1
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Jang J, Song M, Paik SB. Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell Rep 2021; 30:3270-3279.e3. [PMID: 32160536 DOI: 10.1016/j.celrep.2020.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
In the mammalian primary visual cortex, neural tuning to stimulus orientation is organized in either columnar or salt-and-pepper patterns across species. For decades, this sharp contrast has spawned fundamental questions about the origin of functional architectures in visual cortex. However, it is unknown whether these patterns reflect disparate developmental mechanisms across mammalian taxa or simply originate from variation of biological parameters under a universal development process. In this work, after the analysis of data from eight mammalian species, we show that cortical organization is predictable by a single factor, the retino-cortical mapping ratio. Groups of species with or without columnar clustering are distinguished by the feedforward sampling ratio, and model simulations with controlled mapping conditions reproduce both types of organization. Prediction from the Nyquist theorem explains this parametric division of the patterns with high accuracy. Our results imply that evolutionary variation of physical parameters may induce development of distinct functional circuitry.
Collapse
Affiliation(s)
- Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min Song
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
4
|
Abstract
Visual information reaches the cerebral cortex through a major thalamocortical pathway that connects the lateral geniculate nucleus (LGN) of the thalamus with the primary visual area of the cortex (area V1). In humans, ∼3.4 million afferents from the LGN are distributed within a V1 surface of ∼2400 mm2, an afferent number that is reduced by half in the macaque and by more than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex based on the spatial position of their receptive fields to form a map of visual space. The visual resolution within this map is strongly correlated with total number of thalamic afferents that V1 receives and the area available to sort them. The ∼20,000 afferents of the mouse are only sorted by spatial position because they have to cover a large visual field (∼300 deg) within just 4 mm2 of V1 area. By contrast, the ∼500,000 afferents of the cat are also sorted by eye input and light/dark polarity because they cover a smaller visual field (∼200 deg) within a much larger V1 area (∼400 mm2), a sorting principle that is likely to apply also to macaques and humans. The increased precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right eyes and light/dark polarities, which become interlaced to keep neurons representing the same visual point close together. In turn, this interlaced arrangement makes cortical neurons with different preferences for stimulus orientation to rotate around single cortical points forming a pinwheel pattern that allows more efficient processing of objects and visual textures.
Collapse
|
5
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
6
|
Cervia D, Casini G, Bagnoli P. Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol Cell Endocrinol 2008; 286:112-22. [PMID: 18242820 DOI: 10.1016/j.mce.2007.12.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 10/11/2007] [Accepted: 12/12/2007] [Indexed: 12/30/2022]
Abstract
In the retina, peptidergic signalling participates in multiple circuits of visual information processing. The neuropeptide somatostatin (SRIF) is localised to amacrine cells and, in some instances, in a subset of ganglion cells. The variegated expression patterns of SRIF receptors (sst(1)-sst(5)) and the variety of signalling mechanisms activated by retinal SRIF suggest that this peptide may exert multiple actions on retinal neurons and on retinal physiology, although our current understanding reflects a rather complicated picture. SRIF, mostly through sst(2), may act as a positive factor in the retina by regulating retinal homeostasis and protecting neurons against damage. In this respect, SRIF analogues seem to constitute a promising therapeutic arsenal to cure different retinal diseases, as for instance, ischemic and diabetic retinopathies. However, further investigations are needed not only to fully understand the functional role of the SRIF system in the retina but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
7
|
Knabe W, Washausen S, Happel N, Kuhn HJ. Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri. J Comp Neurol 2007; 502:584-97. [PMID: 17394160 DOI: 10.1002/cne.21324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
"Starburst" cholinergic amacrines specify the response of direction-selective ganglion cells to image motion. Here, development of cholinergic amacrines was studied in the tree shrew Tupaia belangeri (Scandentia) by immunohistochemistry with antibodies against choline acetyltransferase (ChAT) and neurofilament proteins. Starburst amacrines expressed ChAT much earlier than previously thought. From embryonic day 34 (E34) onward, orthotopic and displaced subpopulations segregated from a single cluster of immunoreactive precursor cells. Orthotopic starburst amacrines rapidly took up positions in the inner nuclear layer. Displaced starburst amacrines were first arranged in a monocellular row in the inner plexiform layer, and, with a delay of 1 week, they descended to the ganglion cell layer. Conversely, dendritic stratification of displaced amacrines slightly preceded that of orthotopic ones. Starburst amacrines expressed the medium-molecular-weight neurofilament protein (NF-M) from E34 to postnatal day 11 (P11) and coexpressed alpha-internexin from E36.5 to P11. Consequently, neurofilaments composed of alpha-internexin and NF-M may stabilize developing dendrites of starburst amacrines. During the first 2 postnatal weeks, subpopulations of anti-NF-M-labeled ganglion cells costratified with the preexisting dendritic strata of starburst amacrines in the ON sublamina, OFF sublamina, or both. Hence, anti-NF-M-labeled ganglion cells may include direction-selective ones. Thereafter, NF-M and alpha-internexin proteins disappeared from starburst amacrines, and NF-M immunoreactivity was lost in the dendrites of ganglion cells. Our findings suggest that NF-M and alpha-internexin are important for starburst amacrines and ganglion cells to recognize each other and, thus, contribute to the formation of early developing retinal circuits in the inner plexiform layer.
