1
|
Pranty AI, Szepanowski LP, Wruck W, Karikari AA, Adjaye J. Hemozoin induces malaria via activation of DNA damage, p38 MAPK and neurodegenerative pathways in a human iPSC-derived neuronal model of cerebral malaria. Sci Rep 2024; 14:24959. [PMID: 39438620 PMCID: PMC11496667 DOI: 10.1038/s41598-024-76259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria caused by Plasmodium falciparum infection results in severe complications including cerebral malaria (CM), in which approximately 30% of patients end up with neurological sequelae. Sparse in vitro cell culture-based experimental models which recapitulate the molecular basis of CM in humans has impeded progress in our understanding of its etiology. This study employed healthy human induced pluripotent stem cells (iPSCs)-derived neuronal cultures stimulated with hemozoin (HMZ) - the malarial toxin as a model for CM. Secretome, qRT-PCR, Metascape, and KEGG pathway analyses were conducted to assess elevated proteins, genes, and pathways. Neuronal cultures treated with HMZ showed enhanced secretion of interferon-gamma (IFN-γ), interleukin (IL)1-beta (IL-1β), IL-8 and IL-16. Enrichment analysis revealed malaria, positive regulation of cytokine production and positive regulation of mitogen-activated protein kinase (MAPK) cascade which confirm inflammatory response to HMZ exposure. KEGG assessment revealed up-regulation of malaria, MAPK and neurodegenerative diseases-associated pathways which corroborates findings from previous studies. Additionally, HMZ induced DNA damage in neurons. This study has unveiled that exposure of neuronal cultures to HMZ, activates molecules and pathways similar to those observed in CM and neurodegenerative diseases. Furthermore, our model is an alternative to rodent experimental models of CM.
Collapse
Affiliation(s)
- Abida Islam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Akua Afriyie Karikari
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany.
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London - EGA Institute for Women's Health, 20 Guilford Street, WC1N 1DZ, London, United Kingdom.
| |
Collapse
|
2
|
Hristovska I, Binette AP, Kumar A, Gaiteri C, Karlsson L, Strandberg O, Janelidze S, van Westen D, Stomrud E, Palmqvist S, Ossenkoppele R, Mattsson-Carlgren N, Vogel JW, Hansson O. Identification of distinct and shared biomarker panels in different manifestations of cerebral small vessel disease through proteomic profiling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.10.24308599. [PMID: 38947084 PMCID: PMC11213103 DOI: 10.1101/2024.06.10.24308599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator. cSVD-associated proteins formed a co-abundance network linked to metabolism and enriched in endothelial and arterial smooth muscle cells, showing elevated levels at early disease manifestations. Later disease stages involved changes in microglial proteins, associated with longitudinal WML progression, and changes in neuronal proteins mediating WML-associated cognitive decline. These findings provide an atlas of novel cSVD biomarkers and a promising roadmap for the next generation of cSVD therapeutics.
Collapse
Affiliation(s)
- Ines Hristovska
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Atul Kumar
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
- Rush University Alzheimer's Disease Center, Rush University, Chicago IL, USA
| | - Linda Karlsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University
- Imaging and Function, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
3
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
4
|
Cheng X, Xie Y, Wang A, Zhu C, Yan F, Pei W, Zhang X. Correlation between elevated serum interleukin-1β, interleukin-16 levels and psychiatric symptoms in patients with schizophrenia at different stages. BMC Psychiatry 2023; 23:396. [PMID: 37270510 DOI: 10.1186/s12888-023-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND There is increasing evidence that immune dysfunction plays an important role in the pathogenesis of schizophrenia. Meso Scale Discovery (MSD) is bioanalytical method, which can detect serum inflammatory factors in patients. MSD has higher sensitivities, capturing a narrower range of proteins compared to other methods typically used in similar studies. The present study was aimed to explore the correlation between the levels of serum inflammatory factors and psychiatric symptoms in patients with schizophrenia at different stages and investigate a wide panel of inflammatory factors as independent factors for the pathogenesis of schizophrenia. METHODS We recruited 116 participants, including patients with first-episode schizophrenia (FEG, n = 40), recurrence patients (REG, n = 40) with relapse-episode schizophrenia, and a control group (healthy people, HP, n = 36). Patients are diagnosed according to the DSM -V. The plasma levels of IFN-γ, IL-10, IL-1β, IL-2, IL-6, TNF-α, CRP, VEGF, IL-15, and IL-16 were tested by the MSD technique. Patient-related data was collected, including sociodemographic data, positive and negative symptom scale (PANSS), and brief psychiatric rating scale (BPRS) and subscale scores. The independent sample T test, χ2 test, Analysis of covariance (ANCOVA), the least significant difference method (LSD), Spearman's correlation test, binary logistic regression analysis and ROC curve analysis were used in this study. RESULTS There were significant differences in serum IL-1β (F = 2.37, P = 0.014) and IL-16 (F = 4.40, P < 0.001) levels among the three groups. The level of serum IL-1β in the first-episode group was significantly higher than in the recurrence group (F = 0.87, P = 0.021) and control group (F = 2.03, P = 0.013), but there was no significant difference between the recurrence group and control group (F = 1.65, P = 0.806). The serum IL-16 levels in the first-episode group (F = 1.18, P < 0.001) and the recurrence group (F = 0.83, P < 0.001) were significantly higher than in the control group, and there was no significant difference between the first-episode group and the recurrence group (F = 1.65, P = 0.61). Serum IL-1β was negatively correlated with the general psychopathological score (GPS) of PANSS (R=-0.353, P = 0.026). In the recurrence group, serum IL-16 was positively correlated with the negative score (NEG) of the PANSS scale (R = 0.335, P = 0.035) and negatively correlated with the composite score (COM) (R=-0.329, P = 0.038). In the study, IL-16 levels were an independent variable of the onset of schizophrenia both in the first-episode (OR = 1.034, P = 0.002) and recurrence groups (OR = 1.049, P = 0.003). ROC curve analysis showed that the areas under IL-16(FEG) and IL-16(REG) curves were 0.883 (95%CI:0.794-0.942) and 0.887 (95%CI:0.801-0.950). CONCLUSIONS Serum IL-1β and IL-16 levels were different between patients with schizophrenia and healthy people. Serum IL-1β levels in first-episode schizophrenia and serum IL-16 levels in relapsing schizophrenia were correlated with the parts of psychiatric symptoms. The IL-16 level may be an independent factor associating with the onset of schizophrenia.
Collapse
Affiliation(s)
- Xialong Cheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yu Xie
- Department of Psychology, School of Educational Science, Anhui Normal University, Wuhu, China
| | - Anzhen Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Fanfan Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Wenzhi Pei
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Anhui Mental Health Center, Hefei, China.
- Hefei Fourth People's Hospital, Hefei, China.
- Anhui Clinical Research Center for Mental Disorders, Hefei, China.
| |
Collapse
|
5
|
Russo C, Valle MS, Casabona A, Malaguarnera L. Chitinase Signature in the Plasticity of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24076301. [PMID: 37047273 PMCID: PMC10094409 DOI: 10.3390/ijms24076301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Several reports have pointed out that Chitinases are expressed and secreted by various cell types of central nervous system (CNS), including activated microglia and astrocytes. These cells play a key role in neuroinflammation and in the pathogenesis of many neurodegenerative disorders. Increased levels of Chitinases, in particular Chitotriosidase (CHIT-1) and chitinase-3-like protein 1 (CHI3L1), have been found increased in several neurodegenerative disorders. Although having important biological roles in inflammation, to date, the molecular mechanisms of Chitinase involvement in the pathogenesis of neurodegenerative disorders is not well-elucidated. Several studies showed that some Chitinases could be assumed as markers for diagnosis, prognosis, activity, and severity of a disease and therefore can be helpful in the choice of treatment. However, some studies showed controversial results. This review will discuss the potential of Chitinases in the pathogenesis of some neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, to understand their role as distinctive biomarkers of neuronal cell activity during neuroinflammatory processes. Knowledge of the role of Chitinases in neuronal cell activation could allow for the development of new methodologies for downregulating neuroinflammation and consequently for diminishing negative neurological disease outcomes.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2023; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Kobayashi Y, Ishikawa N, Tateishi Y, Izumo H, Eto S, Eguchi Y, Okada S. Evaluation of cerebrospinal fluid biomarkers in pediatric patients with spinal muscular atrophy. Brain Dev 2023; 45:2-7. [PMID: 36210235 DOI: 10.1016/j.braindev.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare neuromuscular disorder characterised by muscle weakness and muscle atrophy and classified into five known subtypes based on clinical features. The recent development of novel drugs to treat SMA has been encouraging, and nusinersen is the first drug approved to treat SMA. OBJECTIVE To explore cerebrospinal fluid (CSF) biomarkers of SMA and investigate their relationship with symptoms and the treatment response in pediatric patients. METHODS We analyzed the CSF levels of chitotriosidase 1 (CHIT1) and inflammatory cytokines (tumor necrosis factor [TNF]-α and interferon [INF]-γ) using enzyme-linked immunosorbent assays in pediatric SMA patients treated at Hiroshima University Hospital over 2 years. RESULTS This study analyzed pediatric SMA patients. While the CSF inflammatory cytokines (TNF-α and INF-γ) in these SMA children were unchanged, the CHIT1 levels decreased significantly from year 1 to 2 of treatment. We also found a trend toward an inverse correlation between the motor function score (HINE-2 scores) and CHIT1 level from year 1 to 2 of treatment. CONCLUSIONS CHIT1 may be a CSF biomarker of the treatment response in pediatric SMA.
