1
|
Carson RG. Inter‐hemispheric inhibition sculpts the output of neural circuits by co‐opting the two cerebral hemispheres. J Physiol 2020; 598:4781-4802. [DOI: 10.1113/jp279793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Richard G. Carson
- Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland
- School of Psychology Queen's University Belfast Belfast BT7 1NN UK
- School of Human Movement and Nutrition Sciences University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
2
|
Touvykine B, Elgbeili G, Quessy S, Dancause N. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. J Neurophysiol 2020; 123:1355-1368. [PMID: 32130080 PMCID: PMC7191520 DOI: 10.1152/jn.00591.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production. Our objective was to characterize how CFA and RFA in one hemisphere can modulate motor outputs of the opposite hemisphere. To do so, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS), while recording electromyographic (EMG) activity of forelimb muscles in sedated rats. A subthreshold conditioning stimulation was applied in either CFA or RFA in one hemisphere simultaneously or before a suprathreshold test stimulation in either CFA or RFA in the opposite hemisphere. Both CFA and RFA tended to facilitate motor outputs with short (0–2.5 ms) or long (20–35 ms) delays between the conditioning and test stimuli. In contrast, they tended to inhibit motor outputs with intermediate delays, in particular 10 ms. When comparing the two areas, we found that facilitatory effects from RFA were more frequent and powerful than the ones from CFA. In contrast, inhibitory effects from CFA on its homolog were more frequent and powerful than the ones from RFA. Our results demonstrate that interhemispheric modulations from CFA and RFA share some similarities but also have clear differences that could sustain specific functions these cortical areas carry for the generation of forelimb movements. NEW & NOTEWORTHY We show that caudal and rostral forelimb areas (CFA and RFA) have distinct effects on motor outputs from the opposite hemisphere, supporting that they are distinct nodes in the motor network of rats. However, the pattern of interhemispheric modulations from RFA has no clear equivalent among premotor areas in nonhuman primates, suggesting they contribute differently to the generation of ipsilateral hand movements. Understanding these interspecies differences is important given the common use of rodent models in motor control and recovery studies.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
3
|
Bani-Ahmed A, Cirstea CM. Ipsilateral primary motor cortex and behavioral compensation after stroke: a case series study. Exp Brain Res 2020; 238:439-452. [PMID: 31950216 DOI: 10.1007/s00221-020-05728-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
Abstract
Arm motor recovery after stroke is mainly attributed to reorganization of the primary motor cortex (M1). While M1 contralateral to the paretic arm (cM1) is critical for recovery, the role of ipsilateral M1 (iM1) is still inconclusive. Whether iM1 activity is related to recovery, behavioral compensation, or both is still far from settled. We hypothesized that the magnitude of iM1 activity in chronic stroke survivors will increase or decrease in direct proportion to the degree that movements of the paretic arm are compensated. Movement kinematics (VICON, Oxford Metrics) and functional MRI data (3T MR system) were collected in 11 patients before and after a 4-week training designed to improve motor control of the paretic arm and decrease compensatory trunk recruitment. Twelve matched controls underwent similar evaluations and training. Relationships between iM1 activity and trunk motion were analyzed. At baseline, patients exhibited increased iM1 activity (p = 0.001) and relied more on trunk movement (p = 0.02) than controls. These two variables were directly and significantly related in patients (r = 0.74, p = 0.01) but not in controls (r = 0.28, p = 0.4). After training, patients displayed a significant reduction in iM1 activity (p = 0.008) and a trend toward decreased trunk use (p = 0.1). The relationship between these two variables remained significant (r = 0.66, p = 0.03) and different from controls (r = 0.26, p = 0.4). Our preliminary results suggest that iM1 may play a role in compensating for brain damage rather than directly gaining control of the paretic arm. However, we recommend caution in interpreting these results until more work is completed.
