1
|
Akagi R, Nanba F, Saito S, Maruo T, Toda T, Yamashita Y, Ashida H, Suzuki T. Black Soybean Seed Coat Extract Improves Endothelial Function and Upregulates Oxidative Stress Marker Expression in Healthy Volunteers by Stimulating Nitric Oxide Production in Endothelial Cells. J Med Food 2024; 27:134-144. [PMID: 38294791 DOI: 10.1089/jmf.2023.k.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Black soybean seed coat extract (BE) contains multiple bioactive polyphenols, including flavan-3-ols and anthocyanins. BE improves endothelial function; however, it is unclear whether BE protects endothelial cells from senescence. In this study, we examined the effects of BE on endothelial cell senescence and vascular function in healthy individuals. High concentrations of glucose were used to induce senescence in bovine aortic endothelial cells incubated with BE. Senescence, vascular function, and oxidative stress markers were measured. Incubation with BE remarkably inhibited senescence-associated β-galactosidase and lactate dehydrogenase activities and dose dependently reduced intracellular reactive oxygen species levels in bovine aortic endothelial cells. BE treatment increased the levels of endothelial nitric oxide synthase (eNOS) mRNA and endothelial nitric oxide (NO) metabolites and increased the mRNA expression of klotho, a gene associated with an antiaging phenotype. To examine the effects of BE in humans, we conducted a clinical study using the second derivative of the fingertip photoplethysmogram to investigate vascular function and aging in 24 healthy volunteers. The participants consumed BE supplements (100 mg/day) or a placebo for 2 weeks. When compared with the placebo group, the BE group showed considerably improved vascular function, NO metabolite levels, and oxidative stress. These results suggest that BE supplementation improves endothelial function, possibly through antioxidant activity and NO production, and may consequently reduce the cardiovascular risk associated with aging. BE supplementation may be an effective and safe approach to reduce the risk of atherosclerosis and cardiovascular disease; however, additional studies investigating chronic vascular inflammation are needed.
Collapse
Affiliation(s)
- Ryota Akagi
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
| | - Fumio Nanba
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
| | - Shizuka Saito
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
| | - Toshinari Maruo
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
| | - Toshiya Toda
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Toshio Suzuki
- Research and Development Department, Fujicco Co. Ltd., Kobe, Japan
| |
Collapse
|
2
|
Tanriover C, Copur S, Mutlu A, Peltek IB, Galassi A, Ciceri P, Cozzolino M, Kanbay M. Early aging and premature vascular aging in chronic kidney disease. Clin Kidney J 2023; 16:1751-1765. [PMID: 37915901 PMCID: PMC10616490 DOI: 10.1093/ckj/sfad076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Aging is the progressive decline of body functions and a number of chronic conditions can lead to premature aging characterized by frailty, a diseased vasculature, osteoporosis, and muscle wasting. One of the major conditions associated with premature and accelerated aging is chronic kidney disease (CKD), which can also result in early vascular aging and the stiffening of the arteries. Premature vascular aging in CKD patients has been considered as a marker of prognosis of mortality and cardiovascular morbidity and therefore requires further attention. Oxidative stress, inflammation, advanced glycation end products, fructose, and an aberrant gut microbiota can contribute to the development of early aging in CKD patients. There are several key molecular pathways and molecules which play a role in aging and vascular aging including nuclear factor erythroid 2-related factor 2 (Nrf-2), AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and klotho. Potential therapeutic strategies can target these pathways. Future studies are needed to better understand the importance of premature aging and early vascular aging and to develop therapeutic alternatives for these conditions.
