1
|
Jones JA, Higgs MH, Olivares E, Peña J, Wilson CJ. Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus. J Neurosci 2023; 43:1281-1297. [PMID: 36623877 PMCID: PMC9987574 DOI: 10.1523/jneurosci.1969-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.
Collapse
Affiliation(s)
- James A. Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Matthew H. Higgs
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Erick Olivares
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jacob Peña
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Charles J. Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
2
|
Olivares E, Higgs MH, Wilson CJ. Local inhibition in a model of the indirect pathway globus pallidus network slows and deregularizes background firing, but sharpens and synchronizes responses to striatal input. J Comput Neurosci 2022; 50:251-272. [PMID: 35274227 DOI: 10.1007/s10827-022-00814-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
The external segment of globus pallidus (GPe) is a network of oscillatory neurons connected by inhibitory synapses. We studied the intrinsic dynamic and the response to a shared brief inhibitory stimulus in a model GPe network. Individual neurons were simulated using a phase resetting model based on measurements from mouse GPe neurons studied in slices. The neurons showed a broad heterogeneity in their firing rates and in the shapes and sizes of their phase resetting curves. Connectivity in the network was set to match experimental measurements. We generated statistically equivalent neuron heterogeneity in a small-world model, in which 99% of connections were made with near neighbors and 1% at random, and in a model with entirely random connectivity. In both networks, the resting activity was slowed and made more irregular by the local inhibition, but it did not show any periodic pattern. Cross-correlations among neuron pairs were limited to directly connected neurons. When stimulated by a shared inhibitory input, the individual neuron responses separated into two groups: one with a short and stereotyped period of inhibition followed by a transient increase in firing probability, and the other responding with a sustained inhibition. Despite differences in firing rate, the responses of the first group of neurons were of fixed duration and were synchronized across cells.
Collapse
Affiliation(s)
- Erick Olivares
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
4
|
Gast R, Gong R, Schmidt H, Meijer HGE, Knösche TR. On the Role of Arkypallidal and Prototypical Neurons for Phase Transitions in the External Pallidum. J Neurosci 2021; 41:6673-6683. [PMID: 34193559 PMCID: PMC8336705 DOI: 10.1523/jneurosci.0094-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
The external pallidum (globus pallidus pars externa [GPe]) plays a central role for basal ganglia functions and dynamics and, consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons. Using bifurcation analysis, we examine the influence of dopamine-dependent changes of intrapallidal connectivity on the GPe dynamics. We find that increased self-inhibition of prototypical cells can induce oscillations, whereas increased inhibition of prototypical cells by arkypallidal cells leads to the emergence of a bistable regime. Furthermore, we show that oscillatory input to the GPe, arriving from striatum, leads to characteristic patterns of cross-frequency coupling observed at the GPe. Based on these findings, we propose two different hypotheses of how dopamine depletion at the GPe may lead to phase-amplitude coupling between the parkinsonian beta rhythm and a GPe-intrinsic γ rhythm. Finally, we show that these findings generalize to realistic spiking neural networks of sparsely coupled Type I excitable GPe neurons.SIGNIFICANCE STATEMENT Our work provides (1) insight into the theoretical implications of a dichotomous globus pallidus pars externa (GPe) organization, and (2) an exact mean-field model that allows for future investigations of the relationship between GPe spiking activity and local field potential fluctuations. We identify the major phase transitions that the GPe can undergo when subject to static or periodic input and link these phase transitions to the emergence of synchronized oscillations and cross-frequency coupling in the basal ganglia. Because of the close links between our model and experimental findings on the structure and dynamics of prototypical and arkypallidal cells, our results can be used to guide both experimental and computational studies on the role of the GPe for basal ganglia dynamics in health and disease.
