1
|
Kloos M, Weigel S, Luksch H. Anatomy and Physiology of Neurons in Layer 9 of the Chicken Optic Tectum. Front Neural Circuits 2019; 13:63. [PMID: 31680877 PMCID: PMC6802604 DOI: 10.3389/fncir.2019.00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/03/2022] Open
Abstract
Visual information in birds is to great extent processed in the optic tectum (TeO), a prominent laminated midbrain structure. Retinal input enters the TeO in its superficial layers, while output is limited to intermediate and deeper layers. In addition to visual information, the TeO receives multimodal input from the auditory and somatosensory pathway. The TeO gives rise to a major ascending tectofugal projection where neurons of tectal layer 13 project to the thalamic nucleus rotundus, which then projects to the entopallium. A second tectofugal projection system, called the accessory pathway, has however not been studied as thoroughly. Again, cells of tectal layer 13 form an ascending projection that targets a nucleus known as either the caudal part of the nucleus dorsolateralis posterior of the thalamus (DLPc) or nucleus uveaformis (Uva). This nucleus is known for multimodal integration and receives additional input from the lateral pontine nucleus (PL), which in turn receives projections from layer 8–15 of the TeO. Here, we studied a particular cell type afferent to the PL that consists of radially oriented neurons in layer 9. We characterized these neurons with respect to their anatomy, their retinal input, and the modulation of retinal input by local circuits. We found that comparable to other radial neurons in the tectum, cells of layer 9 have columnar dendritic fields and reach up to layer 2. Sholl analysis demonstrated that dendritic arborization concentrates on retinorecipient layers 2 and 4, with additional arborization in layers 9 and 10. All neurons recorded in layer 9 received retinal input via glutamatergic synapses. We analyzed the influence of modulatory circuits of the TeO by application of antagonists to γ-aminobutyric acid (GABA) and acetylcholine (ACh). Our data show that the neurons of layer 9 are integrated in a network under strong GABAergic inhibition, which is controlled by local cholinergic activation. Output to the PL and to the accessory tectofugal pathway thus appears to be under strict control of local tectal networks, the relevance of which for multimodal integration is discussed.
Collapse
Affiliation(s)
- Marinus Kloos
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany.,Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Stefan Weigel
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Harald Luksch
- Department of Animal Sciences, Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Delius JD, Delius JAM. Systematic Analysis of Pigeons' Discrimination of Pixelated Stimuli: A Hierarchical Pattern Recognition System Is Not Identifiable. Sci Rep 2019; 9:13929. [PMID: 31558750 PMCID: PMC6763494 DOI: 10.1038/s41598-019-50212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Pigeons learned to discriminate two different patterns displayed with miniature light-emitting diode arrays. They were then tested with 84 interspersed, non-reinforced degraded pattern pairs. Choices ranged between 100% and 50% for one or other of the patterns. Stimuli consisting of few pixels yielded low choice scores whereas those consisting of many pixels yielded a broad range of scores. Those patterns with a high number of pixels coinciding with those of the rewarded training stimulus were preferred and those with a high number of pixels coinciding with the non-rewarded training pattern were avoided; a discrimination index based on this correlated 0.74 with the pattern choices. Pixels common to both training patterns had a minimal influence. A pixel-by-pixel analysis revealed that eight pixels of one pattern and six pixels of the other pattern played a prominent role in the pigeons’ choices. These pixels were disposed in four and two clusters of neighbouring locations. A summary index calculated on this basis still only yielded a weak 0.73 correlation. The individual pigeons’ data furthermore showed that these clusters were a mere averaging mirage. The pigeons’ performance depends on deep learning in a midbrain-based multimillion synapse neuronal network. Pixelated visual patterns should be helpful when simulating perception of patterns with artificial networks.