Collapse
Affiliation(s)
| | - Nobutsune Ishikawa
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichi Tateishi
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroki Izumo
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Syohei Eto
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuta Eguchi
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
8
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Musumeci G, Vecchio M, Li Volti G, Tibullo D, Broggi G, Caltabiano R, Ulivieri M, Kazakova M, Parenti R, Vicario N, Fazio F, Di Rosa M. Sex-dependent neuro-deconvolution analysis of Alzheimer's disease brain transcriptomes according to CHI3L1 expression levels. J Neuroimmunol 2022; 373:577977. [PMID: 36228382 DOI: 10.1016/j.jneuroim.2022.577977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, 95100 Catania, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, 95123, Catania, Italy
| | - Martina Ulivieri
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Maria Kazakova
- Department of Medical Biology, Medical University, Plovdiv, 4002 Plovdiv, Bulgaria; Research Institute, Medical University-, Plovdiv, 4002 Plovdiv, Bulgaria
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fazio
- University of California San Diego, Department of Psychiatry, Health Science, San Diego, La Jolla, CA, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
9
|
Sun L, Wang X, Wang X, Cui X, Li G, Wang L, Wang L, Song M, Yu L. Genome-wide DNA methylation profiles of autism spectrum disorder. Psychiatr Genet 2022; 32:131-145. [PMID: 35353793 DOI: 10.1097/ypg.0000000000000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We aimed to identify differentially methylated genes and related signaling pathways in autism spectrum disorder (ASD). METHODS First, the DNA methylation profile in the brain samples (GSE131706 and GSE80017) and peripheral blood samples (GSE109905) was downloaded from the Gene Expression Omnibus database (GEO) dataset, followed by identification of differentially methylated genes and functional analysis. Second, the GSE109905 data set was used to further validate the methylation state and test the ability to diagnose disease of identified differentially methylated genes. Third, expression measurement of selected differentially methylated genes was performed in whole blood from an independent sample. Finally, protein-protein interaction (PPI) network of core differentially methylated genes was constructed. RESULTS Totally, 74 differentially methylated genes were identified in ASD, including 38 hypermethylated genes and 36 hypomethylated genes. 15 differentially methylated genes were further identified after validation in the GSE109905 data set. Among these, major histocompatibility complex (HLA)-DQA1 was involved in the molecular function of myosin heavy chain class II receptor activity; HLA-DRB5 was involved in the signaling pathways of cell adhesion molecules, Epstein-Barr virus infection and antigen processing and presentation. In the PPI analysis, the interaction pairs of HLA-DQA1 and HLA-DRB5, FMN2 and ACTR3, and CALCOCO2 and BAZ2B were identified. Interestingly, FMN2, BAZ2B, HLA-DRB5, CALCOCO2 and DUSP22 had a potential diagnostic value for patients with ASD. The expression result of four differentially methylated genes (HLA-DRB5, NTM, IL16 and COL5A3) in the independent sample was consistent with the integrated analysis. CONCLUSIONS Identified differentially methylated genes and enriched signaling pathway could be associated with ASD.
Collapse
Affiliation(s)
- Ling Sun
- Mental Health Center, The First Hospital of Hebei Medical University
- Medical Department
| | - Xueyi Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Xia Wang
- Child Health Department (Psychological Behavior Department)
| | | | | | - Le Wang
- Institute of Pediatric Research, Children's Hospital of Hebei Province, China
| | - Lan Wang
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Mei Song
- Mental Health Center, The First Hospital of Hebei Medical University
| | - Lulu Yu
- Mental Health Center, The First Hospital of Hebei Medical University
| |
Collapse
|
10
|
Chitinases and Chitinase-Like Proteins as Therapeutic Targets in Inflammatory Diseases, with a Special Focus on Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22136966. [PMID: 34203467 PMCID: PMC8268069 DOI: 10.3390/ijms22136966] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the β-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase), as well as several chitinase-like proteins (YKL-40, YKL-39, oviductin, and stabilin-interacting protein). The latter lack enzymatic activity but still display oligosaccharides-binding ability. The physiologic functions of chitinases are still unclear, but they have been shown to be involved in the pathogenesis of various human fibrotic and inflammatory disorders, particularly those of the lung (idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, sarcoidosis, and asthma) and the gastrointestinal tract (inflammatory bowel diseases (IBDs) and colon cancer). In this review, we summarize the current knowledge about chitinases, particularly in IBDs, and demonstrate that chitinases can serve as prognostic biomarkers of disease progression. Moreover, we suggest that the inhibition of chitinase activity may be considered as a novel therapeutic strategy for the treatment of IBDs.
Collapse
|
11
|
Chitotriosidase attenuates brain inflammation via HDAC3/NF-κB pathway in D-galactose and aluminum-induced rat model with cognitive impairments. Neurosci Res 2021; 172:73-79. [PMID: 34111442 DOI: 10.1016/j.neures.2021.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Chitotriosidase (CHIT1, chitinase 1) is increased in the cerebrospinal fluid and peripheral blood of Alzheimer's disease (AD) patients. Our previous study has shown that CHIT1 provides potential protection through microglial polarization and reduction of β-amyloid (Aβ) oligomers on rat models of AD. Histone deacetylase 3 (HDAC3) plays a significant role in the expression and regulation of proteins related to the pathophysiology of AD. In addition, nuclear factor-kappa B (NF-κB) signaling pathway activation in neurons is associated with the progression of AD. NF-κB activation is regulated by HDAC3 deacetylation. In the present study, we researched the role of CHIT1 in HDAC3/NF-κB signaling in D-galactose (D-gal) and aluminum-exposed rat model with cognitive impairments. Following CHIT1 treatment, we found that the protein and mRNA levels of HDAC3 and NF-κB were reduced, the expression level of IκBα increased, anti-inflammatory factors (Arg-1, IL-10, and CD206) were elevated while pro-inflammatory factors (TNF-a, iNOS, and IL-1β) were decreased in D-gal/aluminum-induced AD rats. These results indicate that CHIT1 can regulate brain inflammation via HDAC3/NF-κB p65 pathway, contributing to improvement of cognitive impairment.
Collapse
|
12
|
Brain CHID1 Expression Correlates with NRGN and CALB1 in Healthy Subjects and AD Patients. Cells 2021; 10:cells10040882. [PMID: 33924468 PMCID: PMC8069241 DOI: 10.3390/cells10040882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1. The genes of the first two have been extensively investigated while, on the contrary, little information is available on CHID1. In this manuscript, we conducted transcriptome meta-analysis on an extensive sample of brains of healthy control subjects (n = 1849) (NDHC) and brains of AD patients (n = 1170) in order to demonstrate CHID1 involvement. Our analysis revealed an inverse correlation between the brain CHID1 expression levels and the age of NDHC subjects. Significant differences were highlighted comparing CHID1 expression of NDHC subjects and AD patients. Exclusive in AD patients, the CHID1 expression levels were correlated positively to calcium-binding adapter molecule 1 (IBA1) levels. Furthermore, both in NDHC and in AD patient’s brains, the CHID1 expression levels were directly correlated with calbindin 1 (CALB1) and neurogranin (NRGN). According to brain regions, correlation differences were shown between the expression levels of CHID1 in prefrontal, frontal, occipital, cerebellum, temporal, and limbic system. Sex-related differences were only highlighted in NDHC. CHID1 represents a new chitinase potentially involved in the principal processes underlying Alzheimer’s disease.