Collapse
Affiliation(s)
- Richard Gast
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Ruxue Gong
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Helmut Schmidt
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
| | - Hil G E Meijer
- Department of Applied Mathematics, Technical Medical Centre, University of Twente, Enschede, The Netherlands 7522 NB
| | - Thomas R Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany 04103
- Institute for Biomedical Engineering and Informatics, Ilmenau, Germany 98684
| |
Collapse
|
5
|
Sciamanna G, Ponterio G, Vanni V, Laricchiuta D, Martella G, Bonsi P, Meringolo M, Tassone A, Mercuri NB, Pisani A. Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia. Cell Rep 2021; 31:107644. [PMID: 32433955 DOI: 10.1016/j.celrep.2020.107644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 12/30/2022] Open
Abstract
Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Valentina Vanni
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy; Lab of Behavioural and Experimental Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy
| | - Annalisa Tassone
- Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy; Lab of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
6
|
Higgs MH, Jones JA, Chan CS, Wilson CJ. Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices. J Neurophysiol 2021; 125:1482-1500. [PMID: 33729831 PMCID: PMC8424575 DOI: 10.1152/jn.00071.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/27/2023] Open
Abstract
Neurons in the external globus pallidus (GPe) are autonomous pacemakers, but their spontaneous firing is continually perturbed by synaptic input. Because GPe neurons fire rhythmically in slices, spontaneous inhibitory synaptic currents (IPSCs) should be evident there. We identified periodic series of IPSCs in slices, each corresponding to unitary synaptic currents from one presynaptic cell. Optogenetic stimulation of the striatal indirect pathway axons caused a pause and temporal resetting of the periodic input, confirming that it arose from local neurons subject to striatal inhibition. We determined the firing statistics of the presynaptic neurons from the unitary IPSC statistics and estimated their frequencies, peak amplitudes, and reliabilities. To determine what types of GPe neurons received the spontaneous inhibition, we recorded from genetically labeled parvalbumin (PV) and Npas1-expressing neurons. Both cell types received periodic spontaneous IPSCs with similar frequencies. Optogenetic inhibition of PV neurons reduced the spontaneous IPSC rate in almost all neurons with active unitary inputs, whereas inhibition of Npas1 neurons rarely affected the spontaneous IPSC rate in any neurons. These results suggest that PV neurons provided most of the active unitary inputs to both cell types. Optogenetic pulse stimulation of PV neurons at light levels that can activate cut axons yielded an estimate of connectivity in the fully connected network. The local network is a powerful source of inhibition to both PV and Npas1 neurons, which contributes to irregular firing and may influence the responses to external synaptic inputs.NEW & NOTEWORTHY Brain circuits are often quiet in slices. In the globus pallidus, network activity continues because of the neurons' rhythmic autonomous firing. In this study, synaptic currents generated by the network barrage were measured in single neurons. Unitary synaptic currents arising from single presynaptic neurons were identified by their unique periodicity. Periodic synaptic currents were large and reliable, even at the cell's natural firing rates, but arose from a small number of other globus pallidus neurons.
Collapse
Affiliation(s)
- Matthew H Higgs
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - James A Jones
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Charles J Wilson
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
7
|
Gorodetski L, Loewenstern Y, Faynveitz A, Bar-Gad I, Blackwell KT, Korngreen A. Endocannabinoids and Dopamine Balance Basal Ganglia Output. Front Cell Neurosci 2021; 15:639082. [PMID: 33815062 PMCID: PMC8010132 DOI: 10.3389/fncel.2021.639082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/04/2022] Open
Abstract
The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward “relay” nucleus to an intricate control unit, which may play a vital role in the process of action selection.
Collapse
Affiliation(s)
- Lilach Gorodetski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yocheved Loewenstern
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Kim T Blackwell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Schmidt SL, Brocker DT, Swan BD, Turner DA, Grill WM. Evoked potentials reveal neural circuits engaged by human deep brain stimulation. Brain Stimul 2020; 13:1706-1718. [PMID: 33035726 PMCID: PMC7722102 DOI: 10.1016/j.brs.2020.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson's disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown. OBJECTIVE To use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS. METHODS We recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson's disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments. RESULTS DBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS. CONCLUSIONS DBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.