Collapse
Affiliation(s)
- Juan D Delius
- Experimental Psychology, University of Konstanz, 78457, Konstanz, Germany.
| | - Julia A M Delius
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
| |
Collapse
|
3
|
González-Cabrera C, Garrido-Charad F, Roth A, Marín GJ. The isthmic nuclei providing parallel feedback connections to the avian tectum have different neurochemical identities: Expression of glutamatergic and cholinergic markers in the chick (Gallus gallus). J Comp Neurol 2015; 523:1341-58. [DOI: 10.1002/cne.23739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/24/2014] [Accepted: 12/25/2014] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Alejandro Roth
- Department of Biology; Faculty of Sciences, University of Chile; Santiago Chile
| | - Gonzalo J. Marín
- Department of Biology; Faculty of Sciences, University of Chile; Santiago Chile
- Faculty of Medicine, University Finis Terrae; Santiago Chile
| |
Collapse
|
4
|
Vega-Zuniga T, Mpodozis J, Karten HJ, Marín G, Hain S, Luksch H. Morphology, projection pattern, and neurochemical identity of Cajal's "centrifugal neurons": the cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus). J Comp Neurol 2014; 522:2377-96. [PMID: 24435811 DOI: 10.1002/cne.23539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/13/2023]
Abstract
The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv-neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto-GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto-GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv-neuropil. Double-label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)-immunoreactive. Our results strongly suggest that Tecto-GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Atoji Y. Immunohistochemical localization of vesicular glutamate transporter 2 (vGluT2) in the central nervous system of the pigeon (Columba livia). J Comp Neurol 2011; 519:2887-905. [DOI: 10.1002/cne.22663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Islam MR, Atoji Y. Distribution of vesicular glutamate transporter 2 and glutamate receptor 1 and 2 mRNA in the pigeon retina. Exp Eye Res 2009; 89:439-43. [PMID: 19523950 DOI: 10.1016/j.exer.2009.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 11/25/2022]
Abstract
Glutamate is an excitatory neurotransmitter in the central and peripheral nervous systems of the vertebrate. The previous studies show the presence of mRNAs of AMPA-type glutamate receptors, GluR1 and GluR2, in the optic tectum of the pigeon, suggesting glutamatergic input from the retina. The present study examined localization of vesicular glutamate transporter 2 (VGLUT2) and GluR1 and GluR2 to confirm source of glutamatergic neurons in the pigeon retina by in situ hybridization histochemistry. VGLUT2 mRNA expressed in the inner nuclear layer and ganglion cells, while GluR1 and GluR2 mRNAs were observed in the inner nuclear layer, ganglion cells, and superficial layers of the optic tectum. The results suggest that photoreceptor cells, bipolar cells and ganglion cells are glutamatergic in the avian retina as in mammals.
Collapse
|
7
|
Atoji Y, Islam MR. Distribution of glutamate transporter 1 mRNA in the central nervous system of the pigeon (Columba livia). J Chem Neuroanat 2009; 37:234-44. [PMID: 19481008 DOI: 10.1016/j.jchemneu.2009.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 11/29/2022]
Abstract
Glutamate transporter 1 (GLT1) in glial cells removes glutamate that diffuses from the synaptic cleft into the extracellular space. Previously, we have shown the distribution of glutamatergic neurons in the central nervous system (CNS) of the pigeon. In the present study, we identified cDNA sequence of the pigeon GLT1, and mapped the distribution of the mRNA-expressing cells in CNS to examine whether GLT1 is associated with glutamatergic terminal areas. The cDNA sequence of the pigeon GLT1 consisted of 1889bp nucleotides and the amino acids showed 97% and 87% identity to the chicken and human GLT1, respectively. In situ hybridization autoradiograms revealed GLT1 mRNA expression in glial cells and produced regional differences of GLT1 mRNA distribution in CNS. GLT1 mRNA was expressed preferentially in the pallium than the subpallium. Moderate expression was seen in the hyperpallium, Field L, mesopallium, and hippocampal formation. In the thalamus, moderate expression was found in the ovoidal nucleus, rotundal nucleus, triangular nucleus, and lateral spiriform nucleus, while the dorsal thalamic nuclei were weak. In the brainstem, the isthmic nuclei, optic tectum, vestibular nuclei, and cochlear nuclei expressed moderately, but the cerebellar cortex showed strong expression. Bergmann glial cells expressed GLT1 mRNA very strongly. The results indicate that cDNA sequence of the pigeon GLT1 is comparable with that of the mammalian GLT1, and a large number of GLT1 mRNA-expressing areas correspond with areas where AMPA-type glutamate receptors are located. Avian GLT1 in glial cells probably maintain microenvironment of glutamate concentration around synapses as in mammalian GLT1.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | | |
Collapse
|
8
|
Synaptic circuitry in the retinorecipient layers of the optic tectum of the lamprey (Lampetra fluviatilis). A combined hodological, GABA and glutamate immunocytochemical study. Brain Struct Funct 2009; 213:395-422. [PMID: 19252925 DOI: 10.1007/s00429-009-0205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The ultrastructure of the retinorecipient layers of the lamprey optic tectum was analysed using tract tracing techniques combined with GABA and glutamate immunocytochemistry. Two types of neurons were identified; a population of large GABA-immunonegative cells, and a population of smaller, highly GABA-immunoreactive interneurons, some of whose dendrites contain synaptic vesicles (DCSV). Five types of axon terminals were identified and divided into two major categories. The first of these are GABA-immunonegative, highly glutamate-immunoreactive, contain round synaptic vesicles, make asymmetrical synaptic contacts, and can in turn be divided into AT1 and AT2 terminals. The AT1 terminals are those of the retinotectal projection. The origin of the nonretinal AT2 terminals could not be determined. AT1 and AT2 terminals establish synaptic contacts with DCSV, with dendrites of the retinopetal neurons (DRN), and with conventional dendritic (D) profiles. The terminals of the second category are GABA-immunoreactive and can similarly be divided into AT3 and AT4 terminals. The AT3 terminals contain pleiomorphic synaptic vesicles and make symmetrical synaptic contacts for the most part with glutamate-immunoreactive D profiles. The AT4 terminals contain rounded synaptic vesicles and make asymmetrical synaptic contacts with DRN, with DCSV, and with D profiles. A fifth, rarely observed category of terminals (AT5) contain both clear synaptic vesicles and a large number of dense-core vesicles. Synaptic triads involving AT1, AT2 or AT4 terminals are rare. Our findings are compared to these of previous studies of the fine structure and immunochemical properties of the retinorecipient layers of the optic tectum or superior colliculus of Gnathostomes.
Collapse
|
9
|
Islam MR, Atoji Y. Distribution of vesicular glutamate transporter 2 and glutamate receptor 1 mRNA in the central nervous system of the pigeon (Columba livia). J Comp Neurol 2008; 511:658-77. [DOI: 10.1002/cne.21871] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB. Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): A hodological and GABA-immunocytochemical study. J Comp Neurol 2008; 507:1351-78. [DOI: 10.1002/cne.21635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Abstract
The suprachiasmatic nucleus (SCN) receives glutamatergic afferents from the retina and serotonergic afferents from the midbrain, and serotonin (5-HT) can modify the response of the SCN circadian oscillator to light. 5-HT1B receptor-mediated presynaptic inhibition has been proposed as one mechanism by which 5-HT modifies retinal input to the SCN (Pickard et al., 1996). This hypothesis was tested by examining the subcellular localization of 5-HT1B receptors in the mouse SCN using electron microscopic immunocytochemical analysis with 5-HT1B receptor antibodies and whole-cell patch-clamp recordings from SCN neurons in hamster hypothalamic slices. 5-HT1B receptor immunostaining was observed associated with the plasma membrane of retinal terminals in the SCN. 1-[3-(Trifluoromethyl)phenyl]-piperazine HCl (TFMPP), a 5-HT1B receptor agonist, reduced in a dose-related manner the amplitude of glutamatergic EPSCs evoked by stimulating selectively the optic nerve. Selective 5-HT1A or 5-HT7 receptor antagonists did not block this effect. Moreover, in cells demonstrating an evoked EPSC in response to optic nerve stimulation, TFMPP had no effect on the amplitude of inward currents generated by local application of glutamate. The effect of TFMPP on light-induced phase shifts was also examined using 5-HT1B receptor knock-out mice. TFMPP inhibited behavioral responses to light in wild-type mice but was ineffective in inhibiting light-induced phase shifts in 5-HT1B receptor knock-out mice. The results indicate that 5-HT can reduce retinal input to the circadian system by acting at presynaptic 5-HT1B receptors located on retinal axons in the SCN.