Collapse
|
13
|
Schmitz NA, Thakare RP, Chung CS, Lee CM, Elias JA, Lee CG, LeBlanc BW. Chitotriosidase Activity Is Counterproductive in a Mouse Model of Systemic Candidiasis. Front Immunol 2021; 12:626798. [PMID: 33796101 PMCID: PMC8007879 DOI: 10.3389/fimmu.2021.626798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian cells do not produce chitin, an insoluble polymer of N-acetyl-D-glucosamine (GlcNAc), although chitin is a structural component of the cell wall of pathogenic microorganisms such as Candida albicans. Mammalian cells, including cells of the innate immune system elaborate chitinases, including chitotriosidase (Chit1), which may play a role in the anti-fungal immune response. In the current study, using knockout mice, we determined the role of Chit1 against systemic candidiasis. Chit1-deficient mice showed significant decrease in kidney fungal burden compared to mice expressing the functional enzyme. Using in vitro anti-candidal neutrophil functional assays, the introduction of the Chit1:chitin digestion end-product, chitobiose (N-acetyl-D-glucosamine dimer, GlcNAc2), decreased fungal-induced neutrophil swarming and Candida killing in vitro. Also, a role for the lectin-like binding site on the neutrophil integrin CR3 (Mac-1, CD11b/CD18) was found through physiological competitive interference by chitobiose. Furthermore, chitobiose treatment of wild type mice during systemic candidiasis resulted in the significant increase in fungal burden in the kidney. These data suggest a counterproductive role of Chit1 in mounting an efficient anti-fungal defense against systemic candidiasis.
Collapse
Affiliation(s)
- Nicholas A Schmitz
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Ritesh P Thakare
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Brian W LeBlanc
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
14
|
Madan K, Madan M, Sharma S, Paliwal S. Chitinases: Therapeutic Scaffolds for Allergy and Inflammation. ACTA ACUST UNITED AC 2020; 14:46-57. [PMID: 31934842 PMCID: PMC7509760 DOI: 10.2174/1872213x14666200114184054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022]
Abstract
Background: Chitinases are the evolutionary conserved glycosidic enzymes that are characterized by their ability to cleave the naturally abundant polysaccharide chitin. The potential role of chitinases has been identified in the manifestation of various allergies and inflammatory diseases. In recent years, chitinases inhibitors are emerging as an alluring area of interest for the researchers and scientists and there is a dire need for the development of potential and safe chitinase antagonists for the prophylaxis and treatment of several diseases. Objective: The present review expedites the role of chitinases and their inhibitors in inflammation and related disorders. Methods: At first, an exhaustive survey of literature and various patents available related to chitinases were carried out. Useful information on chitinases and their inhibitor was gathered from the authentic scientific databases namely SCOPUS, EMBASE, PUBMED, GOOGLE SCHOLAR, MEDLINE, EMBASE, EBSCO, WEB OF SCIENCE, etc. This information was further analyzed and compiled up to prepare the framework of the review article. The search strategy was conducted by using queries with key terms “ chitin”, “chitinase”, “chitotrisidase”, “acidic mammalian chitinase”, “chitinase inhibitors”, “asthma” and “chitinases associated inflammatory disorders”, etc. The patents were searched using the key terms “chitinases and uses thereof”, “chitinase inhibitors”, “chitin-chitinase associated pathological disorders” etc. from www.google.com/patents, www.freepatentsonline.com, and www.scopus.com. Results: The present review provides a vision for apprehending human chitinases and their participation in several diseases. The patents available also signify the extended role and effectiveness of chitinase inhibitors in the prevention and treatment of various diseases viz. asthma, acute and chronic inflammatory diseases, autoimmune diseases, dental diseases, neurologic diseases, metabolic diseases, liver diseases, polycystic ovary syndrome, endometriosis, and cancer. In this regard, extensive pre-clinical and clinical investigations are required to develop some novel, potent and selective drug molecules for the treatment of various inflammatory diseases, allergies and cancers in the foreseeable future. Conclusion: In conclusion, chitinases can be used as potential biomarkers in prognosis and diagnosis of several inflammatory diseases and allergies and the design of novel chitinase inhibitors may act as key and rational scaffolds in designing some novel therapeutic agents in the treatment of variety of inflammatory diseases.
Collapse
Affiliation(s)
- Kirtika Madan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Mansi Madan
- Dr. Ulhas Patil Medical College and Hospital, Jalgaon- 425309, Maharashtra, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| |
Collapse
|
15
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
16
|
Duarte-Guterman P, Albert AY, Inkster AM, Barha CK, Galea LAM. Inflammation in Alzheimer's Disease: Do Sex and APOE Matter? J Alzheimers Dis 2020; 78:627-641. [PMID: 33016923 DOI: 10.3233/jad-200982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) disproportionately affects females with steeper cognitive decline and more neuropathology compared to males, which is exacerbated in females carrying the APOEɛ4 allele. The risk of developing AD is also higher in female APOEɛ4 carriers in earlier age groups (aged 65-75), and the progression from cognitively normal to mild cognitive impairment (MCI) and to AD may be influenced by sex. Inflammation is observed in AD and is related to aging, stress, and neuroplasticity, and although studies are scarce, sex differences are noted in inflammation. OBJECTIVE The objective of this study was to investigate underlying physiological inflammatory mechanisms that may help explain why there are sex differences in AD and APOEɛ4 carriers. METHODS We investigated, using the ADNI database, the effect of sex and APOE genotype (non-carriers or carriers of 1 and 2 APOEɛ4 alleles) and sex and diagnosis (cognitively normal (CN), MCI, AD) on CSF (N = 279) and plasma (N = 527) markers of stress and inflammation. RESULTS We found CSF IL-16 and IL-8 levels differed by sex and APOE genotype, as IL-16 was higher in female APOEɛ4 carriers compared to non-carriers, while the opposite pattern was observed in males with IL-8. Furthermore, females had on average higher levels of plasma CRP and ICAM1 but lower levels of CSF ICAM1, IL-8, IL-16, and IgA than males. Carrying APOEɛ4 alleles and diagnosis (MCI and AD) decreased plasma CRP in both sexes. CONCLUSION Sex and APOE genotype differences in CSF and plasma inflammatory biomarkers support that the underlying physiological changes during aging differ by sex and tissue origin.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y Albert
- Women's Health Research Institute of British Columbia, Vancouver, BC, Canada
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Cindy K Barha
- Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Varghese AM, Ghosh M, Bhagat SK, Vijayalakshmi K, Preethish-Kumar V, Vengalil S, Chevula PCR, Nashi S, Polavarapu K, Sharma M, Dhaliwal RS, Philip M, Nalini A, Alladi PA, Sathyaprabha TN, Raju TR. Chitotriosidase, a biomarker of amyotrophic lateral sclerosis, accentuates neurodegeneration in spinal motor neurons through neuroinflammation. J Neuroinflammation 2020; 17:232. [PMID: 32762702 PMCID: PMC7412641 DOI: 10.1186/s12974-020-01909-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cerebrospinal fluid from amyotrophic lateral sclerosis patients (ALS-CSF) induces neurodegenerative changes in motor neurons and gliosis in sporadic ALS models. Search for identification of toxic factor(s) in CSF revealed an enhancement in the level and enzyme activity of chitotriosidase (CHIT-1). Here, we have investigated its upregulation in a large cohort of samples and more importantly its role in ALS pathogenesis in a rat model. Methods CHIT-1 level in CSF samples from ALS (n = 158), non-ALS (n = 12) and normal (n = 48) subjects were measured using ELISA. Enzyme activity was also assessed (ALS, n = 56; non-ALS, n = 10 and normal-CSF, n = 45). Recombinant CHIT-1 was intrathecally injected into Wistar rat neonates. Lumbar spinal cord sections were stained for Iba1, glial fibrillary acidic protein and choline acetyl transferase to identify microglia, astrocytes and motor neurons respectively after 48 h of injection. Levels of tumour necrosis factor-α and interleukin-6 were measured by ELISA. Findings CHIT-1 level in ALS-CSF samples was increased by 20-fold and it can distinguish ALS patients with a sensitivity of 87% and specificity of 83.3% at a cut off level of 1405.43 pg/ml. Enzyme activity of CHIT-1 was also 15-fold higher in ALS-CSF and has a sensitivity of 80.4% and specificity of 80% at cut off value of 0.1077989 μmol/μl/min. Combining CHIT-1 level and activity together gave a positive predictive value of 97.78% and negative predictive value of 100%. Administration of CHIT-1 increased microglial numbers and astrogliosis in the ventral horn with a concomitant increase in the levels of pro-inflammatory cytokines. Amoeboid-shaped microglial and astroglial cells were also present around the central canal. CHIT-1 administration also resulted in the reduction of motor neurons. Conclusions CHIT-1, an early diagnostic biomarker of sporadic ALS, activates glia priming them to attain a toxic phenotype resulting in neuroinflammation leading to motor neuronal death.
