSP. For historical reasons, three different approaches were followed in different patients: 1) Sanger sequencing of ATL1 and SPAST genes, 2) whole exome, and 3) targeted panel sequencing by next generation sequencing. RESULTS Genetic diagnosis was established for 20 probands (34.5%). We detected nine previously unreported mutations with high confidence for pathogenicity. The most frequently affected gene was SPAST with pathogenic or likely pathogenic mutations in 10 probands. The most frequently detected variant in our cohort was the SPG7 p.Leu78*, observed in four probands. Altogether five probands were diagnosed with SPG7. Additional mutations were detected in SPG11, ATL1, NIPA1, and ABCD1. CONCLUSION This is the first comprehensive genetic epidemiological study of patients with HSP in Hungary. Next generation sequencing improved the yield of genetic diagnostics in this disease group even when the phenotype was atypical. However, considering the frequency of the HSP-causing gene defects, SPG4, the most common form of the disease, should be tested first to be cost effective in this economic region.
Collapse
|
12
|
Elert-Dobkowska E, Stepniak I, Krysa W, Rajkiewicz M, Rakowicz M, Sobanska A, Rudzinska M, Wasielewska A, Pilch J, Kubalska J, Lipczynska-Lojkowska W, Kulczycki J, Kurdziel K, Sikorska A, Beetz C, Zaremba J, Sulek A. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci 2015; 359:35-9. [PMID: 26671083 DOI: 10.1016/j.jns.2015.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022]
Abstract
Hereditary spastic paraplegias (HSPs) consist of a heterogeneous group of genetically determined neurodegenerative disorders. Progressive lower extremity weakness and spasticity are the prominent features of HSPs resulting from retrograde axonal degeneration of the corticospinal tracts. Three genetic types, SPG3 (ATL1), SPG4 (SPAST) and SPG31 (REEP1), appear predominantly and may account for up to 50% of autosomal dominant hereditary spastic paraplegias (AD-HSPs). Here, we present the results of genetic testing of the three mentioned SPG genetic types in a group of 216 unrelated Polish patients affected with spastic paraplegia. Molecular evaluation was performed by multiplex ligation-dependent probe amplification (MLPA) and DNA sequencing. Nineteen novel mutations: 13 in SPAST, 4 in ATL1 and 2 in REEP1, were identified among overall 50 different mutations detected in 57 families. Genetic analysis resulted in the identification of molecular defects in 54% of familial and 8.4% of isolated cases. Our research expanded the causative mutations spectrum of the three most common genetic forms of HSPs found in a large cohort of probands originating from the Central Europe.
Collapse
Affiliation(s)
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Rudzinska
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jacek Pilch
- Department of Pediatric Neurology, Medical University of Silesia, Katowice, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Jerzy Kulczycki
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna Kurdziel
- Department of Pediatric Neurology, St. Ludwig's Children Hospital, Krakow, Poland
| | - Agata Sikorska
- Department of Genetics and Animal Breeding, University of Life Sciences, Poznan, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland; Division Five of Medical Sciences, Polish Academy of Science, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
13
|
The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet 2014; 95:143-61. [PMID: 25065914 DOI: 10.1016/j.ajhg.2014.06.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional--and possibly phenotypic--consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.
Collapse
|
14
|
Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol 2013; 260:2516-22. [DOI: 10.1007/s00415-013-7008-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
|
15
|
Abrahamsen G, Fan Y, Matigian N, Wali G, Bellette B, Sutharsan R, Raju J, Wood SA, Veivers D, Sue CM, Mackay-Sim A. A patient-derived stem cell model of hereditary spastic paraplegia with SPAST mutations. Dis Model Mech 2012; 6:489-502. [PMID: 23264559 PMCID: PMC3597030 DOI: 10.1242/dmm.010884] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) leads to progressive gait disturbances with lower limb muscle weakness and spasticity. Mutations in SPAST are a major cause of adult-onset, autosomal-dominant HSP. Spastin, the protein encoded by SPAST, is a microtubule-severing protein that is enriched in the distal axon of corticospinal motor neurons, which degenerate in HSP patients. Animal and cell models have identified functions of spastin and mutated spastin but these models lack the gene dosage, mutation variability and genetic background that characterize patients with the disease. In this study, this genetic variability is encompassed by comparing neural progenitor cells derived from biopsies of the olfactory mucosa from healthy controls with similar cells from HSP patients with SPAST mutations, in order to identify cell functions altered in HSP. Patient-derived cells were similar to control-derived cells in proliferation and multiple metabolic functions but had major dysregulation of gene expression, with 57% of all mRNA transcripts affected, including many associated with microtubule dynamics. Compared to control cells, patient-derived cells had 50% spastin, 50% acetylated α-tubulin and 150% stathmin, a microtubule-destabilizing enzyme. Patient-derived cells were smaller than control cells. They had altered intracellular distributions of peroxisomes and mitochondria and they had slower moving peroxisomes. These results suggest that patient-derived cells might compensate for reduced spastin, but their increased stathmin expression reduced stabilized microtubules and altered organelle trafficking. Sub-nanomolar concentrations of the microtubule-binding drugs, paclitaxel and vinblastine, increased acetylated α-tubulin levels in patient cells to control levels, indicating the utility of this cell model for screening other candidate compounds for drug therapies.
Collapse
Affiliation(s)
- Greger Abrahamsen
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland 4111, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|