Collapse
Affiliation(s)
- Stephen L Schmidt
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
9
|
Chazalon M, Paredes-Rodriguez E, Morin S, Martinez A, Cristóvão-Ferreira S, Vaz S, Sebastiao A, Panatier A, Boué-Grabot E, Miguelez C, Baufreton J. GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Rep 2019; 23:1678-1690. [PMID: 29742425 DOI: 10.1016/j.celrep.2018.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/08/2018] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
The external globus pallidus (GP) is a key GABAergic hub in the basal ganglia (BG) circuitry, a neuronal network involved in motor control. In Parkinson's disease (PD), the rate and pattern of activity of GP neurons are profoundly altered and contribute to the motor symptoms of the disease. In rodent models of PD, the striato-pallidal pathway is hyperactive, and extracellular GABA concentrations are abnormally elevated in the GP, supporting the hypothesis of an alteration of neuronal and/or glial clearance of GABA. Here, we discovered the existence of persistent GABAergic tonic inhibition in GP neurons of dopamine-depleted (DD) rodent models. We showed that glial GAT-3 transporters are downregulated while neuronal GAT-1 function remains normal in DD rodents. Finally, we showed that blocking GAT-3 activity in vivo alters the motor coordination of control rodents, suggesting that GABAergic tonic inhibition in the GP contributes to the pathophysiology of PD.
Collapse
Affiliation(s)
- Marine Chazalon
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | | | - Stéphanie Morin
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Audrey Martinez
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Sofia Cristóvão-Ferreira
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Sandra Vaz
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana Sebastiao
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, and Unit of Neuroscience, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | - Eric Boué-Grabot
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33000 Bordeaux, France.
| |
Collapse
|
10
|
Short-term depression shapes information transmission in a constitutively active GABAergic synapse. Sci Rep 2019; 9:18092. [PMID: 31792286 PMCID: PMC6889381 DOI: 10.1038/s41598-019-54607-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Short-term depression is a low-pass filter of synaptic information, reducing synaptic information transfer at high presynaptic firing frequencies. Consequently, during elevated presynaptic firing, little information passes to the postsynaptic neuron. However, many neurons fire at relatively high frequencies all the time. Does depression silence their synapses? We tested this apparent contradiction in the indirect pathway of the basal ganglia. Using numerical modeling and whole-cell recordings from single entopeduncular nucleus (EP) neurons in rat brain slices, we investigated how different firing rates of globus pallidus (GP) neurons affect information transmission to the EP. Whole-cell recordings showed significant variability in steady-state depression, which decreased as stimulation frequency increased. Modeling predicted that this variability would translate into different postsynaptic noise levels during constitutive presynaptic activity. Our simulations further predicted that individual GP-EP synapses mediate gain control. However, when we consider the integration of multiple inputs, the broad range of GP firing rates would enable different modes of information transmission. Finally, we predict that changes in dopamine levels can shift the action of GP neurons from rate coding to gain modulation. Our results thus demonstrate how short-term depression shapes information transmission in the basal ganglia in particular and via GABAergic synapses in general.
Collapse
|
11
|
Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 2019; 8:cells8091005. [PMID: 31470672 PMCID: PMC6769933 DOI: 10.3390/cells8091005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are a collection of interconnected subcortical nuclei that participate in a great variety of functions, ranging from motor programming and execution to procedural learning, cognition, and emotions. This network is also the region primarily affected by the degeneration of midbrain dopaminergic neurons localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular and synaptic dysfunctions in the BG network, which are responsible for the appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) modulation and the consequences of its loss on the striatal microcircuit have been extensively studied, and because of the discrete nature of DA innervation of other BG nuclei, its action outside the striatum has been considered negligible. However, there is a growing body of evidence supporting functional extrastriatal DA modulation of both cellular excitability and synaptic transmission. In this review, the functional relevance of DA modulation outside the striatum in both normal and pathological conditions will be discussed.
Collapse
|
12
|
The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 2017; 12:e0189109. [PMID: 29236724 PMCID: PMC5728518 DOI: 10.1371/journal.pone.0189109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Collapse
|
13
|
Untangling Basal Ganglia Network Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. eNeuro 2017; 3:eN-NWR-0156-16. [PMID: 28101525 PMCID: PMC5228592 DOI: 10.1523/eneuro.0156-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Collapse
|
14
|
Barroso-Flores J, Herrera-Valdez MA, Galarraga E, Bargas J. Models of Short-Term Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:41-57. [PMID: 29080020 DOI: 10.1007/978-3-319-62817-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.
