1
|
Lopes ACC, de Mattos BO, Marcon JL, Vera LM, López-Olmeda JF, Sánchez-Vázquez FJ, Carvalho TB. Does exposure to moonlight affect day/night changes in melatonin and metabolic parameters in Amazonian fish? Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111489. [PMID: 37474098 DOI: 10.1016/j.cbpa.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Lunar cycle modulates the rhythmic activity patterns of many animals, including fish. The effect of the moonlight cycle on daily melatonin and metabolic parameters was evaluated in matrinxã (Brycon amazonicus) subjected to external natural lighting. Eighty juvenile were distributed in 4 tanks of 1m3 (20 fish/tank) and divided into two groups. One group was exposed to the full moon and the other group to the new moon for 30 days, which corresponds to the duration of the lunar period. At the end of the lunar phase, 6 fish from each group were anesthetized to collect blood, tissue and eye samples at midday and midnight. The comparison between the light and dark periods revealed a significant increase in plasma and ocular melatonin in the last period. However, there was no significant difference for plasma melatonin between moons. Ocular melatonin presented higher concentrations during the new moon. Glucose, total proteins, cortisol, liver glutathione and gill lipid peroxidation were higher in the full moon compared to in the new moon. Plasma triglyceride was higher during the night for the full moon, and the opposite was found for the new moon. Total cholesterol values were higher at night regardless the moon phase. Glutathione in the gills and lipid peroxidation in the liver showed no significant differences. These results highlight the importance of considering both the day and lunar cycles for melatonin and metabolic parameters in species of commercial interest and susceptible to stressful situations in rearing conditions.
Collapse
Affiliation(s)
| | - Bruno Olivetti de Mattos
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil.
| | - Jaydione Luiz Marcon
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Institute of Biological Sciences, Department of Physiological Sciences, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Thaís Billalba Carvalho
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil
| |
Collapse
|
2
|
Dharmajyoti Devi S, Mondal G, Khan ZA, Sarma HK, Chattoraj A. Differential gene expression and immunohistochemical localization of the key melatonin biosynthesizing enzymes in the testis of zebrafish (Danio rerio). BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1926078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sijagurumayum Dharmajyoti Devi
- Department of Biotechnology, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal, Manipur, India
| | - Gopinath Mondal
- Department of Biotechnology, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal, Manipur, India
| | - Zeeshan Ahmad Khan
- Department of Biotechnology, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal, Manipur, India
| | | | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Asansol, West Bengal, India
| |
Collapse
|
3
|
Saha S, Singh KM, Gupta BBP. Robust circadian and circannual rhythms of expression of clock genes and clock controlled aanat2 gene in the photoreceptive pineal organ of catfish, Clarias gariepinus under natural conditions. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1911550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Braj B. P. Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
4
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
5
|
Saha S, Singh KM, Gupta BBP. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences. Gen Comp Endocrinol 2019; 279:27-34. [PMID: 30026020 DOI: 10.1016/j.ygcen.2018.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) - the rate-limiting enzyme in melatonin synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased expression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the fish pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. However, the information available on clock genes, aanat genes and melatonin synthesis in photoreceptive pineal organ of teleosts is fragmentary and not well documented. Therefore, we have reviewed published information on rhythmic expression of clock genes, aanat genes as well as synthesis of melatonin, and their regulation by photoperiod and temperature in teleostean pineal organ as compared to mammalian pineal gland. A critical analysis of the literature suggests that in contrast to the mammalian pineal gland, the pineal organ of teleosts (except salmonids) possesses a well developed indigenous clock composed of clock genes for regulation of rhythmic expression of aanat2 gene and melatonin synthesis. Further, the fish pineal organ also possesses essential molecular components for responding to light and temperature directly. The fish pineal organ seems to act as a potential master biological clock in most of the teleosts.