Collapse
|
12
|
Kenigfest N, Rep�rant J, Rio JP, Belekhova M, Ward R, Vesselkin N, Miceli D, Herbin M. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle,Emys orbicularis: A combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980222)391:4<470::aid-cne5>3.0.co;2-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Johnston AN, Bourne RC, Stewart MG, Rogers LJ, Rose SP. Exposure to light prior to hatching induces asymmetry of receptor binding in specific regions of the chick forebrain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:83-90. [PMID: 9370063 DOI: 10.1016/s0165-3806(97)00125-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes neurochemical asymmetries present in forebrain regions of the newly hatched chick that result from environmental conditions; specifically from asymmetrical exposure of the chick embryo to light prior to hatching. Quantitative autoradiography was used to determine GABA and glutamate receptor subtype binding in a number of regions of the left and right forebrain hemispheres of chicks that had either the left (LES), or the right (RES), eye system exposed to light prior to hatching. On day 19 of incubation the embryo's head was withdrawn from the egg and the left or the right eye was occulded until hatching. [3H]MK-801, [3H]AMPA and [3H]muscimol binding assays were performed on frozen sections from 2 different coronal regions of the forebrain, sampled on day-1 posthatching. Significant [3H]MK-801, [3H]AMPA and [3H]muscimol binding asymmetries were determined in forebrain regions from chicks that had their RES exposed to light prior to hatching, particularly in forebrain regions which are known to receive afferent visual input. The reverse pattern of asymmetry was found for all 3 ligands in regions such as the ectostriatum of chicks that had their LES exposed to light, while asymmetry of muscimol and AMPA binding, present in many regions in right eye system chicks was not present in chicks that had the left eye system exposed to light during incubation. Thus, the presence and pattern of experience-dependent neurochemical asymmetries in the chick forebrain are specific to both region and receptor type.
Collapse
Affiliation(s)
- A N Johnston
- Department of Physiology, University of New England, Armidale, NSW, Australia.
| | | | | | | | | |
Collapse
|
14
|
Repérant J, Rio JP, Wasowicz M, Ward R, Miceli D. Differential glutamate immunoreactivity in glial cells of the retino-recipient layer of the viper optic tectum following retinal ablation. A quantitative EM immunogold study. Brain Res 1997; 761:321-8. [PMID: 9252032 DOI: 10.1016/s0006-8993(97)00393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In normal conditions, retino-tectal terminals are densely glutamate-immunoreactive. During the degenerative process of these terminals, a significant increase of glutamate immunoreactivity has been exclusively observed in microglial cells. It is suggested that this phenomenon is consecutive to the synthesis of glutamate by these cells after their activation by degenerating optic terminals.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Hôpital de la Salpêtrière, Bâtiment de Pédiatrie, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Repérant J, Rio JP, Ward R, Wasowicz M, Miceli D, Medina M, Pierre J. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study. J Chem Neuroanat 1997; 12:267-80. [PMID: 9243346 DOI: 10.1016/s0891-0618(97)00018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly gamma-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the 'metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Laboratoire de Neuromorphologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Hallqvist A, Jacobson I, Orwar O, Sandberg M. Studies on the identity of the rat optic nerve transmitter. Brain Res 1996; 706:89-96. [PMID: 8720495 DOI: 10.1016/0006-8993(95)01185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possible role of