Collapse
Affiliation(s)
- Anu Mary Varghese
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Mausam Ghosh
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Savita Kumari Bhagat
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Veeramani Preethish-Kumar
- Department of Clinical Neuroscience, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Pradeep-Chandra-Reddy Chevula
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Meenakshi Sharma
- Division of Non Communicable Disease, Indian Council of Medical Research, New Delhi, India
| | | | - Mariamma Philip
- Department of Biostatistics, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Phalguni Anand Alladi
- Department of Clinical Pharmacology & Neurotoxicology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Talakad N Sathyaprabha
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
18
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
19
|
Chiarini A, Armato U, Hu P, Dal Prà I. CaSR Antagonist (Calcilytic) NPS 2143 Hinders the Release of Neuroinflammatory IL-6, Soluble ICAM-1, RANTES, and MCP-2 from Aβ-Exposed Human Cortical Astrocytes. Cells 2020; 9:cells9061386. [PMID: 32498476 PMCID: PMC7349863 DOI: 10.3390/cells9061386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Available evidence shows that human cortical neurons’ and astrocytes’ calcium-sensing receptors (CaSRs) bind Amyloid-beta (Aβ) oligomers triggering the overproduction/oversecretion of several Alzheimer’s disease (AD) neurotoxins—effects calcilytics suppress. We asked whether Aβ•CaSR signaling might also play a direct pro-neuroinflammatory role in AD. Cortical nontumorigenic adult human astrocytes (NAHAs) in vitro were untreated (controls) or treated with Aβ25–35 ± NPS 2143 (a calcilytic) and any proinflammatory agent in their protein lysates and growth media assayed via antibody arrays, enzyme-linked immunosorbent assays (ELISAs), and immunoblots. Results show Aβ•CaSR signaling upregulated the synthesis and release/shedding of proinflammatory interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) (holoprotein and soluble [s] fragment), Regulated upon Activation, normal T cell Expressed and presumably Secreted (RANTES), and monocyte chemotactic protein (MCP)-2. Adding NPS 2143 (i) totally suppressed IL-6′s oversecretion while remarkably reducing the other agents’ over-release; and (ii) more effectively than Aβ alone increased over controls the four agents’ distinctive intracellular accumulation. Conversely, NPS 2143 did not alter Aβ-induced surges in IL-1β, IL-3, IL-8, and IL-16 secretion, consequently revealing their Aβ•CaSR signaling-independence. Finally, Aβ25–35 ± NPS 2143 treatments left unchanged MCP-1′s and TIMP-2′s basal expression. Thus, NAHAs Aβ•CaSR signaling drove four proinflammatory agents’ over-release that NPS 2143 curtailed. Therefore, calcilytics would also abate NAHAs’ Aβ•CaSR signaling direct impact on AD’s neuroinflammation.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Correspondence: (A.C.); (I.D.P.); Tel.: +39-045-802-7646 (A.C.); +39-045-802-7161 (I.D.P)
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Burns Department, Shenzhen Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China
| | - Peng Hu
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, Medical School, University of Verona, Veneto, 37134 Verona, Italy; (U.A.); (P.H.)
- Burns Department, Shenzhen Second People’s Hospital, University of Shenzhen, Shenzhen 518000, China
- Correspondence: (A.C.); (I.D.P.); Tel.: +39-045-802-7646 (A.C.); +39-045-802-7161 (I.D.P)
| |
Collapse
|
20
|
Gaur N, Perner C, Witte OW, Grosskreutz J. The Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis: Signals From the CNS and Beyond. Front Neurol 2020; 11:377. [PMID: 32536900 PMCID: PMC7267218 DOI: 10.3389/fneur.2020.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition, most widely characterized by the selective vulnerability of motor neurons and the poor life expectancy of afflicted patients. Limited disease-modifying therapies currently exist, which only further attests to the substantial heterogeneity associated with this disease. In addition to established prognostic factors like genetic background, site of onset, and age at onset, wide consensus on the role of neuroinflammation as a disease exacerbator and driver has been established. In lieu of this, the emerging literature on chitinases in ALS is particularly intriguing. Individual groups have reported substantially elevated chitotriosidase (CHIT1), chitinase-3-like-1 (CHI3L1), and chitinase-3-like-2 (CHI3L2) levels in the cerebrospinal, motor cortex, and spinal cord of ALS patients with multiple—and often conflicting—lines of evidence hinting at possible links to disease severity and progression. This mini-review, while not exhaustive, will aim to discuss current evidence on the involvement of key chitinases in ALS within the wider framework of other neurodegenerative conditions. Implications for understanding disease etiology, developing immunomodulatory therapies and biomarkers, and other translational opportunities will be considered.
Collapse
Affiliation(s)
- Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Caroline Perner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, United States
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
21
|
Garrett MD. Multiple Causes of Dementia as Engineered Senescence. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
All traumas—cranial, cardiovascular, hormone, viral, bacterial, fungi, parasites, misfolded protein, genetic, behavior, environmental and medication—affect the brain. This paper itemizes studies showing the many different causes of dementia including Alzheimer’s disease. Causes interact with each other, act sequentially by preparing the optimal conditions for its successor, initiate other diseases, allow for other traumas to accumulate and degrade protective features of the brain. Since such age-related cognitive impairment is not exclusively a human attribute there might be support for an evolutionary theory of dementia. Relying on theories of antagonistic pleiotropy and polymorphism, the brain has been designed to sequester trauma. Because of increased longevity, the short-term tactic of sequestering trauma becomes a long-term liability. We are engineered to sequester these insults until a tipping point is reached. Dementia is an evolutionary trade-off for longevity. We cannot cure dementia without understanding the overall biology of aging.
Collapse
|
22
|
Chitotriosidase enhances TGFβ-Smad signaling and uptake of β-amyloid in N9 microglia. Neurosci Lett 2018; 687:99-103. [PMID: 30248366 DOI: 10.1016/j.neulet.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
TGFβ-Smad signaling is involved in the modulation of β-amyloid (Aβ) clearance in microglia. This signaling is impaired in the brain of Alzheimer's disease (AD). Chitotriosidase (CHIT1) is elevated in the cerebrospinal fluid and peripheral blood of AD patients, and has been reported to augment TGFβ signaling in fibroblast and T cells. In this study, we investigated the role of CHIT1 in TGFβ-Smad signaling and Aβ phagocytosis in N9 microglia. We found that CHIT1 significantly enhanced TGFβ1-induced expression of TβRI (TGFβ receptor I) and activation of Smad signaling. CHIT1 did not affect Aβ uptake in microglia by itself, but did enhance TGFβ1-induced phagocytosis of Aβ, which was blocked by pretreatment with SB431542 (TβRI inhibitor). These results indicate that CHIT1 may play a protective role in Aβ clearance by enhancing TGFβ signaling in microglia.
Collapse
|
23
|
Rakic S, Hung YMA, Smith M, So D, Tayler HM, Varney W, Wild J, Harris S, Holmes C, Love S, Stewart W, Nicoll JAR, Boche D. Systemic infection modifies the neuroinflammatory response in late stage Alzheimer's disease. Acta Neuropathol Commun 2018; 6:88. [PMID: 30193587 PMCID: PMC6127939 DOI: 10.1186/s40478-018-0592-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 02/04/2023] Open
Abstract
Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer’s disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflammation, in the late-stage of the disease. Sections of cerebral cortex and underlying white matter from controls and Alzheimer's patients who died with or without a terminal systemic infection were immunolabelled and quantified for: (i) Αβ and phosphorylated-tau; (ii) the inflammation-related proteins Iba1, CD68, HLA-DR, FcγRs (CD64, CD32a, CD32b, CD16), CHIL3L1, IL4R and CCR2; and (iii) T-cell marker CD3. In Alzheimer's disease, the synaptic proteins synaptophysin and PSD-95 were quantified by ELISA, and the inflammatory proteins and mRNAs by MesoScale Discovery Multiplex Assays and qPCR, respectively. Systemic infection in Alzheimer's disease was associated with decreased CD16 (p = 0.027, grey matter) and CD68 (p = 0.015, white matter); increased CD64 (p = 0.017, white matter) as well as increased protein expression of IL6 (p = 0.047) and decreased IL5 (p = 0.007), IL7 (p = 0.002), IL12/IL23p40 (p = 0.001), IL15 (p = 0.008), IL16 (p < 0.001) and IL17A (p < 0.001). Increased expression of anti-inflammatory genes CHI3L1 (p = 0.012) and IL4R (p = 0.004) were detected in this group. T-cell recruitment to the brain was reduced when systemic infection was present. However, exposure to systemic infection did not modify the pathology. In Alzheimer's disease, CD68 (p = 0.026), CD64 (p = 0.002), CHI3L1 (p = 0.016), IL4R (p = 0.005) and CCR2 (p = 0.010) were increased independently of systemic infection. Our findings suggest that systemic infections modify neuroinflammatory processes in Alzheimer's disease. However, rather than promoting pro-inflammatory changes, as observed in experimental models, they seem to promote an anti-inflammatory, potentially immunosuppressive, environment in the human brain.