Collapse
Affiliation(s)
- Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Donate-Correa J, Martín-Núñez E, Martin-Olivera A, Mora-Fernández C, Tagua VG, Ferri CM, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, Pérez-Delgado N, González-Luis A, Navarro-González JF. Klotho inversely relates with carotid intima- media thickness in atherosclerotic patients with normal renal function (eGFR ≥60 mL/min/1.73m 2): a proof-of-concept study. Front Endocrinol (Lausanne) 2023; 14:1146012. [PMID: 37274332 PMCID: PMC10235765 DOI: 10.3389/fendo.2023.1146012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Klotho protein is predominantly expressed in the kidneys and has also been detected in vascular tissue and peripheral blood circulating cells to a lesser extent. Carotid artery intima-media thickness (CIMT) burden, a marker of subclinical atherosclerosis, has been associated with reductions in circulating Klotho levels in chronic kidney disease patients, who show reduced levels of this protein at all stages of the disease. However, the contribution of serum Klotho and its expression levels in peripheral blood circulating cells and in the carotid artery wall on the CIMT in the absence of kidney impairment has not yet been evaluated. METHODS We conducted a single-center study in 35 atherosclerotic patients with preserved kidney function (eGFR≥60 mL/min/1.73m2) subjected to elective carotid surgery. Serum levels of Klotho and cytokines TNFa, IL6 and IL10 were determined by ELISA and transcripts encoding for Klotho (KL), TNF, IL6 and IL10 from vascular segments were measured by qRT-PCR. Klotho protein expression in the intima-media and adventitia areas was analyzed using immunohistochemistry. RESULTS APatients with higher values of CIMT showed reduced Klotho levels in serum (430.8 [357.7-592.9] vs. 667.8 [632.5-712.9] pg/mL; p<0.001), mRNA expression in blood circulating cells and carotid artery wall (2.92 [2.06-4.8] vs. 3.69 [2.42-7.13] log.a.u., p=0.015; 0.41 [0.16-0.59] vs. 0.79 [0.37-1.4] log.a.u., p=0.013, respectively) and immunoreactivity in the intimal-medial area of the carotids (4.23 [4.15-4.27] vs. 4.49 [4.28-4.63] log µm2 p=0.008). CIMT was inversely related with Klotho levels in serum (r= -0.717, p<0.001), blood mRNA expression (r=-0.426, p=0.011), and with carotid artery mRNA and immunoreactivity levels (r= -0.45, p=0.07; r= -0.455, p= 0.006, respectively). Multivariate analysis showed that serum Klotho, together with the gene expression levels of tumor necrosis factor TNFa in blood circulating cells, were independent determinants of CIMT values (adjusted R2 = 0.593, p<0.001). DISCUSSION The results of this study in subjects with eGFR≥60mL/min/1.73m2 show that patients with carotid artery atherosclerosis and higher values of CIMT present reduced soluble Klotho levels, as well as decreased KL mRNA expression in peripheral blood circulating cells and Klotho protein levels in the intima-media of the carotid artery wall.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Alberto Martin-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Área de Medicina Preventiva y Salud Pública, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | | | | | | | | | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- RICORS2040 (Red de Investigación Renal-RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Nefrología, HUNSC, Santa Cruz de Tenerife, Spain
| |
Collapse
|
4
|
Pathare G, Raju S, Mashru M, Shah V, Shalia K. Gene expression of klotho & antioxidative enzymes in peripheral blood mononuclear cells of essential hypertension patients in Indian population. Indian J Med Res 2021; 152:607-613. [PMID: 34145100 PMCID: PMC8224152 DOI: 10.4103/ijmr.ijmr_2112_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background & objectives: Oxidative stress is known to have a causal role in hypertension. Klotho has emerged as a novel anti-aging molecule to inhibit oxidative stress at cellular level. This study aimed at evaluating the gene expression of klotho and antioxidative enzymes, manganese superoxide dismutase (Mn-SOD) and catalase, in peripheral blood mononuclear cells of essential hypertensive patients as compared to normotensive healthy controls. Methods: Ninety-nine newly diagnosed hypertensives and 103 age- and BMI-matched controls were recruited. The participants were non-diabetic and not on any medication. Soluble α-klotho levels were detected using enzyme-linked immunosorbent assay. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Results: Soluble α-klotho levels were significantly lower (27%, P=0.001) in patients as compared to controls. The trend remained same when compared against 44 out of 103 controls considered for gene expression analysis. Relative gene expression of klotho and catalase were 3-fold and 1.25-fold lower in patients as compared to controls, respectively. ΔCt value-based gene expression were also significantly lower for both genes (P=0.001). A decreasing but non-significant trend was observed for Mn-SOD gene expression. ΔCt value-based gene expression of catalase positively correlated with that of Mn-SOD in patient (rs=0.448) and control (rs=0.547) groups (P<0.001). In patients, the gene expression of Klotho positively correlated with that of catalase (rs=0.498, P=0.001), but not Mn-SOD (rs=0.155, P=0.126). Interpretation & conclusions: In the present study on newly diagnosed hypertensives, klotho and catalase gene expression were found to be significantly lower as compared to controls, indicating the role of oxidative stress in this patient group. In addition, a significant correlation between Klotho and catalase gene expression suggests a role for klotho in essential hypertension with respect to antioxidant defence.