Collapse
Affiliation(s)
- Janet Barroso-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Marco A Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| |
Collapse
|
15
|
Schwab BC, van Wezel RJA, van Gils SA. Sparse pallidal connections shape synchrony in a network model of the basal ganglia. Eur J Neurosci 2016; 45:1000-1012. [PMID: 27350120 DOI: 10.1111/ejn.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Neural synchrony in the basal ganglia, especially in the beta frequency band (13-30 Hz), is a hallmark of Parkinson's disease and considered as antikinetic. In contrast, the healthy basal ganglia show low levels of synchrony. It is currently unknown where synchrony and oscillations arise in the parkinsonian brain and how they are transmitted through the basal ganglia, as well as what makes them dependent on dopamine. The external part of the globus pallidus has recently been identified as a hub nucleus in the basal ganglia, possessing intrinsic inhibitory connections and possibly also gap junctions. In this study, we show that in a conductance-based network model of the basal ganglia, the combination of sparse, high-conductance inhibitory synapses and sparse, low-conductance gap junctions in the external part of the globus pallidus could effectively desynchronize the whole network. However, when gap junction coupling became strong enough, the effect was impeded and activity synchronized. In particular, sustained periods of beta coherence occurred between some neuron pairs. As gap junctions can change their conductance with the dopamine level, we suggest pallidal gap junction coupling as a mechanism contributing to the development of beta synchrony in the parkinsonian basal ganglia.
Collapse
Affiliation(s)
- Bettina C Schwab
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands.,Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands
| | - Richard J A van Wezel
- Biomedical Signals and and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, Enschede, The Netherlands.,Biophysics, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Stephan A van Gils
- Applied Analysis, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
16
|
Du Z, Chazalon M, Bestaven E, Leste-Lasserre T, Baufreton J, Cazalets JR, Cho YH, Garret M. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease. Neuroscience 2016; 329:363-79. [PMID: 27217211 DOI: 10.1016/j.neuroscience.2016.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is characterized by progressive motor symptoms preceded by cognitive deficits and is regarded as a disorder that primarily affects the basal ganglia. The external globus pallidus (GPe) has a central role in the basal ganglia, projects directly to the cortex, and is majorly modulated by GABA. To gain a better understanding of the time course of HD progression and gain insight into the underlying mechanisms, we analyzed GABAergic neurotransmission in the GPe of the R6/1 mouse model at purportedly asymptomatic and symptomatic stages (i.e., 2 and 6months). Western blot and quantitative polymerase chain reaction (PCR) analyses revealed alterations in the GPe of male R6/1 mice compared with wild-type littermates. Expression of proteins involved in pre- and post-synaptic GABAergic compartments as well as synapse number were severely decreased at 2 and 6months. At both ages, patch-clamp electrophysiological recordings showed a decrease of spontaneous and miniature inhibitory post-synaptic currents (IPSCs) suggesting that HD mutation has an early effect on the GABA signaling in the brain. Therefore, we performed continuous locomotor activity recordings from 2 to 4months of age. Actigraphy analyses revealed rest/activity fragmentation alterations that parallel GABAergic system impairment at 2months, while the locomotor deficit is evident only at 3months in R6/1 mice. Our results reveal early deficits in HD and support growing evidence for a critical role played by the GPe in physiological and pathophysiological states. We suggest that actimetry may be used as a non-invasive tool to monitor early disease progression.
Collapse
Affiliation(s)
- Zhuowei Du
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marine Chazalon
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Emma Bestaven
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Thierry Leste-Lasserre
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | - Jérôme Baufreton
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Jean-René Cazalets
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Yoon H Cho
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Maurice Garret
- Univ. Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France; CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
18
|
Brown LE, Nicholson MW, Arama JE, Mercer A, Thomson AM, Jovanovic JN. γ-Aminobutyric Acid Type A (GABAA) Receptor Subunits Play a Direct Structural Role in Synaptic Contact Formation via Their N-terminal Extracellular Domains. J Biol Chem 2016; 291:13926-13942. [PMID: 27129275 PMCID: PMC4933154 DOI: 10.1074/jbc.m116.714790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/17/2022] Open
Abstract
The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/β subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, β2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/β2/γ2-expressing HEK293 cells, the α1, β2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific.