Collapse
Affiliation(s)
- Wolfgang Knabe
- Department of Anatomy and Embryology, Georg August University, D-37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
8
|
Xiang Z, Jiang L, Kang Z. Transient expression of somatostatin mRNA in developing ganglion cell layers of rat retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 128:25-33. [PMID: 11356259 DOI: 10.1016/s0165-3806(01)00145-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Somatostatin (SOM) mRNA in developing ganglion cell layer (GCL) detected by in situ hybridization histochemistry and SOM peptide in developing optic chiasma and optic tract detected by immunocytochemistry were monitored to explore whether ganglion cells expressing SOM project to the visual center. Most of these cells in the developing GCL expressed SOM transiently from embryonic day 13 (E13) to E21. The cells expressing SOM mRNA initially followed a central-to-peripheral pattern of development. The cells expressing SOM mRNA in the retinas of fetuses became detectable at E13. From E14 to E17 the number of cells expressing SOM mRNA increased rapidly. At E17 most of the cells in the developing GCL expressed SOM mRNA. From E18 to postnatal days the positive cells became sparse except at the postnatal day 0 (PND0) the positive cells decreased dramatically in comparison with that at the E21. At PND15, the positive cells only can be found in the inner neuroblastic layer and in the ganglion cell layer. At PND20 the distribution pattern and the number of the positive cells were essentially the same as that in adult rat. SOM immunoreactivity was detectable at E16 in the developing optic chiasma and optic tract; the majority of the fibers in these area were SOM positive. From E16 to E18 the density of the immunostaining increased rapidly, whereas from E19 to E21 the density decreased. At PND0 no positive fibers were seen. The transient presence of SOM in most of the ganglion cells in the developing ganglion cell layer has prompted us to study the role of SOM in generation and differentiation of the retinal ganglion cells, and formation of the retina-visual center projections.
Collapse
Affiliation(s)
- Z Xiang
- Department of Histology and Embryology, Second Military Medical University, 200433, Shanghai, China.
| | | | | |
Collapse
|
9
|
Abstract
This review discusses the expression and cellular localization of the neuropeptide somatostatin (SRIF) and one of the SRIF subtype (sst) receptors, sst(2A) in the mammalian retina. SRIF immunoreactivity is predominantly localized to a sparse population of amacrine and displaced amacrine cells in the ganglion cell layer in several mammalian retinas including the rat, rabbit, cat, and primate. These cells, characterized by multiple processes, form a sparse network in the inner plexiform layer (IPL) in all retinal regions. Very few processes are also in the outer plexiform layer. In contrast to the predominant distribution of SRIF processes to the IPL, there is a widespread distribution of sst(2A) immunoreactivity to both the inner and outer retina in all mammalian retinas studied to date. In rabbit retina, sst(2A) immunoreactivity is predominant in rod bipolar cells and in sparse wide-field amacrine cells. In the rat retina, sst(2A) immunoreactivity is localized to several neuronal cell types-cone photoreceptors, horizontal cells, rod and cone bipolar cells, and amacrine cells. Reverse-transcriptase-polymerase chain reaction analysis found that sst(2A) mRNA is expressed in the rat retina, while sst(2B) mRNA is not detected. Finally, in the primate retina sst(2) immunoreactivity is predominant in cone photoreceptors, with additional immunostained cell bodies and processes in the inner retina. These findings indicate that SRIF may modulate several neuronal cell types in the retina, and that it has a broad influence on both scotopic and photopic visual pathways.