Collapse
Affiliation(s)
- Gauri Pathare
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| | - Sunila Raju
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| | - Manoj Mashru
- Department of Cardiology, Sir H.N. Reliance Foundation Hospital & Research Center, Mumbai, Maharashtra, India
| | - Vinod Shah
- Department of Cardiology, Sir H.N. Reliance Foundation Hospital & Research Center, Mumbai, Maharashtra, India
| | - Kavita Shalia
- Department of Biochemistry, Sir H.N. Medical Research Society, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
6
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
7
|
Adema AY, de Roij van Zuijdewijn CLM, Hoenderop JG, de Borst MH, Ter Wee PM, Heijboer AC, Vervloet MG. Influence of exogenous growth hormone administration on circulating concentrations of α-klotho in healthy and chronic kidney disease subjects: a prospective, single-center open case-control pilot study. BMC Nephrol 2018; 19:327. [PMID: 30442108 PMCID: PMC6238285 DOI: 10.1186/s12882-018-1114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CKD-associated decline in soluble α-Klotho (α-Klotho) levels is considered detrimental. Some studies suggest a direct induction of α-Klotho concentrations by growth hormone (GH). In the present study, the effect of exogenous GH administration on α-Klotho concentrations in a clinical cohort with mild chronic kidney disease (CKD) and healthy subjects was studied. METHODS A prospective, single-center open case-control pilot study was performed involving 8 patients with mild CKD and 8 healthy controls matched for age and sex. All participants received subcutaneous GH injections (Genotropin®, 20 mcg/kg/day) for 7 consecutive days. α-Klotho concentrations were measured at baseline, after 7 days of therapy and 1 week after the intervention was stopped. RESULTS α-Klotho concentrations were not different between CKD-patients and healthy controls at baseline (554 (388-659) vs. 547 (421-711) pg/mL, P = 0.38). Overall, GH therapy increased α-Klotho concentrations from 554 (405-659) to 645 (516-754) pg/mL, P < 0.05). This was accompanied by an increase of IGF-1 concentrations from 26.8 ± 5.0 nmol/L to 61.7 ± 17.7 nmol/L (P < 0.05). GH therapy induced a trend toward increased α-Klotho concentrations both in the CKD group (554 (388-659) to 591 (358-742) pg/mL (P = 0.19)) and the healthy controls (547 (421-711) pg/mL to 654 (538-754) pg/mL (P = 0.13)). The change in α-Klotho concentration was not different for both groups (P for interaction = 0.71). α-Klotho concentrations returned to baseline levels within one week after the treatment (P < 0.05). CONCLUSIONS GH therapy increases α-Klotho concentrations in subjects with normal renal function or stage 3 CKD. A larger follow-up study is needed to determine whether the effect size is different between both groups or in patients with more severe CKD. TRIAL REGISTRATION This trial is registered in EudraCT ( 2013-003354-24 ).
