1
|
Airaksinen AM, Hekmatyar SK, Jerome N, Niskanen JP, Huttunen JK, Pitkänen A, Kauppinen RA, Gröhn OH. Simultaneous BOLD fMRI and local field potential measurements during kainic acid-induced seizures. Epilepsia 2012; 53:1245-53. [PMID: 22690801 DOI: 10.1111/j.1528-1167.2012.03539.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To investigate how kainic acid-induced epileptiform activity is related to hemodynamic changes probed by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Epileptiform activity was induced with kainic acid (KA) (10 mg/kg, i.p.), and simultaneous fMRI at 7 Tesla, and deep electrode local field potential (LFP) recordings were performed from the right hippocampus in awake and medetomidine-sedated adult Wistar rats. KEY FINDINGS Recurrent seizure activity induced by KA was detected in LFP both in medetomidine-sedated and awake rats, even though medetomidine sedation reduced the mean duration of individual seizures as compared to awake rats (33 ± 24 and 46 ± 34 s, respectively, mean ± SD p < 0.01). KA administration also triggered robust positive BOLD responses bilaterally in the hippocampus both in awake and medetomidine-sedated rats; however, in both animal groups some of the seizures detected in LFP recording did not cause detectable BOLD signal change. SIGNIFICANCE Our data suggest that medetomidine sedation can be used for simultaneous fMRI and electrophysiologic studies of normal and epileptic brain function, even though seizure duration after medetomidine administration was shorter than that in awake animals. The results also indicate that neuronal activity and BOLD response can become decoupled during recurrent kainic acid-induced seizures, which may have implications to interpretation of fMRI data obtained during prolonged epileptiform activity.
Collapse
Affiliation(s)
- Antti M Airaksinen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Lee HN, Jeon GS, Kim DW, Cho IH, Cho SS. Expression of adenomatous polyposis coli protein in reactive astrocytes in hippocampus of kainic acid-induced rat. Neurochem Res 2009; 35:114-21. [PMID: 19655246 DOI: 10.1007/s11064-009-0036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The adenomatous polyposis coli gene (APC) was initially identified through its link to colon cancer. It is associated with the regulation of cell cycle progression, survival, and differentiation of normal tissues. Recent studies have demonstrated that APC is also expressed in the adult brain at high levels. However, its role in glial cells under pathological progression remains unclear. In this study, we evaluated the expression of APC and its association with beta-catenin signaling pathway, following the induction of an excitotoxic lesion by kainic acid (KA) injection, which cause pyramidal cell degeneration. APC was predominantly present in oligodendrocytes in the normal brain, but was specifically associated with activated astrocytes in the KA-treated brain. Our quantitative analysis revealed that APC significantly increased from 1 day post lesion (PI), reached peak values at 3 days PI, and decreased thereafter. The phospho-GSK3beta levels also showed similar spatiotemporal patterns while beta-catenin expression was reduced at 1 and then increasingly returned to normal levels at 3, 7 days PI. For the first time, our data demonstrate the injury-induced astrocytic changes in the levels of APC, GSK3beta, and beta-catenin in vivo, which may actively be participate in cell adhesion and in the signaling pathway regulating cell survivals during brain insults.