Collapse
Affiliation(s)
- Laura E Brown
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Martin W Nicholson
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Jessica E Arama
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Audrey Mercer
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Alex M Thomson
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Jasmina N Jovanovic
- Research Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom.
| |
Collapse
|
19
|
Kumaravelu K, Brocker DT, Grill WM. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. J Comput Neurosci 2016; 40:207-29. [PMID: 26867734 PMCID: PMC4975943 DOI: 10.1007/s10827-016-0593-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/28/2022]
Abstract
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.
Collapse
Affiliation(s)
- Karthik Kumaravelu
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Lavian H, Korngreen A. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro. Eur J Neurosci 2015; 43:870-84. [PMID: 26013247 DOI: 10.1111/ejn.12965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.
Collapse
Affiliation(s)
- Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
21
|
Kim J, Kita H. Posttetanic enhancement of striato-pallidal synaptic transmission. J Neurophysiol 2015; 114:447-54. [PMID: 25995348 DOI: 10.1152/jn.00241.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/17/2015] [Indexed: 11/22/2022] Open
Abstract
The striato (Str)-globus pallidus external segment (GPe) projection plays major roles in the control of neuronal activity in the basal ganglia under both normal and pathological conditions. The present study used rat brain slice preparations to characterize the enhancement of Str-GPe synapses observed after repetitive conditioning stimuli (CS) of Str with the whole cell patch-clamp recording technique. The results show that 1) the Str-GPe synapses have a posttetanic enhancement (PTE) mechanism, which is considered to be a combination of an augmentation and a posttetanic potentiation; 2) the degree of PTE observed in GPe neurons had a wide range and was positively correlated with a wide range of paired-pulse ratios assessed before application of CS; 3) a wide range of CS, from frequencies as low as 2 Hz with as few as 5 pulses to as high as 100 Hz with 100 pulses, could induce PTE; 4) the decay time constant of PTE was dependent on the strength of CS and was prolonged greatly, up to 120 s, when strong CS were applied; and 5) the level of postsynaptic Cl(-) became a limiting factor for the degree of PTE when strong CS were applied. These results imply that Str-GPe synapses transmit inhibitions in a nonlinear activity-weighted manner, which may be suited for scaling timing and force of repeated or sequential body movements. Other possible factors controlling the induction of PTE and functional implications are also discussed.
Collapse
Affiliation(s)
- Juhyon Kim
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
22
|
Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA. Exploiting pallidal plasticity for stimulation in Parkinson's disease. J Neural Eng 2015; 12:026005. [PMID: 25650741 DOI: 10.1088/1741-2560/12/2/026005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Continuous application of high-frequency deep brain stimulation (DBS) often effectively reduces motor symptoms of Parkinson's disease patients. While there is a growing need for more effective and less traumatic stimulation, the exact mechanism of DBS is still unknown. Here, we present a methodology to exploit the plasticity of GABAergic synapses inside the external globus pallidus (GPe) for the optimization of DBS. APPROACH Assuming the existence of spike-timing-dependent plasticity (STDP) at GABAergic GPe-GPe synapses, we simulate neural activity in a network model of the subthalamic nucleus and GPe. In particular, we test different DBS protocols in our model and quantify their influence on neural synchrony. MAIN RESULTS In an exemplary set of biologically plausible model parameters, we show that STDP in the GPe has a direct influence on neural activity and especially the stability of firing patterns. STDP stabilizes both uncorrelated firing in the healthy state and correlated firing in the parkinsonian state. Alternative stimulation protocols such as coordinated reset stimulation can clearly profit from the stabilizing effect of STDP. These results are widely independent of the STDP learning rule. SIGNIFICANCE Once the model settings, e.g., connection architectures, have been described experimentally, our model can be adjusted and directly applied in the development of novel stimulation protocols. More efficient stimulation leads to both minimization of side effects and savings in battery power.
Collapse
Affiliation(s)
- Marcel A J Lourens
- MIRA: Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7500 AE, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Hernández-Martínez R, Aceves JJ, Rueda-Orozco PE, Hernández-Flores T, Hernández-González O, Tapia D, Galarraga E, Bargas J. Muscarinic presynaptic modulation in GABAergic pallidal synapses of the rat. J Neurophysiol 2015; 113:796-807. [DOI: 10.1152/jn.00385.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.