Collapse
Affiliation(s)
- Aaltje Y Adema
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | | | - Joost G Hoenderop
- Department of Physiology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Piet M Ter Wee
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands. .,Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Wu Y, Li Y, Jiang T, Yuan Y, Li R, Xu Z, Zhong X, Jia G, Liu Y, Xie L, Xu K, Zhang H, Li X, Xiao J. Reduction of cellular stress is essential for Fibroblast growth factor 1 treatment for diabetic nephropathy. J Cell Mol Med 2018; 22:6294-6303. [PMID: 30320493 PMCID: PMC6237604 DOI: 10.1111/jcmm.13921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of general and common complication of diabetes, which severely affects the physical and mental health of diabetic patients. Fibroblast growth factor 1 (FGF1), an effective control agent of blood glucose, plays an effective treatment role on diabetes-induced renal injury. But the specific molecule mechanism underlying it is still unclear. Since induction of cellular stress is the main and common mechanism of diabetes-induced complication, we hypothesized that reduction of cellular stress is also the molecular mechanism of FGF1 treatment for DN. Here, we have further confirmed that FGF1 significantly ameliorated the diabetes-induced renal interstitial fibrosis and glomerular damage. The expression levels of collagen and α-smooth muscle actin (α-SMA) also dramatically induced in kidney from db/db mice, but these effects were blocked by FGF1 administration. Our mechanistic investigation had further revealed that diabetes significantly induced oxidative stress, nitrosative stress, and endoplasmic reticulum (ER) stress with upregulation of malondialdehyde (MDA), nitrotyrosine level, ER stress makers and downregulation of antioxidant capacity (AOC). FGF1 treatment significantly attenuated the effect of diabetes on cellular stress. We conclude that FGF1-associated glucose decreases and subsequent reduction of cellular stress is the another potential molecule mechanism underlying FGF1 treatment for DN.
Collapse
Affiliation(s)
- Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yiyang Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Yuan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zeping Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingfeng Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gaili Jia
- Department of Anesthesiology, Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
10
|
Mencke R, Hillebrands JL. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017; 35:124-146. [PMID: 27693241 DOI: 10.1016/j.arr.2016.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
Abstract
Klotho is an anti-ageing protein that functions in many pathways that govern ageing, like regulation of phosphate homeostasis, insulin signaling, and Wnt signaling. Klotho expression levels and levels in blood decline during ageing. The vascular phenotype of Klotho deficiency features medial calcification, intima hyperplasia, endothelial dysfunction, arterial stiffening, hypertension, and impaired angiogenesis and vasculogenesis, with characteristics similar to aged human arteries. Klotho-deficient phenotypes can be prevented and rescued by Klotho gene expression or protein supplementation. High phosphate levels are likely to be directly pathogenic and are a prerequisite for medial calcification, but more important determinants are pathways that regulate cellular senescence, suggesting that deficiency of Klotho renders cells susceptible to phosphate toxicity. Overexpression of Klotho is shown to ameliorate medial calcification, endothelial dysfunction, and hypertension. Endogenous vascular Klotho expression is a controversial subject and, currently, no compelling evidence exists that supports the existence of vascular membrane-bound Klotho expression, as expressed in kidney. In vitro, Klotho has been shown to decrease oxidative stress and apoptosis in both SMCs and ECs, to reduce SMC calcification, to maintain the contractile SMC phenotype, and to prevent μ-calpain overactivation in ECs. Klotho has many protective effects with regard to the vasculature and constitutes a very promising therapeutic target. The purpose of this review is to explore the etiology of the vascular phenotype of Klotho deficiency and the therapeutic potential of Klotho in vascular disease.
Collapse
|
11
|
Donate-Correa J, Martín-Núñez E, Mora-Fernández C, Muros-de-Fuentes M, Pérez-Delgado N, Navarro-González JF. Klotho in cardiovascular disease: Current and future perspectives. World J Biol Chem 2015; 6:351-357. [PMID: 26629318 PMCID: PMC4656911 DOI: 10.4331/wjbc.v6.i4.351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023] Open
Abstract
Protein Klotho, beyond its role as a regulator of the phosphatemia, is also involved in the maintaining of the cardiovascular health, being associated its alterations with the development of cardiovascular damage and increased morbi-mortality. For all this, nowadays Klotho is the subject of a thorough research which is focused on uncover its intimate mechanisms of action, and in analyzing the utility of its modulation as a potential strategy with clinical applicability. Molecular mechanisms of Klotho are not well understood but an emerging research area links Klotho deficiency with vascular pathology. Changes in this protein have been associated with cardiovascular-related complications like inflammation, vascular calcification, and endothelial dysfunction. All this is particularly relevant if considering the recent discovery of Klotho expression in vascular tissue.