Collapse
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
6
|
Sánchez-Vázquez FJ, López-Olmeda JF, Vera LM, Migaud H, López-Patiño MA, Míguez JM. Environmental Cycles, Melatonin, and Circadian Control of Stress Response in Fish. Front Endocrinol (Lausanne) 2019; 10:279. [PMID: 31244768 PMCID: PMC6579845 DOI: 10.3389/fendo.2019.00279] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fish have evolved a biological clock to cope with environmental cycles, so they display circadian rhythms in most physiological functions including stress response. Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of melatonin, which is released into the blood circulation with high concentrations at night and low during the day. The melatonin rhythmic profile is under the control of circadian clocks in most fish (except salmonids), and it is considered as an important output of the circadian system, thus modulating most daily behavioral and physiological rhythms. Lighting conditions (intensity and spectrum) change in the underwater environment and affect fish embryo and larvae development: constant light/darkness or red lights can lead to increased malformations and mortality, whereas blue light usually results in best hatching rates and growth performance in marine fish. Many factors display daily rhythms along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp), proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose, and lactate. Many of these circadian rhythms are under the control of endogenous molecular clocks, which consist of self-sustained transcriptional-translational feedback loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and cry) which persists under constant light or darkness. Exposing fish to a stressor can result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate among others, as well as daily rhythms of most behavioral and physiological functions. In addition, crh and pomca expression profiles can be affected by other factors such as light spectrum, which strongly influence the expression profile of growth-related (igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day and cooler at night) is another factor that has to be considered. The response to any acute stressor is not only species dependent, but also depends on the time of the day when the stress occurs: nocturnal species show higher responses when stressed during day time, whereas diurnal fish respond stronger at night. Melatonin administration in fish has sedative effects with a reduction in locomotor activity and cortisol levels, as well as reduced liver glycogen and dopaminergic and serotonergic activities within the hypothalamus. In this paper, we are reviewing the role of environmental cycles and biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses in fish.
Collapse
Affiliation(s)
| | | | - Luisa Maria Vera
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Marcos Antonio López-Patiño
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| |
Collapse
|
7
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
8
|
Kulczykowska E, Kleszczyńska A, Gozdowska M, Sokołowska E. The time enzyme in melatonin biosynthesis in fish: Day/night expressions of three aralkylamine N -acetyltransferase genes in three-spined stickleback. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:46-53. [DOI: 10.1016/j.cbpa.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 01/15/2023]
|
9
|
Rajiv C, Sanjita Devi H, Mondal G, Devi SD, Khan ZA, Yumnamcha T, Bharali R, Chattoraj A. Daily and Seasonal Expression Profile of Serum Melatonin and Its Biosynthesizing Enzyme Genes (tph1, aanat1, aanat2, andhiomt) in Pineal Organ and Retina: A Study under Natural Environmental Conditions in a Tropical Carp,Catla catla. ACTA ACUST UNITED AC 2017; 325:688-700. [DOI: 10.1002/jez.2061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Chongtham Rajiv
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Gopinath Mondal
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| | | | - Asamanja Chattoraj
- Biological Rhythm Laboratory; Animal Resources Programme; Department of Biotechnology; Institute of Bioresources and Sustainable Development; Imphal India
| |
Collapse
|
10
|
Rajiv C, Sanjita Devi H, Mondal G, Devi SD, Khan ZA, Yumnamcha T, Bharali R, Chattoraj A. Cloning, phylogenetic analysis and tissue distribution of melatonin bio-synthesizing enzyme genes (Tph1, Aanat1, Aanat2 and Hiomt) in a tropical carp, Catla catla. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1263019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Imphal, India
| |
Collapse
|
11
|
Muñoz-Pérez JL, López-Patiño MA, Álvarez-Otero R, Gesto M, Soengas JL, Míguez JM. Characterization of melatonin synthesis in the gastrointestinal tract of rainbow trout (Oncorhynchus mykiss): distribution, relation with serotonin, daily rhythms and photoperiod regulation. J Comp Physiol B 2016; 186:471-84. [DOI: 10.1007/s00360-016-0966-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
12
|
Ikegami T, Maruyama Y, Doi H, Hattori A, Ando H. Ultradian oscillation in expression of four melatonin receptor subtype genes in the pineal gland of the grass puffer, a semilunar-synchronized spawner, under constant darkness. Front Neurosci 2015; 9:9. [PMID: 25688184 PMCID: PMC4311631 DOI: 10.3389/fnins.2015.00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/09/2015] [Indexed: 11/13/2022] Open
Abstract
Melatonin receptor gene expression as well as melatonin synthesis and secretion activities were examined in the pineal gland of the grass puffer, which exhibits unique lunar/tidal cycle-synchronized mass spawing: spawning occurs before high tide on the day of spring tide during spawing season. Melatonin synthesizing activity was assessed by the abundance of arylalkylamine N-acetyltransferase 2 (AANAT2) mRNA. The amount of aanat2 mRNA was low during light phase and initiated to increase after the light was turned off. The secretion of melatonin from primary pineal organ culture was stimulated after the light was turned off and ceased immediately after the light was turned on. The expression levels of four melatonin receptor subtype genes (mel 1a 1.4, mel 1a 1.7, mel1b, and mel1c) showed synchronous variations, and the levels tended to be high during the dark phase under light/dark conditions. These results suggest that the action of melatonin on the pineal gland is highly dependent on light and photoperiod, possibly with stronger action during night time. Under constant darkness, the expression of four melatonin receptor subtype genes showed unique ultradian oscillations with the period of 14.0-15.4 h, suggesting the presence of a circatidal oscillator in the pineal gland. The present results indicate that melatonin may serve local chronobiological functions in the pineal gland. These cyclic expressions of melatonin receptor genes in the pineal gland may be important in the control of the lunar/tidal cycle-synchronized mass spawning in the grass puffer.
