1
|
Hwang H, Szucs MJ, Ding LJ, Allen A, Ren X, Haensgen H, Gao F, Rhim H, Andrade A, Pan JQ, Carr SA, Ahmad R, Xu W. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome. Biol Psychiatry 2021; 89:256-269. [PMID: 33032807 PMCID: PMC9258036 DOI: 10.1016/j.biopsych.2020.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. METHODS Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing-dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. RESULTS Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. CONCLUSIONS Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.
Collapse
Affiliation(s)
- Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | | | - Lei J. Ding
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Allen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Henny Haensgen
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jen Q. Pan
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
2
|
Garrido-García A, de Andrés R, Jiménez-Pompa A, Soriano P, Sanz-Fuentes D, Martínez-Blanco E, Díez-Guerra FJ. Neurogranin Expression Is Regulated by Synaptic Activity and Promotes Synaptogenesis in Cultured Hippocampal Neurons. Mol Neurobiol 2019; 56:7321-7337. [PMID: 31020616 DOI: 10.1007/s12035-019-1593-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/02/2019] [Indexed: 01/09/2023]
Abstract
Neurogranin (Ng) is a calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC) and is highly enriched in the dendrites and spines of telencephalic neurons. It is proposed to be involved in regulating CaM availability in the post-synaptic environment to modulate the efficiency of excitatory synaptic transmission. There is a close relationship between Ng and cognitive performance; its expression peaks in the forebrain coinciding with maximum synaptogenic activity, and it is reduced in several conditions of impaired cognition. We studied the expression of Ng in cultured hippocampal neurons and found that both protein and mRNA levels were about 10% of that found in the adult hippocampus. Long-term blockade of NMDA receptors substantially decreased Ng expression. On the other hand, treatments that enhanced synaptic activity such as long-term bicuculline treatment or co-culture with glial cells or cholesterol increased Ng expression. Chemical long-term potentiation (cLTP) induced an initial drop of Ng, with a minimum after 15 min followed by a slow recovery during the next 2-4 h. This effect was most evident in the synaptosome-enriched fraction, thus suggesting local synthesis in dendrites. Lentiviral expression of Ng led to increased density of both excitatory and inhibitory synapses in the second and third weeks of culture. These results indicate that Ng expression is regulated by synaptic activity and that Ng promotes the synaptogenesis process. Given its relationship with cognitive function, we propose targeting of Ng expression as a promising strategy to prevent or alleviate the cognitive deficits associated with aging and neuropathological conditions.
Collapse
Affiliation(s)
- Alberto Garrido-García
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto Cajal (CSIC), Av. Doctor Arce, 37, 28002, Madrid, Spain
| | - Raquel de Andrés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Amanda Jiménez-Pompa
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Soriano
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Diego Sanz-Fuentes
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Martínez-Blanco
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - F Javier Díez-Guerra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Laboratory of Neuronal Plasticity, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Reker AN, Oliveros A, Sullivan JM, Nahar L, Hinton DJ, Kim T, Bruner RC, Choi DS, Goeders NE, Nam HW. Neurogranin in the nucleus accumbens regulates NMDA receptor tolerance and motivation for ethanol seeking. Neuropharmacology 2017; 131:58-67. [PMID: 29225043 DOI: 10.1016/j.neuropharm.2017.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
Dysfunction of N-methyl-d-aspartate receptor (NMDAR) signaling in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng), a calmodulin-binding protein, is exclusively expressed in the post-synapse, and mediates NMDAR driven synaptic plasticity by regulating the calcium-calmodulin (Ca2+-CaM) pathway. To study the functional role of Ng in AUD, we administrated behavior tests including Pavlovian instrument transfer (PIT), operant conditioning, and rotarod test using Ng null mice (Ng-/- mice). We used adeno-associated virus (AAV)-mediated Ng expression and pharmacological manipulation to validate behavioral responses in Ng-/- mice. The results from our multidisciplinary approaches demonstrated that deficit of Ng increases tolerance to NMDAR inhibition and elicit faster cue reactivity during PIT without changes in ethanol reward. Operant conditioning results demonstrated that Ng-/- mice self-administered significantly more ethanol and displayed reduced sensitivity to aversive motivation. We identified that ethanol exposure decreases mGluR5 (metabotropic glutamate receptor 5) expression in the NAc of Ng-/- mice and pharmacological inhibition of mGluR5 reverses NMDAR desensitization in Ng-/- mice. Together these findings specifically suggest that accumbal Ng plays an essential role in the counterbalance between NMDAR and mGluR5 signaling; which alters NMDAR resistance, and thereby altering aversive motivation for ethanol and may ultimately contribute to susceptibility for alcohol addiction.