Collapse
|
12
|
Abstract
COPD (chronic obstructive pulmonary disease) is associated with sustained inflammation, excessive injury, and accelerated lung aging. Human Klotho (KL) is an anti-aging protein that protects cells against inflammation and damage. In the present study, we quantified KL expression in the lungs of COPD patients and in an ozone-induced mouse model of COPD, and investigated the mechanisms that control KL expression and function in the airways. KL distribution and levels in human and mouse airways were measured by immunohistochemistry and Western blotting. The effect of CSE (cigarette smoke extract) on KL expression was detected in human bronchial epithelial cells. Moreover, the effect of KL on CSE-mediated inflammation and hydrogen peroxide-induced cellular injury/apoptosis was determined using siRNAs. KL expression was decreased in the lungs of smokers and further reduced in patients with COPD. Similarly, 6 weeks of exposure to ozone decreased KL levels in airway epithelial cells. CSE and TNFα (tumour necrosis factor α) decreased KL expression and release from airway epithelial cells, which was associated with enhanced pro-inflammatory cytokine expression. Moreover, KL depletion increased cell sensitivity to cigarette smoke-induced inflammation and oxidative stress-induced cell damage. These effects involved the NF-κB (nuclear factor κB), MAPK (mitogen-activated protein kinase) and Nrf2 (nuclear factor erythroid 2-related factor 2) pathways. Reduced KL expression in COPD airway epithelial cells was associated with increased oxidative stress, inflammation and apoptosis. These data provide new insights into the mechanisms associated with the accelerated lung aging in COPD development.
Collapse
|
13
|
Jeong SJ, Song JE, Kim SB, Kim HW, Ku NS, Han SH, Choi JY, Song YG, Cha BS, Kim JM. Plasma klotho levels were inversely associated with subclinical carotid atherosclerosis in HIV-infected patients receiving combined antiretroviral therapy. AIDS Res Hum Retroviruses 2013; 29:1575-1581. [PMID: 23941507 DOI: 10.1089/aid.2013.0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Combined antiretroviral therapy (cART) has significantly improved the survival rate in HIV-infected individuals, but it contributes to the development of various metabolic complications. Klotho is a novel antiaging gene that encodes a protein with pleiotropic functions, including an emerging role in cardiovascular disease (CVD). The protective effect of higher plasma klotho levels against CVD was recently observed in non-HIV-infected adults. We aimed to assess whether plasma-secreted α-klotho is associated with subclinical carotid atherosclerosis in HIV-infected patients receiving cART. We prospectively examined the association of circulating plasma α-klotho in 120 HIV-infected patients who had received cART for ≥6 months with intima-media thickness (IMT) in the carotid artery and other metabolic variables. The subclinical carotid atherosclerosis was defined as an increased mean IMT level of ≥75th percentile for the matched age, sex, and race and/or the presence of carotid plaque. Thirty-four (28.3%) of 120 had subclinical carotid atherosclerosis. The higher plasma levels of α-klotho had protective effect against subclinical carotid atherosclerosis (OR 0.006, p=0.034) in multivariate regression analysis. Plasma α-klotho levels had a significantly negative correlation with fasting glucose levels (r=-0.216, p=0.018) and mean IMT (r=-0.258, p=0.004) in multiple stepwise regression analyses. The optimal cutoff values of plasma α-klotho levels for the greatest sensitivity and specificity were calculated as 2.83 log10 [pg/ml] (sensitivity, 48.7%; specificity, 90.5%). These results show that plasma klotho levels were inversely associated with subclinical carotid atherosclerosis in HIV-infected patients receiving cART.