Collapse
|
24
|
Abstract
Various fungi and bacteria can colonize in the brain and produce physical alterations seen in Alzheimer’s disease (AD). Environmental and genetic factors affect the occurrence of fungal colonization, and how fungi can grow, enter the brain, and interact with the innate immune system. The essence of AD development is the defeat of the innate immune system, whether through vulnerable patient health status or treatment that suppresses inflammation by suppressing the innate immune system. External and mechanical factors that lead to inflammation are a door for pathogenic opportunity. Current research associates the presence of fungi in the etiology of AD and is shown in cerebral tissue at autopsy. From the time of the discovery of AD, much speculation exists for an infective cause. Identifying any AD disease organism is obscured by processes that can take place over years. Amyloid protein deposits are generally considered to be evidence of an intrinsic response to stress or imbalance, but instead amyloid may be evidence of the innate immune response which exists to destroy fungal colonization through structural interference and cytotoxicity. Fungi can remain ensconced for a long time in niches or inside cells, and it is the harboring of fungi that leads to repeated reinfection and slow wider colonization that eventually leads to a grave outcome. Although many fungi and bacteria are associated with AD affected tissues, discussion here focuses on Candida albicans as the archetype of human fungal pathology because of its wide proliferation as a commensal fungus, extensive published research, numerous fungal morphologies, and majority proliferation in AD tissues.
Collapse
Affiliation(s)
- Bodo Parady
- Children's Hospital Oakland Research Institute, Oakland, CA, USA.,Visiting Scholar, University of California, Berkeley, Berkeley CA, USA
| |
Collapse
|
25
|
Steinacker P, Verde F, Fang L, Feneberg E, Oeckl P, Roeber S, Anderl-Straub S, Danek A, Diehl-Schmid J, Fassbender K, Fliessbach K, Foerstl H, Giese A, Jahn H, Kassubek J, Kornhuber J, Landwehrmeyer GB, Lauer M, Pinkhardt EH, Prudlo J, Rosenbohm A, Schneider A, Schroeter ML, Tumani H, von Arnim CAF, Weishaupt J, Weydt P, Ludolph AC, Yilmazer Hanke D, Otto M. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry 2018; 89:239-247. [PMID: 29142138 DOI: 10.1136/jnnp-2017-317138] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Neurochemical markers of amyotrophic lateral sclerosis (ALS) that reflect underlying disease mechanisms might help in diagnosis, staging and prediction of outcome. We aimed at determining the origin and differential diagnostic and prognostic potential of the putative marker of microglial activation chitotriosidase (CHIT1). METHODS Altogether 316 patients were included, comprising patients with sporadic ALS, ALS mimics (disease controls (DCo)), frontotemporal lobar degeneration (FTLD), Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD), Parkinson's disease (PD) and healthy controls (Con). CHIT1 and neurofilament levels were determined in cerebrospinal fluid (CSF) and blood and analysed with regard to diagnostic sensitivity and specificity and prognostic performance. Additionally, postmortem tissue was analysed for CHIT1 expression. RESULTS In ALS, CHIT1 CSF levels were higher compared with Con (p<0.0001), DCo (p<0.05) and neurodegenerative diseases (AD p<0.05, PD p<0.01, FTLD p<0.0001) except CJD. CHIT1 concentrations were correlated with ALS disease progression and severity but not with the survival time, as did neurofilaments. Serum CHIT1 levels were not different in ALS compared with any other study group. In the spinal cord of patients with ALS, but not Con, AD or CJD cases, CHIT1 was expressed in the corticospinal tract and CHIT1 staining colocalised with markers of microglia (IBA1) and macrophages (CD68). CONCLUSIONS CHIT1 concentrations in the CSF of patients with ALS may reflect the extent of microglia/macrophage activation in the white matter of the spinal cord. CHIT1 could be a potentially useful marker for differential diagnosis and prediction of disease progression in ALS and, therefore, seems suitable as a supplemental marker for patient stratification in therapeutic trials.
Collapse
Affiliation(s)
| | - Federico Verde
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lubin Fang
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, University of Ulm, Ulm, Germany.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians Universitat, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg/Saar, Germany
| | - Klaus Fliessbach
- Department of Psychiatry and Psychotherapy, Universityof Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Hans Foerstl
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Holger Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Munich, Germany
| | | | - Martin Lauer
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Johannes Prudlo
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Departmant of Neurology, Rostock University Medical Center, Rostock, Germany
| | | | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | - Patrick Weydt
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
26
|
Abstract
Inflammasomes are responsible for the maturation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-18, and IL-33 and activation of inflammatory cell death, pyroptosis. They assemble in response to cellular infection and stress or to tissue damage, promote inflammatory reactions, and are important in regulating innate immunity particularly by acting as platforms for activation of caspase proteases. They appear to be involved in several pathological processes activated by microbes including Alzheimer's disease (AD). Best characterized in microbial pathogenesis is the nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3) inflammasome. AD is a neurodegenerative condition in which the neuropathological hallmarks are the deposition of amyloid-β (Aβ) and hyperphosphorylated tau protein coated neurofibrillary tangles. For decades, the role of the innate immune system in the etiology of AD was considered less important, but the recently discovered inflammatory genes by genome-wide association studies driving inflammation in this disease has changed this view. Innate immune inflammatory activity in the AD brain can result from the pathological hallmark protein Aβ as well as from specific bacterial infections that tend to possess weak immunostimulatory responses for peripheral blood myeloid cell recruitment to the brain. The weak immunostimulatory activity is a consequence of their immune evasion strategies and survival. In this review we discuss the possibility that inflammasomes, particularly via the NLR family of proteins NLRP3 are involved in the pathogenesis of AD. In addition, we discuss the plausible contribution of specific bacteria playing a role in influencing the activity of the NLRP3 inflammasome to AD progression.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
27
|
Kzhyshkowska J, Gratchev A, Goerdt S. Human Chitinases and Chitinase-Like Proteins as Indicators for Inflammation and Cancer. Biomark Insights 2017. [DOI: 10.1177/117727190700200023] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human Glyco_18 domain-containing proteins constitute a family of chitinases and chitinase-like proteins. Chitotriosidase and AMCase are true enzymes which hydrolyse chitin and have a C-terminal chitin-binding domain. YKL-40, YKL-39, SI-CLP and murine YM1/2 proteins possess solely Glyco_18 domain and do not have the hydrolytic activity. The major sources of Glyco_18 containing proteins are macrophages, neutrophils, epithelial cells, chondrocytes, synovial cells, and cancer cells. Both macrophages and neutrophils use the regulated secretory mechanism for the release of Glyco_18 containing proteins. Glyco_18 containing proteins are established biomarkers for human diseases. Chitotriosidase is overproduced by lipid-laden macrophages and is a major marker for the inherited lysosomal storage Gaucher disease. AMCase and murine lectin YM1 are upregulated in Th2-environment, and enzymatic activity of AMCase contributes to asthma pathogenesis. YKL proteins act as soluble mediators for the cell proliferation and migration, and are also involved in rheumatoid arthritis, inflammatory bowel disease, hepatic fibrosis and cirrhosis. Chitotriosidase and YKL-40 reflect the macrophage activation in atherosclerotic plaques. Serum level of YKL-40 is a diagnostic and prognostic marker for numerous types of solid tumors. YKL-39 is a marker for the activation of chondrocytes and the progression of the osteoarthritis in human. Recently identified SI-CLP is upregulated by Th2 cytokine IL-4 as well as by glucocorticoids. This unique feature of SI-CLP makes it an attractive candidate for the examination of individual sensitivity of patients to glucocorticoid treatment and prediction of side effects of glucocorticoid therapy. Human chitinases and chitinase-like proteins are found in tissues and circulation, and can be detected by non-invasive technologies.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| | - Alexei Gratchev
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| | - Sergij Goerdt
- Department of Dermatology and Allergology, University Medical Centre Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim D-68167, Germany
| |
Collapse
|
28
|
Magalhães TNC, Weiler M, Teixeira CVL, Hayata T, Moraes AS, Boldrini VO, dos Santos LM, de Campos BM, de Rezende TJR, Joaquim HPG, Talib LL, Forlenza OV, Cendes F, Balthazar MLF. Systemic Inflammation and Multimodal Biomarkers in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Mol Neurobiol 2017; 55:5689-5697. [DOI: 10.1007/s12035-017-0795-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022]
|
29
|
Barschke P, Oeckl P, Steinacker P, Ludolph A, Otto M. Proteomic studies in the discovery of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 2017; 14:769-777. [PMID: 28799854 DOI: 10.1080/14789450.2017.1365602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a progressive degenerative motor neuron disease, which usually leads to death within a few years. The diagnosis is mainly based on clinical symptoms and there is a need for ALS-specific biomarkers to make an early and precise diagnosis, for development of disease-modifying drugs and to gain new insights into pathophysiology. Areas covered: In the present review, we summarize studies using mass spectrometric (MS) approaches to identify protein alterations in the cerebrospinal fluid (CSF) of ALS patients. In total, we identified 11 studies fulfilling our criteria by searching in the PubMed database using the keywords 'ALS' and 'CSF' combined with 'proteome', 'proteomic', 'mass spectrometry' or 'protein biomarker'. Ten proteins were differently regulated in ALS CSF compared to controls in at least 2 studies. We will discuss the relevance of the identified proteins regarding the frequency of identification, extent of alteration and brain-specificity. Expert commentary: Most of the identified CSF biomarker candidates are irreproducible or mainly blood-derived. We assign the missing success of CSF proteomic studies in biomarker discovery to a lack of sensitivity, unsuitable normalization, low quality assurance and variations originating from sample preparation. These issues must be improved in future proteomic studies in CSF.