Collapse
Affiliation(s)
- Taro Ikegami
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus Okinawa, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University Ichikawa, Japan
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan," Shimonoseki Academy of Marine Science Yamaguchi, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University Ichikawa, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University Sado, Japan
| |
Collapse
|
13
|
Takeuchi Y, Imamura S, Sawada Y, Hur SP, Takemura A. Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish. Gen Comp Endocrinol 2014; 204:158-65. [PMID: 24859252 DOI: 10.1016/j.ygcen.2014.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 04/07/2014] [Accepted: 05/01/2014] [Indexed: 01/01/2023]
Abstract
Ocular melatonin production exhibits a daily rhythm with a decrease during photophase and an increase during scotophase (nocturnal pattern) in teleost fish due to day-night changes in the activity of the rate-limiting melatonin synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT). Acute light exposure during scotophase suppresses AANAT activity and melatonin production in the eyes, suggesting that external light signals are a principal regulator of ocular melatonin synthesis. To better understand the photic regulation of ocular melatonin synthesis in teleost fish, this study sought to characterize the effect of light on ocular melatonin synthesis in the sapphire devil Chrysiptera cyanea, which shows a nocturnal pattern and light-induced inhibition of ocular melatonin production during scotophase. Exposure to three different wavelengths of light (half-peak bandwidth=435-475 nm with a peak of 455 nm, 495-565 nm with a peak of 530 nm, and 607-647 nm with a peak of 627 nm for the blue, green, and red LEDs) for 2h during scotophase resulted in the blue wavelength significantly decreasing ocular melatonin content within 30 min after light exposure. This result clearly indicates that the effective range of visible light on ocular melatonin suppression is distributed within the wavelengths of blue light and that a blue light-sensitive opsin is involved in ocular melatonin suppression in the fish. A PCR-based cloning method revealed the expression of melanopsin, a putative blue light-sensitive nonvisual opsin, in the eyes. Furthermore, in situ hybridization using the sapphire devil Aanat1 and melanopsin RNA probes showed mRNA expressions of both genes in the inner nuclear and ganglion cell layer of the fish retina. These results suggest that melanopsin is a possible candidate photoreceptor involved in ocular melatonin suppression by an external light signal in the sapphire devil.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Satoshi Imamura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Yuji Sawada
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Sung-Pyo Hur
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
14
|
Lima-Cabello E, Díaz-Casado ME, Guerrero JA, Otalora BB, Escames G, López LC, Reiter RJ, Acuña-Castroviejo D. A review of the melatonin functions in zebrafish physiology. J Pineal Res 2014; 57:1-9. [PMID: 24920150 DOI: 10.1111/jpi.12149] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Melatonin is part of the evolutionary conserved highly functional network in vertebrates. It plays a central role in the adaptative behavior of the animal to the environment, including entrainment of daily and annual physiological rhythms, reproductive behavior, food intake, locomotor activity, growth, and breeding performance. In zebrafish, apart from its synchronizing capabilities, melatonin seems to have a major role in multiple physiological processes. Extensive knowledge of its genome and the identification of a series of genes with the same functions as those in humans, the relative ease of obtaining mutants, and the similarities between zebrafish and human pathologies make it an excellent experimental model organism of human diseases. Moreover, it is a common experimental species because of easy handling, breeding, and developmental control. Among other pathophysiologies, zebrafish are now used in studies of neurodegeneration and neurological diseases, endocrine diseases, behavior, muscular dystrophies, developmental alterations, circadian rhythms, and drugs screening. The purpose of this review was to update the current knowledge on the synthesis and biological functions of melatonin in zebrafish, keeping in mind its relevance not only in the physiology of the animal, but also in pathophysiological conditions.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kashiwagi T, Park YJ, Park JG, Imamura S, Takeuchi Y, Hur SP, Takemura A. Moonlight affects mRNA abundance of arylalkylamine N-acetyltransferase in the retina of a lunar-synchronized spawner, the goldlined spinefoot. ACTA ACUST UNITED AC 2013; 319:505-16. [PMID: 24039227 DOI: 10.1002/jez.1814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/25/2013] [Accepted: 07/14/2013] [Indexed: 11/10/2022]