Collapse
Affiliation(s)
- Ali Bani-Ahmed
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy, University of Tabuk, Tabuk, Saudi Arabia
| | - Carmen M Cirstea
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, One Hospital Drive, DC046.00, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Viaro R, Bonazzi L, Maggiolini E, Franchi G. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats. Cereb Cortex 2018; 27:3525-3541. [PMID: 27329134 DOI: 10.1093/cercor/bhw167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Laura Bonazzi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Jung WB, Im GH, Chung JJ, Ahn SY, Jeon TY, Chang YS, Park WS, Kim JH, Kim KS, Lee JH. Neuroplasticity for spontaneous functional recovery after neonatal hypoxic ischemic brain injury in rats observed by functional MRI and diffusion tensor imaging. Neuroimage 2015; 126:140-50. [PMID: 26589335 DOI: 10.1016/j.neuroimage.2015.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
For infants and children, an incredible resilience from injury is often observed. There is growing evidence that functional recovery after brain injury might well be a consequence of the reorganization of the neural network as a process of neuroplasticity. We demonstrate the presence of neuroplasticity at work in spontaneous recovery after neonatal hypoxic ischemic (HI) injury, by elucidating a precise picture in which such reorganization takes place using functional MRI techniques. For all 12 siblings, 6 rats were subjected to severe HI brain injury and 6 rats underwent sham operation only. Severe HI brain injury was induced to postnatal day 7 (p7) Sprague-Dawley rats according to the Rice-Vannucci model (right carotid artery occlusion followed by 150min of hypoxia with 8% O2 and 92% of N2). Brain activation maps along with anatomical and functional connectivity maps related to the sensory motor function were obtained at adult (p63) using blood oxygen level dependent (BOLD)-functional MRI (fMRI), resting state-functional MRI (rs-fMRI) and diffusion tensor imaging (DTI); each of these MRI data was related to sensory motor functional outcome. In-depth investigation of the functional MRI data revealed: 1) intra-hemispheric expansion of BOLD signal activation in the contralesional undamaged hemisphere for ipsilesional forepaw stimuli to include the M2 and Cg1 in addition to the S1 and M1 wide spreading in the anterior and posterior directions, 2) inter-hemispheric transfer of BOLD signal activation for contralesional forepaw stimuli, normally routed to the injured hemisphere, to analogous sites in the contralesional undamaged hemisphere, localized newly to the M1 and M2 with a reduced portion of the S1, 3) inter-hemispheric axonal disconnection and axonal rewiring within the undamaged hemisphere as shown through DTI, and 4) increased functional interactions within the cingulate gyrus in the HI injured rats as shown through rs-fMRI. The BOLD signal amplitudes as well as DTI and rs-fMRI data well correlate with behavioral tests (tape to remove). We found that function normally utilizing what would be the injured hemisphere is transferred to the uninjured hemisphere, and functionality of the uninjured hemisphere remains not untouched but is also rewired in an expansion corresponding to the newly formed sensorimotor function from both the contralesional and the ipsilesional sides. The conclusion drawn from the data in our current study is that enhanced motor function in the contralesional hemisphere governs both the normal and damaged sides, indicating that active plasticity with brain laterality was spontaneously generated to overcome functional loss and established autonomously through normal experience via modification of neural circuitry for neonatal HI injured brain.
Collapse
Affiliation(s)
- Won-Beom Jung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Geun Ho Im
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, South Korea
| | - Julius Juhyun Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| | - So-Yoon Ahn
- Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Tae Yeon Jeon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Yun Sil Chang
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Won Soon Park
- Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Ki-Soo Kim
- Department of Pediatrics Division of Neonatology, Asan Medical Center, University of Ulsan School of Medicine, Seoul 05535, South Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, South Korea.
| |
Collapse
|
6
|
Zhang J, Chen L, Gu YD. Influence of contralateral homologous cortices on motor cortical reorganization after brachial plexus injuries in rats. Neurosci Lett 2015; 606:18-23. [DOI: 10.1016/j.neulet.2015.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
7
|
Touvykine B, Mansoori BK, Jean-Charles L, Deffeyes J, Quessy S, Dancause N. The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex. Neurorehabil Neural Repair 2015; 30:280-92. [PMID: 25967757 PMCID: PMC4766967 DOI: 10.1177/1545968315585356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Babak K Mansoori
- Département de Biologie moléculaire, Biochimie médicale et pathologie, Université Laval, Québec, QC, Canada
| | - Loyda Jean-Charles
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Joan Deffeyes
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Stephan Quessy
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Dancause N, Touvykine B, Mansoori BK. Inhibition of the contralesional hemisphere after stroke. PROGRESS IN BRAIN RESEARCH 2015; 218:361-87. [DOI: 10.1016/bs.pbr.2015.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Viaro R, Budri M, Parmiani P, Franchi G. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats. J Physiol 2014; 592:2137-52. [PMID: 24566543 DOI: 10.1113/jphysiol.2013.268821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genoa, Italy
| | - Mirco Budri
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Pierantonio Parmiani
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Harris NG, Chen SF, Pickard JD. Cortical reorganization after experimental traumatic brain injury: a functional autoradiography study. J Neurotrauma 2013; 30:1137-46. [PMID: 23305562 PMCID: PMC3700473 DOI: 10.1089/neu.2012.2785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cortical sensorimotor (SM) maps are a useful readout for providing a global view of the underlying status of evoked brain function, as well as a gross overview of ongoing mechanisms of plasticity. Recent evidence in the rat controlled cortical impact (CCI) injury model shows that the ipsilesional (injured) hemisphere is temporarily permissive for axon sprouting. This would predict that size and spatial alterations in cortical maps may occur much earlier than previously tested and that they might be useful as potential markers of the postinjury plasticity period as well as indicators of outcome. We investigated the evolution of changes in brain activation evoked by affected hindlimb electrical stimulation at 4, 7, and 30 days following CCI or sham injury over the hindlimb cortical region of adult rats. [(14)C]-iodoantipyrine autoradiography was used to quantitatively examine the local cerebral blood flow changes in response to hindlimb stimulation as a marker for neuronal activity. The results show that although ipsilesional hindlimb SM activity was persistently depressed from 4 days, additional novel regions of ipsilesional activity appeared concurrently within SM barrel and S2 regions as well as posterior auditory cortex. Simultaneously with this was the appearance of evoked activity within the intact, contralesional cortex that was maximal at 4 and 7 days, compared to stimulated sham-injured rats, where activation was solely unilateral. By 30 days, however, contralesional activation had greatly subsided and existing ipsilesional activity was enhanced within the same novel cortical regions that were identified acutely. These data indicate that significant reorganization of the cortical SM maps occurs after injury that evolves with a particular postinjury time course. We discuss these data in terms of the known mechanisms of plasticity that are likely to underlie these map changes, with particular reference to the differences and similarities that exist between rodent models of stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7039, USA.
