1
|
Yang Y, Wang N, Zhu Y, Lu Y, Chen Q, Fan S, Huang Q, Chen X, Xia L, Wei Y, Zheng J, Liu X. Gold nanoparticles synergize with bacterial lipopolysaccharide to enhance class A scavenger receptor dependent particle uptake in neutrophils and augment neutrophil extracellular traps formation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111900. [PMID: 33440266 DOI: 10.1016/j.ecoenv.2021.111900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/05/2023]
Abstract
Gold nanoparticles (AuNPs) are extensively utilized in biomedical fields. However, their potential interaction with host cells has not been comprehensively elucidated. In this study, we demonstrated a size-dependent effect of AuNPs to synergize with bacterial lipopolysaccharide (LPS) in promoting neutrophil extracellular traps (NETs) release in human peripheral neutrophils. Mechanistically, LPS was more efficient to contact with 10 nm AuNPs and promote their uptake in neutrophils compared to 40 and 100 nm AuNPs, leading to a synergistic upregulation of class A scavenger receptor (SRA) which mediated AuNPs uptake and triggered activation of extracellular regulated protein kinase (ERK) and p38. Blocking SRA or inhibiting ERK and p38 activation remarkably abrogated the effect of AuNPs and LPS to induce NETs formation. Further experiments demonstrated that AuNPs and LPS augmented the production of cytosolic reactive oxygen species (ROS) in p38 and ERK dependent manner, through upregulating and activating NADPH oxidase 2 (NOX2). Accordingly, scavenging of ROS or inhibiting the NOX2 dampened NETs release induced by combined AuNPs and LPS treatment. AuNPs and LPS also synergized to upregulate reactive oxygen species modulator 1 (ROMO1) via activating ERK, thereby increasing mitochondrial ROS generation and promoting the release of NETs. In summary, we provide new evidences about the synergy of AuNPs and LPS to augment cellular responses in neutrophils, which implicates the need to consider the amplifying effect by pathogenic stimuli when utilizing nanomaterials in infectious or inflammatory conditions.
Collapse
Affiliation(s)
- Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China; West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Qianying Huang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Lin Xia
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Yan Wei
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|