Collapse
Affiliation(s)
- Ricardo Hernández-Martínez
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José J. Aceves
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pavel E. Rueda-Orozco
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Hernández-Flores
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Hernández-González
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dagoberto Tapia
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
24
|
Zhang H, Wang Q, Chen G. Control effects of stimulus paradigms on characteristic firings of parkinsonism. CHAOS (WOODBURY, N.Y.) 2014; 24:033134. [PMID: 25273214 DOI: 10.1063/1.4895809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.
Collapse
Affiliation(s)
- Honghui Zhang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, People's Republic of China
| | - Guanrong Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
25
|
Kang G, Lowery MM. Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson's disease: a simulation study. Front Comput Neurosci 2014; 8:32. [PMID: 24678296 PMCID: PMC3958751 DOI: 10.3389/fncom.2014.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/25/2014] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that subthalamic nucleus (STN)-Deep Brain Stimulation (DBS) may exert at least part of its therapeutic effect through the antidromic suppression of pathological oscillations in the cortex in 6-OHDA treated rats and in parkinsonian patients. STN-DBS may also activate STN neurons by initiating action potential propagation in the orthodromic direction, similarly resulting in suppression of pathological oscillations in the STN. While experimental studies have provided strong evidence in support of antidromic stimulation of cortical neurons, it is difficult to separate relative contributions of antidromic and orthodromic effects of STN-DBS. The aim of this computational study was to examine the effects of antidromic and orthodromic activation on neural firing patterns and beta-band (13-30 Hz) oscillations in the STN and cortex during DBS of STN afferent axons projecting from the cortex. High frequency antidromic stimulation alone effectively suppressed simulated beta activity in both the cortex and STN-globus pallidus externa (GPe) network. High frequency orthodromic stimulation similarly suppressed beta activity within the STN and GPe through the direct stimulation of STN neurons driven by DBS at the same frequency as the stimulus. The combined effect of both antidromic and orthodromic stimulation modulated cortical activity antidromically while simultaneously orthodromically driving STN neurons. While high frequency DBS reduced STN beta-band power, low frequency stimulation resulted in resonant effects, increasing beta-band activity, consistent with previous experimental observations. The simulation results indicate effective suppression of simulated oscillatory activity through both antidromic stimulation of cortical neurons and direct orthodromic stimulation of STN neurons. The results of the study agree with experimental recordings of STN and cortical neurons in rats and support the therapeutic potential of stimulation of cortical neurons.
Collapse
Affiliation(s)
- Guiyeom Kang
- UCD School of Electrical, Electronic and Communications Engineering, University College Dublin Dublin, Ireland
| | - Madeleine M Lowery
- UCD School of Electrical, Electronic and Communications Engineering, University College Dublin Dublin, Ireland
| |
Collapse
|
26
|
Carron R, Chaillet A, Filipchuk A, Pasillas-Lépine W, Hammond C. Closing the loop of deep brain stimulation. Front Syst Neurosci 2013; 7:112. [PMID: 24391555 PMCID: PMC3868949 DOI: 10.3389/fnsys.2013.00112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/28/2013] [Indexed: 01/20/2023] Open
Abstract
High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.
Collapse
Affiliation(s)
- Romain Carron
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France ; APHM, Hopital de la Timone, Service de Neurochirurgie Fonctionnelle et Stereotaxique Marseille, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes(L2S), CNRS UMR 8506 Gif-sur-Yvette, France ; Université Paris Sud 11, UMR 8506, Supélec Gif-sur-Yvette, France
| | - Anton Filipchuk
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France
| | - William Pasillas-Lépine
- Laboratoire des Signaux et Systèmes(L2S), CNRS UMR 8506 Gif-sur-Yvette, France ; Centre national de la recherche scientifique Paris, France
| | - Constance Hammond
- Aix Marseille Université UMR 901 Marseille, France ; Institut national de la Recherche Médicale et de la Santé Inserm, INMED UMR 901 Marseille, France
| |
Collapse
|
27
|
Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. J Neurosci 2013; 33:12805-9. [PMID: 23904615 DOI: 10.1523/jneurosci.1970-13.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The firing patterns of neurons in the globus pallidus (GP) are affected by two major sources of GABAergic inhibition: striatal afferents and local axon collaterals. Local GABAergic GP-GP synapses display short-term depression (STD) and very sparse connectivity. At the high presynaptic firing rates typical in the GP, one would expect this STD to be complete, practically cancelling the postsynaptic impact of the synapse. To investigate the apparent paradox of a synapse not affecting its postsynaptic neuron, we performed dual whole-cell recordings in acute brain slices from rats and recorded, for the first time, unitary IPSPs from a GP-GP GABAergic connection. We show that at high presynaptic firing rates the unitary connection continuously modulates the postsynaptic firing rate through a combination of large chloride driving force, unitary IPSP summation, and incomplete synaptic depression. Our findings indicate that, despite substantial STD and sparse connectivity, local GABAergic axon collaterals in the GP may echo the changes in presynaptic firing frequency across postsynaptic targets.