Collapse
Affiliation(s)
- Ha Na Lee
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | |
Collapse
|
3
|
Jiang W, Wang JC, Zhang Z, Sheerin AH, Zhang X. Response of seizure-induced newborn neurons in the dentate gyrus of adult rats to second episode of seizures. Brain Res 2004; 1006:248-52. [PMID: 15051529 DOI: 10.1016/j.brainres.2004.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/19/2022]
Abstract
In this study we examined the unknown issue of whether seizure-induced newborn hippocampal neurons in freely moving adult rats are able to respond to pathophysiological stimuli in the same way as their neighboring neurons do. Three days after pentylenetrazol (PTZ)-induced generalized seizures, rats received 5-bromodeoxyuridine (BrdU) injections to label dividing cells, followed 4 weeks later by the second PTZ injection to induce second episode of generalized seizures. We observed that the first episode of PTZ-induced seizures resulted in a significant increase in the number of newborn neurons in the adult hippocampal dentate gyrus. In comparison with vehicle-injected control rats that exhibited no Fos immunoreactivity and mild glutamic acid decarboxylase 67 (GAD67) expression in the dentate granule cells, rats killed 2-6 h following the second PTZ injection showed intensive Fos and GAD67 expression in virtually all granule cells with or without BrdU double-labeling. These findings provide important evidence indicating that seizure-induced newborn neurons in freely moving adult rats are able to respond to pathophysiological stimuli in the same way as neighboring neurons do.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | |
Collapse
|
4
|
Abstract
The neuropeptide nociceptin/orphanin FQ (N/OFQ) has been shown to modulate neuronal excitability and neurotransmitter release. Previous studies indicate that the mRNA levels for the N/OFQ precursor (proN/OFQ) are increased after seizures. However, it is unclear whether N/OFQ plays a role in seizure expression. Therefore, (1) we analyzed proN/OFQ mRNA levels and NOP (the N/OFQ receptor) mRNA levels and receptor density in the kainate model of epilepsy, using Northern blot analysis, in situ hybridization, and receptor binding assay, and (2) we examined susceptibility to kainate seizure in mice treated with 1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-benzimidazol-2-one (J-113397), a selective NOP receptor antagonist, and in proN/OFQ knock-out mice. After kainate administration, increased proN/OFQ gene expression was observed in the reticular nucleus of the thalamus and in the medial nucleus of the amygdala. In contrast, NOP mRNA levels and receptor density decreased in the amygdala, hippocampus, thalamus, and cortex. Mice treated with the NOP receptor antagonist J-113397 displayed reduced susceptibility to kainate-induced seizures (i.e., significant reduction of behavioral seizure scores). N/OFQ knock-out mice were less susceptible to kainate seizures compared with their wild-type littermates, in that lethality was reduced, latency to generalized seizure onset was prolonged, and behavioral seizure scores decreased. Intracerebroventricular administration of N/OFQ prevented reduced susceptibility to kainate seizures in N/OFQ knock-out mice. These data indicate that acute limbic seizures are associated with increased N/OFQ release in selected areas, causing downregulation of NOP receptors and activation of N/OFQ biosynthesis, and support the notion that the N/OFQ-NOP system plays a facilitatory role in kainate seizure expression.
Collapse
|
5
|
Prevention of cannabinoid withdrawal syndrome by lithium: involvement of oxytocinergic neuronal activation. J Neurosci 2002. [PMID: 11739594 DOI: 10.1523/jneurosci.21-24-09867.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabis (i.e., marijuana and cannabinoids) is the most commonly used illicit drug in developed countries, and the lifetime prevalence of marijuana dependence is the highest of all illicit drugs in the United States. To provide clues for finding effective pharmacological treatment for cannabis-dependent patients, we examined the effects and possible mechanism of lithium administration on the cannabinoid withdrawal syndrome in rats. A systemic injection of the mood stabilizer lithium, at serum levels that were clinically relevant, prevented the cannabinoid withdrawal syndrome. The effects of lithium were accompanied by expression of the cellular activation marker Fos proteins within most oxytocin-immunoreactive neurons and a significant increase in oxytocin mRNA expression in the hypothalamic paraventricular and supraoptic nuclei. Lithium also produced a significant elevation of oxytocin levels in the peripheral blood. We suggest that the effects of lithium against the cannabinoid withdrawal syndrome are mediated by oxytocinergic neuronal activation and subsequent release and action of oxytocin within the CNS. In support of our hypothesis, we found that the effects of lithium against the cannabinoid withdrawal syndrome were antagonized by systemic preapplication of an oxytocin antagonist and mimicked by systemic or intracerebroventricular injection of oxytocin. These results demonstrate that oxytocinergic neuronal activation plays a critical role in the action of lithium against the cannabinoid withdrawal syndrome in rats, thus providing a potentially novel strategy for the treatment of cannabis dependence in humans.
Collapse
|
6
|
Hiscock JJ, Mackenzie L, Medvedev A, Willoughby JO. Kainic acid and seizure-induced Fos in subtypes of cerebrocortical neurons. J Neurosci Res 2001; 66:1094-100. [PMID: 11746441 DOI: 10.1002/jnr.1252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kainic acid injected in vivo into adult rats evokes the expression of the immediate early gene c-fos in the dentate gyrus and associated structures before a seizure occurs and in these and additional regions after a single motor seizure. The aim of this study was to identify cortical cell classes expressing Fos that correlate with these phenomena. Fos expression occurred before a seizure in the middle layers of entorhinal cortex in excitatory neurons and predominantly in calbindin D28-K-containing inhibitory neurons. Given the early Fos-labeling of these cells, we suggest they are associated with the hippocampal EEG events also seen at this stage of the effects of kainic acid. After a motor seizure Fos induction occurred in primary motor, sensory, piriform and entorhinal cortices, mainly in excitatory neurons, but also in a proportion of calcium binding protein-containing neurons proportionate to the degree of activation of the region as determined by Fos. Nearly 100% of neurons were Fos+ in entorhinal cortex, whereas 80% of excitatory and 50% of calcium binding protein-containing neurons were Fos+ in piriform cortex with lower proportions in neocortex. Of the calcium binding protein-containing neocortical neurons, calbindin D28-K cells exhibited the highest proportion of double labeling with Fos. This pattern of neocortical activation by kainic acid, a glutamate agonist, is only slightly different to that seen after seizures caused by blockade of gamma aminobutyric acid receptors suggesting that seizures caused by different mechanisms utilize similar neo-cortical circuitry.