Collapse
Affiliation(s)
- Peggy Barschke
- a Department of Neurology , Ulm University Hospital , Ulm , Germany
| | - Patrick Oeckl
- a Department of Neurology , Ulm University Hospital , Ulm , Germany
| | - Petra Steinacker
- a Department of Neurology , Ulm University Hospital , Ulm , Germany
| | - Albert Ludolph
- a Department of Neurology , Ulm University Hospital , Ulm , Germany
| | - Markus Otto
- a Department of Neurology , Ulm University Hospital , Ulm , Germany
| |
Collapse
|
30
|
Wijesekara N, Ahrens R, Sabale M, Wu L, Ha K, Verdile G, Fraser PE. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model. FASEB J 2017; 31:5409-5418. [PMID: 28808140 DOI: 10.1096/fj.201700431r] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) present a significant risk to each other. AD and T2D are characterized by deposition of cerebral amyloid-β (Aβ) and pancreatic human islet amyloid polypeptide (hIAPP), respectively. We investigated the role of amyloidogenic proteins in the interplay between these diseases. A novel double transgenic mouse model combining T2D and AD was generated and characterized. AD-related amyloid transgenic mice coexpressing hIAPP displayed peripheral insulin resistance, hyperglycemia, and glucose intolerance. Aβ and IAPP amyloid co-deposition increased tau phosphorylation, and a reduction in pancreatic β-cell mass was detected in islets. Increased brain Aβ deposition and tau phosphorylation and reduced insulin levels and signaling were accompanied by extensive synaptic loss and decreased neuronal counts. Aβ immunization rescued the peripheral insulin resistance and hyperglycemia, suggesting a role for Aβ in T2D pathogenesis for individuals predisposed to AD. These findings demonstrate that Aβ and IAPP are key factors in the overlapping pathologies of AD and T2D.-Wijesekara, N., Ahrens, R., Sabale, M., Wu, L., Ha, K., Verdile, G., Fraser, P. E. Amyloid-β and islet amyloid pathologies link Alzheimer's disease and type 2 diabetes in a transgenic model.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada;
| | - Rosemary Ahrens
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Miheer Sabale
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kathy Ha
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. J Neurol Sci 2017; 376:242-254. [PMID: 28431620 DOI: 10.1016/j.jns.2017.03.031] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder and the most common form of neurodegenerative dementia. Several genetic, environmental, and physiological factors, including inflammations and metabolic influences, are involved in the progression of AD. Inflammations are composed of complicated networks of many chemokines and cytokines with diverse cells. Inflammatory molecules are needed for the protection against pathogens, and maintaining their balances is important for normal physiological function. Recent studies demonstrated that inflammation may be involved in neurodegenerative dementia. Cellular immune components, such as microglia or astrocytes, mediate the release of inflammatory molecules, including tumor necrosis factor, growth factors, adhesion molecules, or chemokines. Over- and underexpression of pro- and anti-inflammatory molecules, respectively, may result in neuroinflammation and thus disease initiation and progression. In addition, levels of several inflammatory factors were reported to be altered in the brain or bodily fluids of patients with AD, reflecting their neuropathological changes. Therefore, simultaneous detection of several inflammatory molecules in the early or pre-symptomatic stage may improve the early diagnosis of AD. Further studies are needed to determine, how induction or inhibition of inflammatory factors could be used for AD therapies. This review summarizes the role or possible role of immune cells and inflammatory molecules in disease progression or prevention.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Yin H, Zhang Y, Hua L, Li J, Zeng Z, Yang X, Gong B, Geng S, Liu Y, Zhang H, Liu Y, Zhao J, Wang Y. Relationship of polymorphisms and haplotype in interleukin-16 and adiponectin gene with late-onset Alzheimer's disease risk. Oncotarget 2017; 8:79157-79164. [PMID: 29108295 PMCID: PMC5668028 DOI: 10.18632/oncotarget.16297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/24/2017] [Indexed: 01/19/2023] Open
Abstract
Aims To investigate the impact of Interleukin-16 (IL- 16) and Adiponectin (ANP) gene single nucleotide polymorphisms (SNPs), gene- gene interactions and haplotype on late-onset Alzheimer’s disease (LOAD) risk. Methods Hardy-Weinberg equilibrium (HWE), haplotype and pairwise linkage disequilibrium (LD) analysis were investigated by using SNPstats (available online at http://bioinfo.iconcologia.net/SNPstats). Generalized multifactor dimensionality reduction (GMDR) was used to examine interaction among 4 SNPs, odds ratio (OR) and 95% confident interval (95%CI) were calculated by logistic regression model. Results LOAD risk was significantly higher in carriers of rs266729- G allele than those with CC genotype (CG+ GG versus CC), OR (95%CI) =1.61 (1.26-1.96), and higher in carriers of rs1501299- T allele, OR (95%CI) = 1.62 (1.32-2.12), lower in carriers of rs4072111- T allele, adjusted OR (95%CI) =0.65 (0.44-0.93). We also found a significant gene- gene interaction between rs266729 and rs4072111. Participants with CG or GG of rs266729 and CC of rs4072111 genotype have the highest LOAD risk, OR (95%CI) = 2.62 (1.64 -3.58). Haplotype containing the rs266729- G and rs1501299- T alleles were associated with increased LOAD risk, OR (95%CI)= 1.83 (1.32- 2.43), and haplotype containing the rs1131445- C and rs4072111- T alleles were associated with decreased LOAD risk, OR (95%CI)= 0.53 (0.18- 0.95). Conclusions We concluded that rs266729 and rs1501299 minor alleles were associated with increased LOAD risk, but rs4072111 minor allele was associated with decreased LOAD risk. We also found that interaction involving rs266729 and rs4072111, and haplotype combinations were associated with LOAD risk.
Collapse
Affiliation(s)
- Honglei Yin
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Yuzhen Zhang
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Linlin Hua
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinfeng Li
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Zhilei Zeng
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaopeng Yang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Gong
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Shuang Geng
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Yajun Liu
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Hui Zhang
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Yanqiu Liu
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Jing Zhao
- Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| | - Yunliang Wang
- Department of Neurology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Neurology, PLA 148 Hospital, Zi Bo, Shandong, China
| |
Collapse
|
33
|
Sanfilippo C, Nunnari G, Calcagno A, Malaguarnera L, Blennow K, Zetterberg H, Di Rosa M. The chitinases expression is related to Simian Immunodeficiency Virus Encephalitis (SIVE) and in HIV encephalitis (HIVE). Virus Res 2017; 227:220-230. [PMID: 27794455 DOI: 10.1016/j.virusres.2016.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Human Immunodeficiency Virus (HIV) infection can induce neurocognitive complications classified as HIV-associated neurocognitive disorder (HAND). The chitinase family is associated with innate immunity cells and many infectious diseases. METHODS We analyzed microarray datasets obtained from NCBI in order to verify the expression of chitinase family genes in hippocampus of uninfected rhesus macaques versus those with histopathologic evidence of Simian Immunodeficiency Virus Encephalitis (SIVE). Moreover, we have analysed two human microarray datasets to verify the results obtained in macaques hippocampus affected by SIVE. For these studies, we have also used the open source tools Genome-scale Integrated Analysis of gene Networks in Tissues (GIANT) to identify the chitinase genes network. RESULTS CHIT1, CHI3L1 and CHI3L2 levels were significantly increased in SIVE hippocampus as compared to non-infected control specimens. Furthermore, we found a negative correlation between CHIA vs. Brain Viral Load (BVL). These data was confirmed partially in human brain section of HAD/HIVE subjects. Also, we showed that HIV-1 was able to modulate the expression of CHIT1, CHI3L1, CHI3L2 and CHID1 in human macrophages. CONCLUSIONS These results suggest that chitinase gene expression is altered in SIVE and in HAD/HIVE brain sections and call for more studies examining whether this is a protective immunological reaction or a destructive tissue response to encephalitis.