Collapse
Affiliation(s)
- J Johnson
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | | | | |
Collapse
|
10
|
Somatostatin modulates voltage-gated K(+) and Ca(2+) currents in rod and cone photoreceptors of the salamander retina. J Neurosci 2000. [PMID: 10648697 DOI: 10.1523/jneurosci.20-03-00929.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the cellular localization in the salamander retina of one of the somatostatin [or somatotropin release-inhibiting factor (SRIF)] receptors, sst(2A), and studied the modulatory action of SRIF on voltage-gated K(+) and Ca(2+) currents in rod and cone photoreceptors. SRIF immunostaining was observed in widely spaced amacrine cells, whose perikarya are at the border of the inner nuclear layer and inner plexiform layer. sst(2A) immunostaining was seen in the inner segments and terminals of rod and cone photoreceptors. Additional sst(2A) immunoreactivity was expressed by presumed bipolar and amacrine cells. SRIF, at concentrations of 100-500 nM, enhanced a delayed outwardly rectifying K(+) current (I(K)) in both rod and cone photoreceptors. SRIF action was blocked in cells pretreated with pertussis toxin (PTX) and was substantially reduced by intracellular GDP(beta)S. Voltage-gated L-type Ca(2+) currents in rods and cones were differently modulated by SRIF. SRIF reduced Ca(2+) current in rods by 33% but increased it in cones by 40%, on average. Both effects were mediated via G-protein activation and blocked by PTX. Ca(2+)-imaging experiments supported these results by showing that 500 nM SRIF reduced a K(+)-induced increase in intracellular Ca(2+) in rod photoreceptor terminals but increased it in those of cones. Our results suggest that SRIF may play a role in the regulation of glutamate transmitter release from photoreceptors via modulation of voltage-gated K(+) and Ca(2+) currents.
Collapse
|
11
|
|
12
|
Fontanesi G, Casini G, Thanos S, Bagnoli P. Transient somatostatin-immunoreactive ganglion cells in the developing rat retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:119-25. [PMID: 9427476 DOI: 10.1016/s0165-3806(97)81788-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The peptide somatostatin (SRIF) is likely to play important roles in neuronal differentiation and maturation. In the mammalian retina, it is reported to be expressed by populations of amacrine and/or displaced amacrine cells and, in some species, by some ganglion cells. Previous studies have shown that in the rat retina the maturation of somatostatinergic systems encompasses late prenatal and early postnatal periods, suggesting a role of SRIF in maturative events of the retina. SRIF-expressing ganglion cells have not been reported in the rat retina at any developmental age. In the present study, we re-evaluated the postnatal development of SRIF-containing neurons of the rat retina focusing on the analysis of SRIF-containing cells in the ganglion cell layer (GCL), to test the possibility that SRIF is expressed by some ganglion cells during development. To this aim we combined immunocytochemical staining of SRIF-positive neurons with retrograde tracing of ganglion cell bodies through Fluoro-Gold injections into the superior colliculus. Double-labelling experiments revealed the presence of SRIF-containing ganglion cells at postnatal day (PND) 10. They accounted for 14% of the total SRIF-containing cells in the GCL. Such double-labelled cells were not observed either before (PND 7) or after (PND 15 and PND 45) this period. This transient expression of SRIF in retinal ganglion cells suggests that SRIF may be a factor regulating the maturation of retinocollicular projections in a restricted period of postnatal development.
Collapse
Affiliation(s)
- G Fontanesi
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- B A Sabel
- Institute of Medical Psychology, Otto-v.-Guericke-University of Magdeburg, Germany.
| | | | | |
Collapse
|