glutamate, aspartate, sulfur-containing excitatory amino acids and gamma-glutamyl peptides as major transmitters in the rat optic nerve was evaluated. Four days following optic nerve lesion the K(+)-evoked Ca(2+)-dependent glutamate release was reduced to 31 +/- 16% (+/- S.D., n = 9) comparing release from slices of the denervated (contralateral to the lesion) and non-denervated (ipsilateral) superior colliculus, indicative of a major transmitter function for glutamate. However, significant decreases in glutamate release could not be detected seven days following the lesion (n = 5). Other studies have shown that optic nerve denervation induce formation of synapses of non-retinal origin and cause other cellular changes which may reduce the effect of deafferentation on glutamate release after 7 days. No significant change was observed in aspartate release following the lesion. The concentrations of cysteine sulfinate, cysteate, homocysteine sulfinate, homocysteate and O-sulfo-serine in the optic layers of the superior colliculus were below 1 nmol/g tissue (n = 6). Theoretical considerations indicate that this level is too low for a function of any of these as a major optic nerve transmitter. All postsynaptic components in the rat superior colliculus response, evoked by electrical optic nerve stimulation, were reduced by kynurenate (1-10 mM), a broad spectrum glutamate-receptor antagonist. The study gives further support for the view that glutamate is a major transmitter in the rat optic nerve.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
17
|
Ortega F, Hennequet L, Sarría R, Streit P, Grandes P. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions. Neuroscience 1995; 67:125-34. [PMID: 7477893 DOI: 10.1016/0306-4522(95)00057-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the pattern of glutamate-like immunoreactivity in the superficial layers of the rat superior colliculus by means of postembedding immunocytochemical methods for light and electron microscopy. At the light microscopic level, labelling was faintly to moderately intense in most perikarya of the stratum zonale, stratum griseum superficiale and stratum opticum. Furthermore, strong glutamate-immunoreactive terminal-like elements were accumulated most densely in stratum zonale, stratum griseum superficiale and stratum opticum. At the electron microscopic level, a postembedding immunogold method revealed that the vast majority of those labelled elements corresponded to retinal and visual cortical terminals. These profiles were about twice as heavily labelled as their postsynaptic partners. To determine the contribution of retinal and cortical afferents to the pattern of glutamate-like immunoreactivity, rats were subjected to right retinal ablation, left cortical ablation or combined right retinal and left cortical ablations. After retinal ablation, strongly labelled perikarya were observed in the retinorecipient layers. Furthermore, a prominent loss of glutamate-immunoreactive terminal-like elements occurred in stratum zonale and stratum griseum superficiale. Ipsilateral superior colliculus to cortical ablation exhibited subtle changes characterized by a moderate increase in perikaryal immunostaining in stratum zonale, stratum griseum superficiale and stratum opticum and by an apparent discrete reduction of labelled dots in stratum griseum superficiale and stratum opticum. In cases with combined lesions, strongly immunoreactive cell bodies and dendrites were accompanied by a massive disappearance of labelled terminal-like elements in stratum zonale, stratum griseum superficiale and stratum opticum. The effect of retinal and visual cortical ablations on the pattern of glutamate-like immunoreactivity suggests that these afferents are the major sources for glutamate-immunoreactive terminals in the rat superior colliculus. In addition, these findings provide further evidence for glutamate as neurotransmitter in the visual pathways studied.