Collapse
|
28
|
Schwab BC, Heida T, Zhao Y, Marani E, van Gils SA, van Wezel RJA. Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus. Front Syst Neurosci 2013; 7:60. [PMID: 24109437 PMCID: PMC3789943 DOI: 10.3389/fnsys.2013.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022] Open
Abstract
The mechanisms for the emergence and transmission of synchronized oscillations in Parkinson's disease, which are potentially causal to motor deficits, remain debated. Aside from the motor cortex and the subthalamic nucleus, the external globus pallidus (GPe) has been shown to be essential for the maintenance of these oscillations and plays a major role in sculpting neural network activity in the basal ganglia (BG). While neural activity of the healthy GPe shows almost no correlations between pairs of neurons, prominent synchronization in the β frequency band arises after dopamine depletion. Several studies have proposed that this shift is due to network interactions between the different BG nuclei, including the GPe. However, recent studies demonstrate an important role for the properties of neurons within the GPe. In this review, we will discuss these intrinsic GPe properties and review proposed mechanisms for activity decorrelation within the dopamine-intact GPe. Failure of the GPe to desynchronize correlated inputs can be a possible explanation for synchronization in the whole BG. Potential triggers of synchronization involve the enhancement of GPe-GPe inhibition and changes in ion channel function in GPe neurons.
Collapse
Affiliation(s)
- Bettina C Schwab
- Applied Analysis and Mathematical Physics, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente Enschede, Netherlands ; Biomedical Signals and Systems, MIRA Institute of Technical Medicine and Biomedical Technology, University of Twente Enschede, Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Goldberg JA, Atherton JF, Surmeier DJ. Spectral reconstruction of phase response curves reveals the synchronization properties of mouse globus pallidus neurons. J Neurophysiol 2013; 110:2497-506. [PMID: 23966679 DOI: 10.1152/jn.00177.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The propensity of a neuron to synchronize is captured by its infinitesimal phase response curve (iPRC). Determining whether an iPRC is biphasic, meaning that small depolarizing perturbations can actually delay the next spike, if delivered at appropriate phases, is a daunting experimental task because negative lobes in the iPRC (unlike positive ones) tend to be small and may be occluded by the normal discharge variability of a neuron. To circumvent this problem, iPRCs are commonly derived from numerical models of neurons. Here, we propose a novel and natural method to estimate the iPRC by direct estimation of its spectral modes. First, we show analytically that the spectral modes of the iPRC of an arbitrary oscillator are readily measured by applying weak harmonic perturbations. Next, applying this methodology to biophysical neuronal models, we show that a low-dimensional spectral reconstruction is sufficient to capture the structure of the iPRC. This structure was preserved reasonably well even with added physiological scale jitter in the neuronal models. To validate the methodology empirically, we applied it first to a low-noise electronic oscillator with a known design and then to cortical pyramidal neurons, recorded in whole cell configuration, that are known to possess a monophasic iPRC. Finally, using the methodology in conjunction with perforated-patch recordings from pallidal neurons, we show, in contrast to recent modeling studies, that these neurons have biphasic somatic iPRCs. Biphasic iPRCs would cause lateral somatically targeted pallidal inhibition to desynchronize pallidal neurons, providing a plausible explanation for their lack of synchrony in vivo.