Collapse
Affiliation(s)
- J J Hiscock
- Department of Medicine, Medical Centre, Flinders University of South Australia, G.P.O. Box 2100, Adelaide S.A. 5042, Australia
| | | | | | | |
Collapse
|
7
|
Abstract
The claustrum has been implicated in the kindling of generalized seizures from limbic sites. We examined the susceptibility of the anterior claustrum itself to kindling and correlated this with an anatomical investigation of its afferent and efferent connections. Electrical stimulation of the anterior claustrum resulted in a pattern of rapid kindling with two distinct phases. Early kindling involved extremely rapid progression to bilaterally generalized seizures of short duration. With repeated daily kindling stimulations, early-phase generalized seizures abruptly became more elaborate and prolonged, resembling limbic-type seizures as triggered from the amygdala. We suggest that the rapid rate of kindling from the anterior claustrum is an indication that the claustrum is functionally close to the mechanisms of seizure generalization. In support of our hypothesis, we found significant afferent, efferent, and often reciprocal connections between the anterior claustrum and areas that have been implicated in the generation of generalized seizures, including frontal and motor cortex, limbic cortex, amygdala, and endopiriform nucleus. Additional connections were found with various other structures, including olfactory areas, nucleus accumbens, midline thalamus, and brainstem nuclei including the substantia nigra and the dorsal raphe nucleus. The anatomical connections of the anterior claustrum are consistent with its very high susceptibility to kindling and support the view that the claustrum is part of a forebrain network of structures participating in the generalization of seizures.
Collapse
|
8
|
Saji M, Kobayashi S, Ohno K, Sekino Y. Interruption of supramammillohippocampal afferents prevents the genesis and spread of limbic seizures in the hippocampus via a disinhibition mechanism. Neuroscience 2000; 97:437-45. [PMID: 10828527 DOI: 10.1016/s0306-4522(00)00081-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study we describe the preventive effect of interruption of the supramammillohippocampal afferents on the Fos expression in the forebrain and epileptic discharges in the hippocampal electroencephalogram in rat model of kainic acid-induced limbic seizure. Little was known about the contribution of different degrees of neural activity of hippocampal principal cells to the genesis and spread of limbic seizures in the forebrain structures. Following kainic acid injection to the amygdala with or without concurrent injection of muscimol to the supramammillary nucleus, behavioral changes and electroencephalograms were observed in freely moving rats. The animals were processed for Fos immunocytochemical analysis at several time points. The latest expression of Fos at 2h was seen in hippocampal CA1-CA3, ventrolateral thalamic nuclei and mediodorsal caudate putamen, while the early Fos expression at 0.5h was seen in the piriform, entorhinal and other cortices, the thalamic midline nuclei and hypothalamic nuclei. Muscimol injection to the supramammillary nucleus prevented Fos expression in the CA1-CA3 region and reduced that in the forebrain regions with the latest Fos expression, but did not affect Fos expression in other forebrain regions with early Fos expression. This treatment also eliminated epileptic discharges and attenuated all waves in hippocampus. These findings indicate that an acute interruption of the facilitatory hypothalamic afferents by intrasupramammillary injection of muscimol may cause the inactivation of the disinhibition mechanism for hippocampal throughput at the dentate gyrus, resulting in the blockade of the genesis and spread of limbic seizures in the hippocampus.