Collapse
Affiliation(s)
- F Ortega
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | |
Collapse
|
18
|
Grandes P, Ortega F, Streit P. Glutamate-immunoreactive climbing fibres in the cerebellar cortex of the rat. HISTOCHEMISTRY 1994; 101:427-37. [PMID: 7960942 DOI: 10.1007/bf00269493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The climbing fibre system, one of the two main excitatory inputs to the cerebellar cortex, is anatomically and physiologically well characterized, while the nature of its neurotransmitter is still a matter of debate. We wished to determine whether glutamate-immunoreactive profiles with the morphological characteristics of climbing fibres could be found in the rat cerebellar cortex. For this purpose, a monoclonal 'anti-glutamate' antibody has been used in combination with a sensitive postembedding immunoperoxidase method on semi-thin sections or in combination with a postembedding immunogold method on ultrathin sections. At the light microscopic level, climbing fibres appeared as strongly stained fibrous profiles, chains of interconnected varicosities or heavily labelled dots of various sizes, often in close apposition to principal Purkinje cell dendrites. At the electron microscopic level, certain labelled varicosities or more elongated profiles resembling climbing fibre terminals were in synaptic contact with dendritic spines of Purkinje cells. Quantitative analysis of gold particle densities showed that such elements were about three to four times more heavily labelled than their postsynaptic partners. The results obtained in this study demonstrate that at least a subset of climbing fibres and their terminals contain relatively high levels of glutamate-like immunoreactivity and provide additional evidence for a role of glutamate as transmitter in these cerebellar afferents.
Collapse
Affiliation(s)
- P Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | |
Collapse
|
19
|
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system. It is widely assumed that neurons using this transmitter derive it from several sources: (i) synthesizing it themselves from alpha-ketoglutarate or aspartate, (ii) synthesize it from glial-derived glutamine, or (iii) take up glutamate from the extracellular space. By use of immunocytochemistry we show that glutamate is abundant in the retinal ganglion and bipolar cells of the rabbit, but that immunoreactivity for glutamate in these neurons is reduced below immunocytochemical detection limits after the specific inhibition of glutamine synthesis in glial cells by D,L-methionine D,L-sulphoximine. GABA immunoreactivity in retinal amacrine cells was also reduced after inhibition of glutamine synthetase but the patterns and densities of immunoreactivity for taurine and glycine were unaffected. Therefore, this experimental paradigm does not induce generalized metabolic changes in neurons or glia. This study demonstrates that some glutamatergic neurons are dependent on the synthetic processes in glia for their neurotransmitter content.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
20
|
Castel M, Belenky M, Cohen S, Ottersen OP, Storm-Mathisen J. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur J Neurosci 1993; 5:368-81. [PMID: 7903187 DOI: 10.1111/j.1460-9568.1993.tb00504.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With a view to identifying the neurotransmitter content of retinal terminals within the mouse suprachiasmatic nucleus, a highly specific antiserum to glutaraldehyde-coupled glutamate was used in a postembedding immunogold procedure at the ultrastructural level. Retinal terminals were identified by cholera toxin--horseradish peroxidase transported anterogradely from the retina and reacted with tetramethyl benzidine/tungstate/H2O2, or by their characteristically pale and distended mitochondria with irregular cristae. Controls included model ultrathin sections containing high concentrations of various amino acids. Alternate serial sections were labelled with anti-glutamate and anti-gamma-aminobutyric acid (GABA). Data were analysed by computer-assisted image analysis. Density of glutamate labelling (gold particles per micron2) on whole retinal terminals was > 3 times higher than that on postsynaptic dendrites, and > 5 times higher than that on miscellaneous non-retinal non-glutamatergic terminals in the suprachiasmatic nucleus. The overall density of gold particles over retinal terminals was approximately 3 times higher than that over GABAergic terminals, in which glutamate-like immunoreactivity was mainly mitochondrial. Labelling of vesicles in retinal terminals was almost 5 times greater than the apparent labelling of vesicles in GABAergic terminals, underscoring the location of transmitter glutamate within synaptic vesicles in retinal terminals. In the retino-recipient region of the suprachiasmatic nucleus there was also a small population of non-retinal glutamatergic terminals. Their overall immunoreactivity was similar to or exceeded that of retinal terminals, but morphological features clearly distinguished between these two types of glutamate-containing terminals. The present results indicate that the vast majority of retinal terminals may use glutamate as a transmitter, in keeping with electrophysiological and neuropharmacological data from other sources. The possibility of cotransmitters within retinal terminals, suggested by the presence of dense-core vesicles among the glutamate-containing synaptic vesicles, has still to be addressed.
Collapse
Affiliation(s)
- M Castel
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|