Collapse
Affiliation(s)
- C Sanfilippo
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Via Santa Sofia, 78, 95123, Catania, Italy
| | - G Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| |
Collapse
|
34
|
Azarsız E, Karaca N, Levent E, Kutukculer N, Sozmen E. Chitotriosidase enzyme activity: is this a possible chronic inflammation marker in children with common variable immunodeficiency and early atherosclerosis? Ann Clin Biochem 2016; 54:636-643. [PMID: 27705887 DOI: 10.1177/0004563216675647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Common variable immunodeficiency is a rare clinically symptomatic primary immunodeficiency disorder which manifests a wide variability of symptoms, complications. Atherosclerosis in common variable immunodeficiency patients has not been investigated yet contrary to other severe clinical complications. We aimed to investigate the chitotriosidase enzyme's role as an inflammation and atherosclerosis marker in paediatric common variable immunodeficiency patients. Methods Common variable immunodeficiency patients (n = 24) and healthy controls (n = 23) evaluated for chitotriosidase activity with other inflammation markers (hsCRP, myeloperoxidase, serum amyloid A, ferritin), lipid profile and echocardiographic findings (carotid artery intima media thickness - cIMT, brachial artery flow-mediated vazodilatation - FMD%). Results In patients, the mean chitotriosidase activity (8.98 ± 6.28) was significantly higher than the controls (5.17 ± 3.42) ( P = 0.014). Chitotriosidase showed positive relation with hs-CRP ( P = 0.011) and SAA ( P = 0.011) but had no relation with ferritin ( P = 0.155), HDL ( P = 0.152) or LDL-cholesterol ( P = 0.380). Mean cIMT increased in patients compared with the controls ( P < 0.001) but did not show any relation with chitotriosidase ( P = 0.546). FMD% decreased in patients ( P < 0.001) also showing no relation with chitotriosidase ( P = 0.298). Ventricular myocardial performance indexes had no significant difference, but RVEF% decreased in patients ( P = 0.043). Conclusions High chitotriosidase activity in common variable immunodeficiency patients demonstrated in vivo the presence of activated macrophages indicating ongoing inflammation. Echocardiographic diastolic functional deficiency, increased cIMT and decreased FMD% may be accepted as early atherosclerotic findings, but none of them showed relationship with chitotriosidase activities.
Collapse
Affiliation(s)
- Elif Azarsız
- 1 Department of Pediatrics, Pediatric Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Neslihan Karaca
- 2 Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Erturk Levent
- 3 Department of Pediatric Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- 2 Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Eser Sozmen
- 4 Department of Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
35
|
Sanfilippo C, Malaguarnera L, Di Rosa M. Chitinase expression in Alzheimer's disease and non-demented brains regions. J Neurol Sci 2016; 369:242-249. [DOI: 10.1016/j.jns.2016.08.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
|
36
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
37
|
Di Rosa M, Brundo VM, Malaguarnera L. New insights on chitinases immunologic activities. World J Immunol 2016; 6:96-104. [DOI: 10.5411/wji.v6.i2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/29/2015] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
Mammalian chitinases and the related chilectins (ChiLs) belong to the GH18 family, which hydrolyse the glycosidic bond of chitin by a substrate-assisted mechanism. Chitin the fundamental component in the coating of numerous living species is the most abundant natural biopolymer. Mounting evidence suggest that the function of the majority of the mammalian chitinases is not exclusive to catalyze the hydrolysis of chitin producing pathogens, but include crucial role specific in the immunologic activities. The chitinases and chitinase-like proteins are expressed in response to different proinflammatory cues in various tissues by activated macrophages, neutrophils and in different monocyte-derived cell lines. The mechanism and molecular interaction of chitinases in relation to immune regulation embrace bacterial infection, inflammation, dismetabolic and degenerative disease. The aim of this review is to update the reader with regard to the role of chitinases proposed in the recent innate and adaptive immunity literature. The deep scrutiny of this family of enzymes could be a useful base for further studies addressed to the development of potential procedure directing these molecules as diagnostic and prognostic markers for numerous immune and inflammatory diseases.
Collapse
|
38
|
Di Rosa M, Malaguarnera L. Chitotriosidase: A New Inflammatory Marker in Diabetic Complications. Pathobiology 2016; 83:211-9. [PMID: 27116685 DOI: 10.1159/000443932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Chitotriosidase (CHIT1) belongs to chitinase family. So far this enzyme has been the best investigated human chitinase regarding its biological activity and association with various disorders. In a healthy population, CHIT1 activity is very low and originates in the circulating polymorphonuclear cells. Conversely, during the development of acute/chronic inflammatory disorders, the enzymatic activity of CHIT1 increases significantly. Recently, CHIT1 has also been involved in the pathogenesis of diabetes mellitus (DM). Mounting evidence from experimental studies revealing the increase of CHIT1 levels in pathological conditions, such as atherosclerosis, coronary artery disease, acute ischemic stroke, cerebrovascular dementia, nonalcoholic fatty liver disease, and osteolytic processes suggest its critical role in the evolutions and complications of DM. This review is addressed to provide mechanistic insights by highlighting the relationship between CHIT1 and diabetes, and their contribution in the exacerbation of this disease.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | | |
Collapse
|
39
|
Time-Dependent Increase of Chitinase1 in APP/PS1 Double Transgenic Mice. Neurochem Res 2016; 41:1604-11. [DOI: 10.1007/s11064-016-1874-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
40
|
Di Rosa M, Distefano G, Zorena K, Malaguarnera L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology 2015; 221:399-411. [PMID: 26686909 DOI: 10.1016/j.imbio.2015.11.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Chitinases belonging to 18 glycosyl hydrolase family is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In humans, despite the absence of endogenous chitin, a number of Chitinases and Chitinase-like Proteins (C/CLPs) have been identified. Chitinases with enzymatic activity have a chitin binding domain containing six cysteine residues responsible for their binding to chitin. In contrast, CLPs do not contain such typical chitin-binding domains, but still can bind to chitin with high affinity. Molecular phylogenetic analyses suggest that active Chitinases result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. For the majority of the mammalian chitinases the last decades have witnessed the appearance of a substantial number of studies describing their expression differentially regulated during more specific immunologic activities. It is becoming increasingly clear that their function is not exclusive to catalyse the hydrolysis of chitin producing pathogens, but include crucial role in bacterial infections and inflammatory diseases. Here we provide an overview of all family members to shed light on the mechanisms and molecular interactions of Chitinases and CLPs in relation to immune response regulation, in order to delineate their future utilization as diagnostic and prognostic markers for numerous diseases.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Gisella Distefano
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology Medical University of Gdańsk, Poland
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy.
| |
Collapse
|
41
|
Evaluation of 24 Bp Duplication of Chitotriosidase Gene in Pulmonary Tuberculosis in Zahedan, Southeast Iran: A Preliminary Report. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2015. [DOI: 10.5812/archcid.25178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Anvar NE, Saliminejad K, Ohadi M, Kamali K, Daneshmand P, Khorshid HRK. Association between polymorphisms in Interleukin-16 gene and risk of late-onset Alzheimer's disease. J Neurol Sci 2015; 358:324-7. [PMID: 26386715 DOI: 10.1016/j.jns.2015.09.344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022]
Abstract
Cytokines play important roles in the inflammation pathways. Alzheimer's disease (AD) is an inflammatory disease, and it is suggested that cytokines are able to influence AD. We investigated the association between IL16 polymorphisms and risk of AD in an Iranian population. The case group consisted of 144 individuals with AD and the control group included 173 healthy individuals. Genotyping of the IL16 rs4072111 C>T and rs1131445 T>C polymorphisms was determined using PCR-RFLP method. The frequency of rs4072111 CT genotype was significantly lower (P=0.007; OR=0.5, 95% CI: 0.3-0.8) in the patients (17.3%) than the control group (30%). The rs4072111 T allele was significantly lower (P=0.008; OR=0.5, 95% CI: 0.3-0.9) in the cases (8.6%) compared with the control group (15.6%). The IL16 rs4072111 polymorphism may be associated with susceptibility to AD and the T allele may have a protective role in the progression of AD in an Iranian population.
Collapse
Affiliation(s)
- Nazanin Esmaeili Anvar
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mina Ohadi
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Koorosh Kamali
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parvaneh Daneshmand
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | |
Collapse
|
43
|
Frederiksen RF, Yoshimura Y, Storgaard BG, Paspaliari DK, Petersen BO, Chen K, Larsen T, Duus JØ, Ingmer H, Bovin NV, Westerlind U, Blixt O, Palcic MM, Leisner JJ. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells. J Biol Chem 2015; 290:5354-66. [PMID: 25561735 PMCID: PMC4342453 DOI: 10.1074/jbc.m114.607291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1-4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1-4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1-4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1-6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1-6 bond in LacNAcβ1-6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis.