Collapse
Affiliation(s)
- M Saji
- Department of Physiology, School of Allied Health Sciences, Kitasato University, 228-8555, Sagamihara, Japan.
| | | | | | | |
Collapse
|
9
|
Zhang X, Fan XD, Mohapel P, Yu P, Boulton A. MK-801-induced expression of Fos protein family members in the rat retrosplenial granular cortex. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990901)57:5<719::aid-jnr13>3.0.co;2-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Nakagawa Y, Asano Y, Awatsu N, Sawada M, Nakano K. Enhanced Fos expression in the hippocampus of El mice after short-term vestibular stimulation. Neurosci Lett 1999; 271:105-8. [PMID: 10477113 DOI: 10.1016/s0304-3940(99)00531-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The El mouse is an animal model for human epilepsy. The mouse manifest seizures in response to periodically repeated vestibular stimuli such as being tossing-up. Although this technique has been traditionally employed to accelerate this disease in the mouse, its meaning remained obscure. The present study was conducted to estimate the effects of tossing-up stimuli on expression of c-fos, a well-known marker of neuronal activation. Expression of c-fos was significantly increased even after single tossing-up specimen. It was blocked by pretreatment of the mouse with MK-801, a NMDA receptor antagonist. A marked expression of the oncoprotein was observed in the granule cell layer of dentate gyrus and CA1-3 pyramidal cell layer in the hippocampus of the mouse. These results suggest that the El mice are genetically hyper-sensitive to the vestibular stimuli.
Collapse
Affiliation(s)
- Y Nakagawa
- Nagoya University Bioscience Center, Chikusa, Japan
| | | | | | | | | |
Collapse
|
11
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
12
|
Charpak S, Audinat E. Cardiac arrest in rodents: maximal duration compatible with a recovery of neuronal activity. Proc Natl Acad Sci U S A 1998; 95:4748-53. [PMID: 9539810 PMCID: PMC22562 DOI: 10.1073/pnas.95.8.4748] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report here that during a permanent cardiac arrest, rodent brain tissue is "physiologically" preserved in situ in a particular quiescent state. This state is characterized by the absence of electrical activity and by a critical period of 5-6 hr during which brain tissue can be reactivated upon restoration of a simple energy (glucose/oxygen) supply. In rat brain slices prepared 1-6 hr after cardiac arrest and maintained in vitro for several hours, cells with normal morphological features, intrinsic membrane properties, and spontaneous synaptic activity were recorded from various brain regions. In addition to functional membrane channels, these neurons expressed mRNA, as revealed by single-cell reverse transcription-PCR, and could synthesize proteins de novo. Slices prepared after longer delays did not recover. In a guinea pig isolated whole-brain preparation that was cannulated and perfused with oxygenated saline 1-2 hr after cardiac arrest, cell activity and functional long-range synaptic connections could be restored although the electroencephalogram remained isoelectric. Perfusion of the isolated brain with the gamma-aminobutyric acid A receptor antagonist picrotoxin, however, could induce self-sustained temporal lobe epilepsy. Thus, in rodents, the duration of cardiac arrest compatible with a short-term recovery of neuronal activity is much longer than previously expected. The analysis of the parameters that regulate this duration may bring new insights into the prevention of postischemic damages.
Collapse
Affiliation(s)
- S Charpak
- Laboratory of Physiology, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005, Paris, France. serge.charpak.@espci.fr
| | | |
Collapse
|
13
|
Zhang X, Gelowitz DL, Lai CT, Boulton AA, Yu PH. Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur J Neurosci 1997; 9:760-9. [PMID: 9153582 DOI: 10.1111/j.1460-9568.1997.tb01424.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Systemic injection of kainic acid (KA) induces limbic seizures in rats, which resemble human temporal lobe epilepsy, the most common form of adult human epilepsy. In this study, we have investigated KA-elicited limbic seizures in the rats by correlating the severity of the seizure attacks with the expression of hippocampal heat shock protein-70 (HSP70) which has been suggested to be a marker for neuronal injury/death in this model of seizures. After a systemic injection of KA, six stages of limbic seizures have been classified, namely, staring (stage 1), wet dog shake (stage 2), hyperactivity (stage 3), rearing (stage 4), rearing and falling (stage 5), and jumping (stage 6). Stages 4, 5 and 6 were further divided into mild and severe sub-stages. HSP70 expression was not detected in animals with stages 1 and 2 seizures. At stage 3 a small amount of HSP70 immunoreactive neurons was detected in the CA3 field and the dentate hilus. From stage 4 to stage 5 the degree of HSP70 immunoreactivity increased in the CA1 field from a few positive cells in stage 4 mild to large numbers of immunoreactive neurons in stage 5 severe. HSP70 became detectable in pyramidal cells in the CA2 field from stage 5 severe and higher. In animals with stage 6 seizures, the majority of HSP70 expression became located in glial cells throughout the whole hippocampus. We concluded that HSP70 expression in the hippocampus positively correlates with the severity of KA-elicited limbic seizures.
Collapse
Affiliation(s)
- X Zhang
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|