Collapse
Affiliation(s)
- Su Jin Jeong
- 1 Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine , Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Klotho gene polymorphism of rs3752472 is associated with the risk of urinary calculi in the population of Han nationality in Eastern China. Gene 2013; 526:494-7. [DOI: 10.1016/j.gene.2013.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 01/06/2023]
|
15
|
Bernheim J, Benchetrit S. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases. Nephrol Dial Transplant 2011; 26:2433-8. [PMID: 21543658 DOI: 10.1093/ndt/gfr208] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor (FGF) 23 and Klotho are two factors associated with several metabolic disorders. Similar to humans, accelerated aging processes characterized by chronic vascular disease, bone demineralization, skin atrophy and emphysema have been recognized in FGF23-null mice and Klotho-deficient mice. The role of these factors in the control of mineral metabolism homeostasis have been shown recently, particularly at the level of parathyroid cells and also in modulating active vitamin D production, two phenomena which are relevant in the presence of chronic kidney disease. In addition, the hormonal affect of circulating FGF23 and Klotho proteins on vascular reactivity, either directly on endothelial cell functions or indirectly by modulating the brain endothelin-1-dependent sympathetic nervous system activity, has contributed to understanding their role in the pathophysiology of hypertension and atherosclerotic vasculopathies. Consequently, very recent clinical investigations seem to confirm the involvement of Klotho in modulating the severity and prognosis of human cardiovascular (CV) disorders and longevity. The present review reports data related to the possible interactive effects of Klotho and FGF23 on the prognosis of renal and CV diseases.
Collapse
Affiliation(s)
- Jacques Bernheim
- Renal Physiology Research Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel.
| | | |
Collapse
|
16
|
Oguro R, Kamide K, Kokubo Y, Shimaoka I, Congrains A, Horio T, Hanada H, Ohishi M, Katsuya T, Okamura T, Miyata T, Kawano Y, Rakugi H. Association of carotid atherosclerosis with genetic polymorphisms of the klotho gene in patients with hypertension. Geriatr Gerontol Int 2010; 10:311-8. [PMID: 20345435 DOI: 10.1111/j.1447-0594.2010.00612.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Previous studies suggest that klotho gene polymorphisms may be associated with atherosclerosis, but did not assess the relationship between klotho gene polymorphisms and atherosclerosis parameters such as carotid artery intima-media thickness (IMT). Here, we studied whether klotho single nucleotide polymorphisms (SNP) were associated with carotid atherosclerosis. METHODS All subjects were Japanese. Eight-hundred and fifty-three patients with hypertension (465 men and 388 women) in the outpatient clinic and 1783 subjects from the general population (821 men and 962 women) attending health check-ups were analyzed in the present study. We measured mean IMT of the common carotid artery to evaluate carotid atherosclerosis. Four single nucleotide polymorphisms (SNP) (rs7323281; intron1, rs5644481; exon4, rs3752472; exon3, rs650439; intron4) of klotho were selected as representative SNP in haplotype blocks. RESULTS Multivariate logistic regression analysis adjusted by confounding factors showed a significant association of rs650439 with carotid atherosclerosis in hypertensive patients (TT vs TA vs AA, P < 0.01; TT + TA vs AA, P < 0.01). By ancova considering confounding factors, rs650439 was also significantly associated with mean IMT (TT + TA vs AA, P = 0.04) in the hypertensive population. However, there was no significant association between klotho SNP and carotid IMT in the general population. Compared to the general population, the subject group with hypertensive patients clearly had more atherosclerosis risk factors. CONCLUSION Only in hypertensive patients was klotho rs650439 strongly associated with mean IMT thickening of the common carotid artery. Therefore, klotho SNP (rs650439) may influence on the progression of carotid atherosclerosis in patients with hypertension.
Collapse
Affiliation(s)
- Ryosuke Oguro
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|