Abstract
Melatonin synthesis in the pineal gland and retina shows a rhythmic fashion with high levels at night and is controlled by a rate-limiting enzyme, arylalkylamine N-acetyltransferase (AANAT). A previous study revealed that moonlight suppresses the plasma melatonin levels of the goldlined spinefoot (Siganus guttatus), which exhibits a lunar cycle in its reproductive activity and repeats gonadal development toward and spawning around the first quarter moon. Whether the retina of this species responds to moonlight is unknown. To clarify the photoperceptive ability of this species, we aimed to clone the full-length cDNA of Aanat1 (sgAanat1) from the retina and examine its transcriptional pattern under several daylight and moonlight regimes. The full-length sgAanat1 cDNA (1,038 bp) contained a reading frame encoding a protein of 225 amino acids, which was highly homologous to AANAT1 of other teleosts. Reverse transcription-polymerase chain reaction (PCR) analysis revealed that among the tissues tested, sgAanat1 fragments were expressed exclusively in the retina. Real-time quantitative PCR analysis revealed that sgAanat1 fluctuated with high abundance at night under light-dark cycle and at subjective night under constant darkness, but not under constant light. These results suggest that sgAanat1 is regulated by both the external light signal and internal clock system. The abundance of sgAanat1 in the retina was higher at the culmination time around new moon than full moon phase. Additionally, exposing fish to brightness around the full moon period suppressed sgAanat1 mRNA abundance. Thus, moonlight is perceived by fish and has an impact on melatonin fluctuation in the retina.
Collapse
Affiliation(s)
- Tomomi Kashiwagi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Valdez DJ, Garbarino-Pico E, Díaz NM, Silvestre DC, Guido ME. Differential Regulation of ArylalkylamineN-Acetyltransferase Activity in Chicken Retinal Ganglion Cells by Light and Circadian Clock. Chronobiol Int 2012; 29:1011-20. [DOI: 10.3109/07420528.2012.707160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Isorna E, Aliaga-Guerrero M, M'Rabet AE, Servili A, Falcón J, Muñoz-Cueto JA. Identification of two arylalkylamine N-acetyltranferase 1 genes with different developmental expression profiles in the flatfish Solea senegalensis. J Pineal Res 2011; 51:434-44. [PMID: 21718359 DOI: 10.1111/j.1600-079x.2011.00907.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of two arylalkylamine N-acetyltransferase 1 (Aanat1) genes in the genome of some teleosts has been reported recently by in silico analysis. However, there are no data concerning the similarities and/or differences between them and many questions remain to be answered, such as their expression sites, development, or kinetics. Here, we report the cloning of Aanat1a and Aanat1b cDNAs from the sole retina and show for the first time that at least three Aanat genes are expressed in a vertebrate species. Because melatonin is involved in fish ontogeny, we analyzed the developmental transcript levels of Aanat1a and Aanat1b by quantitative real-time PCR, showing their inverse and stage-specific expression patterns. Aanat1a was more abundant during early than late larval stages. Before metamorphosis, nocturnal expression was higher. At metamorphosis, Aanat1a expression decreased and lost these day-night variations. In contrast, the abundance of Aanat1b transcripts, low during early developing stages, rose significantly throughout metamorphosis. This situation seemed to apply to the adult because Aanat1a expression was lower than Aanat1b expression in the retina of adults, where the former did not exhibit day-night variations, while the latter did so with much higher nocturnal transcript levels. In situ hybridization analysis detected Aanat1a and Aanat1b messengers in the outer and inner nuclear layers of retina. The differences in abundance and distinct day-night expression patterns between Aanat1a and Aanat1b during sole development suggest different functions for these two enzymes as well as the existence of interactions between the melatoninergic and thyroid hormone systems during flatfish metamorphosis.