Collapse
Affiliation(s)
- Rikki F Frederiksen
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark
| | - Yayoi Yoshimura
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Birgit G Storgaard
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark, Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Dafni K Paspaliari
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark
| | - Bent O Petersen
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Kowa Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Kbh. N., Denmark
| | - Tanja Larsen
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark
| | - Jens Ø Duus
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Hanne Ingmer
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moskow 117997, Russian Federation
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibnitz Institute for Analytical Sciences, Otto-Hahn-Strasse 6b, D-44227 Dortmund, Germany, and
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, 6:4:T422, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Monica M Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Jørgen J Leisner
- From the Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 10, 1870 Frederiksberg C., Denmark,
| |
Collapse
|
44
|
François M, Leifert W, Martins R, Thomas P, Fenech M. Biomarkers of Alzheimer's disease risk in peripheral tissues; focus on buccal cells. Curr Alzheimer Res 2015; 11:519-31. [PMID: 24938500 PMCID: PMC4166904 DOI: 10.2174/1567205011666140618103827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the brain and is the most common form of dementia. To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease. Therefore, if population screening of individuals is to be performed, more suitable, easily accessible tissues would need to be used for a diagnostic test that would identify those who exhibit cellular pathology indicative of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary prevention. This need for minimally invasive tests could be achieved by targeting surrogate tissues, since it is now well recognized that AD is not only a disorder restricted to pathology and biomarkers within the brain. Human buccal cells for instance are accessible in a minimally invasive manner, and exhibit cytological and nuclear morphologies that may be indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our knowledge there is no review available in the literature covering the biology of buccal cells and their applications in AD biomarker research. Therefore, the aim of this review is to summarize some of the main findings of biomarkers reported for AD in peripheral tissues, with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers of AD and the evidence to date of changes exhibited in buccal cells with AD.
Collapse
Affiliation(s)
| | | | | | | | - Michael Fenech
- CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Ave, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
45
|
Pagliardini V, Pagliardini S, Corrado L, Lucenti A, Panigati L, Bersano E, Servo S, Cantello R, D'Alfonso S, Mazzini L. Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: a survey clinic-based study. J Neurol Sci 2014; 348:245-50. [PMID: 25563799 DOI: 10.1016/j.jns.2014.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/11/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine if blood chitotriosidase (Chit) activity and lysosomal enzyme levels might represent markers of disease activity and progression in amyotrophic lateral sclerosis (ALS). It is a survey clinic-based study performed in a tertiary ALS centre. Blood samples were obtained from 76 patients with ALS in different stages of the disease and from 106 healthy individuals serving as controls. Chit activity and the levels of acid alpha-glucosidase, acid alpha-galattosidase A, beta-glucocerebrosidase, and alpha-l-iduronidase were detected using the dried blood spots (DBS) technique. The CHIT1 genotype for exon 10 duplication and for the p.G102S variant was also determined. Chit activity was significantly higher in ALS patients than in healthy individuals. This difference was independent of the genotypes at CHIT1 functional variants. Chit were significantly higher in 34 rapidly progressing patients as compared to 42 with slowly progressive disease. Acid alpha-glucosidase was higher than normal and significantly correlated with the severity of the disease. Glucocerebrosidase and alpha-l-iduronidase activity were significantly lower in patients than in the controls. Alpha-galactosidase A was higher than normal only in rapidly progressing patients. We have employed a very simple and affordable laboratory test to measure blood Chit and lysosomal enzymes activity which could be easily included in the screening of ALS patients recruited in clinical trials. Remarkably, high levels of chitinase and alpha-galactosidase A could help to distinguish patients with fast progression from those with slow progression of the disease and possibly to follow the effects of treatments on neuroinflammation and autophagy.
Collapse
Affiliation(s)
| | - Severo Pagliardini
- Department of Pediatric and Newborn Screening, University of Torino, Italy
| | - Lucia Corrado
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, A. Avogadro' University, Italy
| | - Ausiliatrice Lucenti
- Department of Neurology, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy
| | - Laura Panigati
- Department of Pediatric, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy
| | - Enrica Bersano
- Department of Neurology, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy
| | - Serena Servo
- Department of Neurology, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy
| | - Roberto Cantello
- Department of Neurology, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, A. Avogadro' University, Italy
| | - Letizia Mazzini
- Department of Neurology, A. Avogadro' University, Maggiore della Carità University Hospital, Novara, Italy.
| |
Collapse
|
46
|
Bagyinszky E, Youn YC, An SSA, Kim S. Characterization of inflammatory biomarkers and candidates for diagnosis of Alzheimer’s disease. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8301-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Guerra A, Petrichella S, Vollero L, Ponzo D, Pasqualetti P, Määttä S, Mervaala E, Könönen M, Bressi F, Iannello G, Rossini PM, Ferreri F. Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: a TMS mapping study. Clin Neurophysiol 2014; 126:906-13. [PMID: 25262646 DOI: 10.1016/j.clinph.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate neurophysiological features of M1 excitability and plasticity in Subcortical Ischemic Vascular Dementia (SIVD), by means of a TMS mapping study. METHODS Seven SIVD and nine AD patients, along with nine control subjects were tested. The M1 excitability was studied by resting thresholds, area and volume of active cortical sites for forearm and hand's examined muscles. For M1 plasticity, coordinates of the hot-spot and the center of gravity (CoG) were evaluated. The correlation between the degree of hyperexcitability and the amount of M1 plastic rearrangement was also calculated. RESULTS Multivariate analysis of excitability measures demonstrated similarly enhanced cortical excitability in AD and SIVD patients with respect to controls. SIVD patients showed a medial and frontal shift of CoG from the hot-spot, not statistically different from that observed in AD. A significant direct correlation was seen between parameters related to cortical excitability and those related to cortical plasticity. CONCLUSIONS The results suggest the existence of common compensatory mechanisms in different kind of dementing diseases supporting the idea that cortical hyperexcitability can promote cortical plasticity. SIGNIFICANCE This study characterizes neurophysiological features of motor cortex excitability and plasticity in SIVD, providing new insights on the correlation between cortical excitability and plasticity.
Collapse
Affiliation(s)
- Andrea Guerra
- Department of Neurology, University Campus Bio-Medico, Rome, Italy
| | - Sara Petrichella
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Luca Vollero
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Federica Bressi
- Department of Physical Medicine and Rehabilitation, University Campus Biomedico, Rome, Italy
| | - Giulio Iannello
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Dept. Geriatrics, Neurosciences, Orthopaedics, Policlinic A. Gemelli, Catholic University, Rome, Italy; IRCCS S. Raffaele-Pisana, Rome, Italy
| | - Florinda Ferreri
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
48
|
Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem 2014; 58:2423. [PMID: 25308850 PMCID: PMC4194398 DOI: 10.4081/ejh.2014.2423] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue.
Collapse
|
49
|
Abstract
Less-invasive biomarkers for early Alzheimer disease (AD) are urgently needed. The present study aimed to establish a panel of plasma proteins that accurately distinguishes early AD from physiological aging and to compare the findings with previous reports. Fifty-eight healthy controls (CON) and 109 patients with AD dementia were randomly split into a training (40%) and a test (60%) sample. Significant proteins to differentiate between the CON and AD dementia groups were identified in a comprehensive panel of 107 plasma analytes in the training sample; the accuracy in differentiating these 2 groups was explored in the test sample. A set of 5 plasma proteins was identified, which differentiated between the CON group and the AD dementia group with a sensitivity of 89.36% and a specificity of 79.17%. A biological pathway analysis showed that 4 of 5 proteins belonged to a common network with amyloid precursor protein and tau. Apolipoprotein E was the only protein that was both significant in the present report and in a previous proteomic study. The study provides a piece of evidence in support of the feasibility of a blood-based biomarker approach in AD diagnostics; however, further research is required because of issues with replicability.
Collapse
|
50
|
Liu L, Chan C. The role of inflammasome in Alzheimer's disease. Ageing Res Rev 2014; 15:6-15. [PMID: 24561250 PMCID: PMC4029867 DOI: 10.1016/j.arr.2013.12.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/12/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a chronic, progressive and irreversible neurodegenerative disease with clinical characteristics of memory loss, dementia and cognitive impairment. Although the pathophysiologic mechanism is not fully understood, inflammation has been shown to play a critical role in the pathogenesis of AD. Inflammation in the central nervous system (CNS) is characterized by the activation of glial cells and release of proinflammatory cytokines and chemokines. Accumulating evidence demonstrates that inflammasomes, which cleave precursors of interleukin-1β (IL-1β) and IL-18 to generate their active forms, play an important role in the inflammatory response in the CNS and in AD pathogenesis. Therefore, modulating inflammasome complex assembly and activation could be a potential strategy for suppressing inflammation in the CNS. This review aims to provide insight into the role of inflammasomes in the CNS, with respect to the pathogenesis of AD, and may provide possible clues for devising novel therapeutic strategies.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States; Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Christina Chan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|