Collapse
Affiliation(s)
- Ashlie N Reker
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - John M Sullivan
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Lailun Nahar
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Robert C Bruner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
4
|
Trubiani O, Guarnieri S, Diomede F, Mariggiò MA, Merciaro I, Morabito C, Cavalcanti MFXB, Cocco L, Ramazzotti G. Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cell Signal 2016; 28:1631-41. [PMID: 27478064 DOI: 10.1016/j.cellsig.2016.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
Abstract
Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Ilaria Merciaro
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences - CeSI-MET, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy
| | - Marcos F X B Cavalcanti
- Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, 9, avenue de la Forêt de Haye, 54500 Vandoeuvre-lés-Nancy, France; Cruzeiro do Sul University, Rua Galvão Bueno 868, 01506-000 São Paulo, SP, Brazil
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Morita S, Miyata S. Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochem Funct 2012; 31:400-11. [PMID: 23055398 DOI: 10.1002/cbf.2914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Growth-associated protein 43 (GAP-43), a novel axonal phosphoprotein, is originally identified as a growth-cone-specific protein of developing neurons in vitro. The expression of GAP-43 is also shown to be up-regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP-43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP-43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP-43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double-labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP-43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double-labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP-43 was observed mostly at weak synapsin- and synaptotagmin-positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP-43 and either synapsin or synaptotagmin expression. These data indicate that GAP-43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis.
Collapse
Affiliation(s)
- Shoko Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | |
Collapse
|
6
|
Varadarajulu J, Lebar M, Krishnamoorthy G, Habelt S, Lu J, Bernard Weinstein I, Li H, Holsboer F, Turck CW, Touma C. Increased anxiety-related behaviour in Hint1 knockout mice. Behav Brain Res 2011; 220:305-11. [PMID: 21316396 DOI: 10.1016/j.bbr.2011.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/14/2022]
Abstract
Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice.
Collapse
Affiliation(s)
- Jeeva Varadarajulu
- Research Group of Proteomics & Biomarkers and Research Group of Psychoneuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci 2010; 30:15616-27. [PMID: 21084617 DOI: 10.1523/jneurosci.3888-10.2010] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by loss of the FMR1 gene product FMRP (fragile X mental retardation protein), a repressor of mRNA translation. According to the metabotropic glutamate receptor (mGluR) theory of FXS, excessive protein synthesis downstream of mGluR5 activation causes the synaptic pathophysiology that underlies multiple aspects of FXS. Here, we use an in vitro assay of protein synthesis in the hippocampus of male Fmr1 knock-out (KO) mice to explore the molecular mechanisms involved in this core biochemical phenotype under conditions where aberrant synaptic physiology has been observed. We find that elevated basal protein synthesis in Fmr1 KO mice is selectively reduced to wild-type levels by acute inhibition of mGluR5 or ERK1/2, but not by inhibition of mTOR (mammalian target of rapamycin). The mGluR5-ERK1/2 pathway is not constitutively overactive in the Fmr1 KO, however, suggesting that mRNA translation is hypersensitive to basal ERK1/2 activation in the absence of FMRP. We find that hypersensitivity to ERK1/2 pathway activation also contributes to audiogenic seizure susceptibility in the Fmr1 KO. These results suggest that the ERK1/2 pathway, and other neurotransmitter systems that stimulate protein synthesis via ERK1/2, represent additional therapeutic targets for FXS.
Collapse
|
8
|
Krueger DD, Osterweil EK, Bear MF. Activation of mGluR5 induces rapid and long-lasting protein kinase D phosphorylation in hippocampal neurons. J Mol Neurosci 2010; 42:1-8. [PMID: 20177824 DOI: 10.1007/s12031-010-9338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Dilja D Krueger
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, 46-3301, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
9
|
Abstract
Long-term changes of synaptic plasticity depend on protein synthesis and transcription. Ng (neurogranin) is a small protein concentrated at dendrites and spines of forebrain neurons, involved in synaptic plasticity through the regulation of CaM (calmodulin)-mediated signalling. Ng presents a central IQ motif that mediates its binding to CaM and PA (phosphatidic acid) and that can be phosphorylated by PKC (protein kinase C). In the present manuscript, we report that Ng displays a strong nuclear localization when expressed in cell lines and hippocampal neurons, either alone or fused to GFP (green fluorescent protein; GFP–Ng). Furthermore, using subcellular fractionation and immunocytochemical techniques, we were able to localize endogenous Ng in the nuclei of rat forebrain neurons. Nuclear localization of Ng depends on its IQ motif and is reduced by binding to cytoplasmic CaM. Also, PKC stimulation induces a transient nuclear translocation of Ng in acute hippocampal slices. A similar translocation is observed in the neurons of the cerebral cortex and hippocampus after the induction of generalized seizures in adult rats. In summary, the results of the present study show that a fraction of rat brain Ng is localized in the neuronal nuclei and that synaptic activity regulates its translocation from the cytoplasm. The possible involvement of Ng in the regulation of intranuclear Ca2+/CaM-dependent signalling and gene expression is discussed.
Collapse
|
10
|
Clayton DF, George JM, Mello CV, Siepka SM. Conservation and expression of IQ-domain-containing calpacitin gene products (neuromodulin/GAP-43, neurogranin/RC3) in the adult and developing oscine song control system. Dev Neurobiol 2009; 69:124-40. [PMID: 19023859 DOI: 10.1002/dneu.20686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here, we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: neuromodulin (GAP-43) and neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin, and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective downregulation develops in the zebra finch during the juvenile song learning period, 25-45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit.
Collapse
Affiliation(s)
- David F Clayton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA.
| | | | | | | |
Collapse
|