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Zilberman-Peled B, Bransburg-Zabary S, Klein DC, Gothilf Y. Molecular evolution of multiple arylalkylamine N-acetyltransferase (AANAT) in fish. Mar Drugs 2011; 9:906-921. [PMID: 21673898 PMCID: PMC3111191 DOI: 10.3390/md9050906] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/26/2022] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to arylalkylamines, including indolethylamines and phenylethylamines. Multiple aanats are present in teleost fish as a result of whole genome and gene duplications. Fish aanat1a and aanat2 paralogs display different patterns of tissue expression and encode proteins with different substrate preference: AANAT1a is expressed in the retina, and acetylates both indolethylamines and phenylethylamines; while AANAT2 is expressed in the pineal gland, and preferentially acetylates indolethylamines. The two enzymes are therefore thought to serve different roles. Here, the molecular changes that led to their specialization were studied by investigating the structure-function relationships of AANATs in the gilthead seabream (sb, Sperus aurata). Acetylation activity of reciprocal mutated enzymes pointed to specific residues that contribute to substrate specificity of the enzymes. Inhibition tests followed by complementary analyses of the predicted three-dimensional models of the enzymes, suggested that both phenylethylamines and indolethylamines bind to the catalytic pocket of both enzymes. These results suggest that substrate selectivity of AANAT1a and AANAT2 is determined by the positioning of the substrate within the catalytic pocket, and its accessibility to catalysis. This illustrates the evolutionary process by which enzymes encoded by duplicated genes acquire different activities and play different biological roles.
Collapse
Affiliation(s)
- Bina Zilberman-Peled
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-3-6409041; Fax: +972-3-6406329
| | - Sharron Bransburg-Zabary
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; E-Mail:
| | - David C. Klein
- Section on Neuroendocrinology, Office of the Scientific Directory, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; E-Mail:
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; E-Mail:
| |
Collapse
|
19
|
The pineal complex of the European sea bass (Dicentrarchus labrax): I. Histological, immunohistochemical and qPCR study. J Chem Neuroanat 2011; 41:170-80. [DOI: 10.1016/j.jchemneu.2011.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
20
|
Davie A, Sanchez JA, Vera LM, Sanchez-Vazquez J, Migaud H. Ontogeny of the Circadian System During Embryogenesis in Rainbow Trout (Oncorhynchus mykyss) and the Effect of Prolonged Exposure to Continuous Illumination on Daily Rhythms ofper1, clock, andaanat2Expression. Chronobiol Int 2011; 28:177-86. [DOI: 10.3109/07420528.2010.550407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Velarde E, Cerdá-Reverter JM, Alonso-Gómez AL, Sánchez E, Isorna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int 2010; 27:1178-201. [PMID: 20653449 DOI: 10.3109/07420528.2010.496911] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been suggested that melatonin is synthesized in nonphotosensitive organs of vertebrates in addition to the well-known sites of the pineal gland and retina. However, very few studies have demonstrated the gene expression of melatonin-synthesizing enzymes in extrapineal and extraretinal locations. This study focuses on the circadian expression of the two key enzymes of the melatoninergic pathway, arylalkylamine N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), in central and peripheral locations of a teleost fish, the goldfish (Carassius auratus). First, the full-length cDNA sequences corresponding to the goldfish AANAT-2 (gAanat-2) and HIOMT-2 (gHiomt-2) were cloned, showing high similarity with other teleost sequences. Two forms of AANAT exist in teleosts. Here, for the first time, two isoforms of HIOMT are deduced from phylogenetic analysis. Moreover, both HIOMT and AANAT were detected in several peripheral locations, including liver and gut, the present results being the first to find HIOMT in nonphotosensitive structures of a fish species. Second, quantitative real-time polymerase chain reaction (PCR) studies were performed to investigate regulation of gAanat-2 in pineal and peripheral locations of goldfish maintained under different lighting conditions. The current results show circadian rhythms in Aanat-2 and Hiomt-2 transcripts in liver and hindgut, suggesting a local melatonin synthesis in goldfish. Moreover, the analysis of daily expression of gAanat-2 under different lighting conditions, including continuous light (24L) and darkness (24D) revealed light-dependent rhythms in the pineal and retina, as expected, but also in liver and hindgut. The persistence in hindgut of these gAanat-2 rhythms under both constant conditions, 24L and 24D, suggests expression of this transcript is governed by a circadian clock and entrained by nonphotic cues. Finally, the current results support the existence of melatonin synthesis in gut and liver of the goldfish.