| | | | | |
Collapse
|
11
|
Abstract
The mammalian neocortex is parcellated into anatomically and functionally distinct areas. The establishment of area-specific neuronal diversity and circuit connectivity enables distinct neocortical regions to control diverse and specialized functional outputs, yet underlying molecular controls remain largely unknown. Here, we identify a central role for the transcriptional regulator Lim-only 4 (Lmo4) in establishing the diversity of neuronal subtypes within rostral mouse motor cortex, where projection neurons have particularly diverse and multi-projection connectivity compared with caudal motor cortex. In rostral motor cortex, we report that both subcerebral projection neurons (SCPN), which send projections away from the cerebrum, and callosal projection neurons (CPN), which send projections to contralateral cortex, express Lmo4, whereas more caudal SCPN and CPN do not. Lmo4-expressing SCPN and CPN populations are comprised of multiple hodologically distinct subtypes. SCPN in rostral layer Va project largely to brainstem, whereas SCPN in layer Vb project largely to spinal cord, and a subset of both rostral SCPN and CPN sends second ipsilateral caudal (backward) projections in addition to primary projections. Without Lmo4 function, the molecular identity of neurons in rostral motor cortex is disrupted and more homogenous, rostral layer Va SCPN aberrantly project to the spinal cord, and many dual-projection SCPN and CPN fail to send a second backward projection. These molecular and hodological disruptions result in greater overall homogeneity of motor cortex output. Together, these results identify Lmo4 as a central developmental control over the diversity of motor cortex projection neuron subpopulations, establishing their area-specific identity and specialized connectivity.
Collapse
|
12
|
Viaro R, Morari M, Franchi G. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats. J Neurosci 2011; 31:4544-54. [PMID: 21430155 PMCID: PMC6622898 DOI: 10.1523/jneurosci.5394-10.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/01/2011] [Accepted: 02/03/2011] [Indexed: 11/21/2022] Open
Abstract
Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy.
| | | | | |
Collapse
|
13
|
Allred RP, Cappellini CH, Jones TA. The "good" limb makes the "bad" limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats. Behav Neurosci 2010; 124:124-132. [PMID: 20141287 DOI: 10.1037/a0018457] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following stroke-like lesions to the sensorimotor cortex in rats, experience with the ipsi-to-lesion (ipsilesional), "nonparetic", forelimb worsens deficits in the contralesional, "paretic", forelimb. We tested whether the maladaptive effects of experience with the nonparetic limb are mediated through callosal connections and the contralesional sensorimotor cortex. Adult male rats with proficiency in skilled reaching with their dominant (for reaching) forelimb received ischemic bilateral sensorimotor cortex lesions, or unilateral lesions, with or without callosal transections. After assessing dominant forelimb function (the paretic forelimb in rats with unilateral lesions), animals were trained with their nonparetic/nondominant forelimb or underwent control procedures for 15 days. Animals were then tested with their paretic/dominant forelimb. In animals with unilateral lesions only, nonparetic forelimb training worsened subsequent performance with the paretic forelimb, as found previously. This effect was not found in animals with both callosal transections and unilateral lesions. After bilateral lesions, training the nondominant limb did not worsen function of the dominant limb compared with controls. Thus, the maladaptive effects of training the nonparetic limb on paretic forelimb function depend upon the contralesional cortex and transcallosal projections. This suggests that this experience-dependent disruption of functional recovery is mediated through interhemispheric connections of the sensorimotor cortex.
Collapse
|
14
|
Dimyan MA, Cohen LG. Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabil Neural Repair 2009; 24:125-35. [PMID: 19767591 DOI: 10.1177/1545968309345270] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Motor impairments are a major cause of morbidity and disability after stroke. This article reviews evidence obtained using transcranial magnetic stimulation (TMS) that provides new insight into mechanisms of impaired motor control and disability. They briefly discuss the use of TMS in the diagnosis, prognosis, and therapy of poststroke motor disability. Particular emphasis is placed on TMS as a tool to explore mechanisms of neuroplasticity during spontaneous and treatment-induced recovery of motor function to develop more rational and clinically useful interventions for stroke rehabilitation.
Collapse
Affiliation(s)
- Michael A Dimyan
- Human Cortical Physiology and Stroke Neurorehabilitation Section, NINDS, NIH, Bethesda, Maryland, USA.
| | | |
Collapse
|
15
|
Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice. Proc Natl Acad Sci U S A 2009; 106:11759-64. [PMID: 19571005 DOI: 10.1073/pnas.0812695106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm(2) of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200-500 microm blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.
Collapse
|