Collapse
Affiliation(s)
- Elena Velarde
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
23
|
Midkine expression is regulated by the circadian clock in the retina of the zebrafish. Vis Neurosci 2009; 26:495-501. [PMID: 19860997 DOI: 10.1017/s0952523809990204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retina displays numerous processes that follow a circadian rhythm. These processes are coordinated through the direct action of light on photoreceptive molecules and, in the absence of light, through autocrine/paracrine actions of extracellular neuromodulators. We previously described the expression of the genes encoding the secreted heparin-binding growth factors, midkine-a (mdka) and midkine-b (mdkb), in the retina of the zebrafish. Here, we provide evidence that the expression of mdka and mdkb follows a daily rhythm, which is independent of the presence or absence of light, and we propose that the expression of mdka is regulated by the circadian clock. Both qualitative and quantitative measures show that for mdka, the levels of mRNA and protein decrease during the night and increase during the subjective day. Qualitative measures show that the expression of mdkb increases during the second half of the subjective night and decreases during the second half of the subjective day. Within horizontal cells, the two midkine paralogs show asynchronous circadian regulation. Though intensely studied in the contexts of physiology and disease, this is the first study to provide evidence for the circadian regulation of midkines in the vertebrate nervous system.
Collapse
|
24
|
Isorna E, El M'rabet A, Confente F, Falcón J, Muñoz-Cueto JA. Cloning and expression of arylalkylamine N-acetyltranferase-2 during early development and metamorphosis in the sole Solea senegalensis. Gen Comp Endocrinol 2009; 161:97-102. [PMID: 18955059 DOI: 10.1016/j.ygcen.2008.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/18/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
The arylalkylamine N-acetyltransferase (AANAT) is a key enzyme in the rhythmic production of melatonin. Two Aanats are expressed in teleost fish, one retinal specific, Aanat1, and the other one pineal specific, Aanat2, being the latter the main enzyme responsible of the plasma nocturnal melatonin increase in fish. In anurans melatonin has been involved in metamorphosis through antagonizing thyroid hormone function; however, no available data reports a relationship between melatonin system and metamorphosis in fish. In this study, we have cloned the AANAT2 (SsAanat2) in a flatfish, Solea senegalensis, and studied its sites of expression and developmental expression pattern by in situ hybridization and Real Time PCR. These studies allowed us to demonstrate a specific signal in the pineal gland of sole larvae from 2 days post-fertilization (dpf), which was evident until post-metamorphosis. Immunohistochemical analysis on the hybridized slides showed that the sole pineal Aanat2 expressing cells corresponded to pineal photoreceptor cells. Real Time PCR was performed in animals kept under natural photoperiod and sampled at different stages from 0 to 21 dpf (including pre-, early-, middle- and late-metamorphic stages) and at midlight (ML) and middark (MD) daytimes. Sole Aanat2 expression was higher at MD than at ML from 2 dpf and at most developmental stages analyzed. The highest AANAT2 mRNA abundance was observed at 2 and 4 dpf. A significant 60-fold reduction in Aanat2 expression was seen just before metamorphosis demonstrating, for the first time in a vertebrate species, that the expression of pineal AANAT and thyroid hormones levels exhibit an inverse pattern during metamorphosis.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510, Puerto Real, España, Spain.
| | | | | | | | | |
Collapse
|