Collapse
Affiliation(s)
- Joshua A Goldberg
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | | | | |
Collapse
|
30
|
Wei W, Li L, Yu G, Ding S, Li C, Zhou FM. Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol 2013; 110:2203-16. [PMID: 23945778 DOI: 10.1152/jn.00161.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | | | | | | | | | | |
Collapse
|
31
|
Wilson CJ. Active decorrelation in the basal ganglia. Neuroscience 2013; 250:467-82. [PMID: 23892007 DOI: 10.1016/j.neuroscience.2013.07.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/22/2023]
Abstract
The cytoarchitecturally-homogeneous appearance of the globus pallidus, subthalamic nucleus and substantia nigra has long been said to imply a high degree of afferent convergence and sharing of inputs by nearby neurons. Moreover, axon collaterals of neurons in the external segment of the globus pallidus and the substantia nigra pars reticulata arborize locally and make inhibitory synapses on other cells of the same type. These features suggest that the connectivity of the basal ganglia may impose spike-time correlations among the cells, and it has been puzzling that experimental studies have failed to demonstrate such correlations. One possible solution arises from studies of firing patterns in basal ganglia cells, which reveal that they are nearly all pacemaker cells. Their high rate of firing does not depend on synaptic excitation, but they fire irregularly because a dense barrage of synaptic inputs normally perturbs the timing of their autonomous activity. Theoretical and computational studies show that the responses of repetitively-firing neurons to shared input or mutual synaptic coupling often defy classical intuitions about temporal synaptic integration. The patterns of spike-timing among such neurons depend on the ionic mechanism of pacemaking, the level of background uncorrelated cellular and synaptic noise, and the firing rates of the neurons, as well as the properties of their synaptic connections. Application of these concepts to the basal ganglia circuitry suggests that the connectivity and physiology of these nuclei may be configured to prevent the establishment of permanent spike-timing relationships between neurons. The development of highly synchronous oscillatory patterns of activity in Parkinson's disease may result from the loss of pacemaking by some basal ganglia neurons, and accompanying breakdown of the mechanisms responsible for active decorrelation.
Collapse
Affiliation(s)
- C J Wilson
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States.
| |
Collapse
|
32
|
Prescott I, Dostrovsky J, Moro E, Hodaie M, Lozano A, Hutchison W. Reduced paired pulse depression in the basal ganglia of dystonia patients. Neurobiol Dis 2013. [DOI: 10.1016/j.nbd.2012.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Kim J, Kita H. Short-term plasticity shapes activity pattern-dependent striato-pallidal synaptic transmission. J Neurophysiol 2012. [PMID: 23197459 DOI: 10.1152/jn.00459.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cortico-striato (Str)-globus pallidus external segment (GPe) projection plays major roles in the control of neuronal activity in the basal ganglia under both normal and pathological conditions. The present study used rat brain-slice preparations to address our hypothesis that the gain of this disynaptic projection is dynamically controlled by activations of short-term plasticity mechanisms of Str-GPe synapses. The Str-GPe projection neurons fire with very different frequency and firing patterns in vivo depending on the condition of the animal. The results show that the Str-GPe synapses have very strong short-term enhancement mechanisms and that repetitive burst activation of the Str-GPe synapses, which mimic oscillatory burst firing of Str neurons, can sustain enhanced states of synaptic transmission for tens of seconds. The results reveal that the short-term enhancement of Str-GPe synapses contributes to the generation of pauses in the firing of GPe neurons and that signal transfer function in the Str-GPe projection is highly dependent on the firing pattern of Str neurons.
Collapse
Affiliation(s)
- Juhyon Kim
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
34
|
Miguelez C, Morin S, Martinez A, Goillandeau M, Bezard E, Bioulac B, Baufreton J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson's disease. J Physiol 2012; 590:5861-75. [PMID: 22890706 DOI: 10.1113/jphysiol.2012.241331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pattern of activity of globus pallidus (GP) neurons is tightly regulated by GABAergic inhibition. In addition to extrinsic inputs from the striatum (STR-GP) the other source of GABA to GP neurons arises from intrinsic intranuclear axon collaterals (GP-GP). While the contribution of striatal inputs has been studied, notably its hyperactivity in Parkinson's disease (PD), the properties and function of intranuclear inhibition remain poorly understood. Our objective was therefore to test the impact of chronic dopamine depletion on pallido-pallidal transmission. Using patch-clamp whole-cell recordings in rat brain slices, we combined electrical and optogenetic stimulations with pharmacology to differentiate basic synaptic properties of STR-GP and GP-GP GABAergic synapses. GP-GP synapses were characterized by activity-dependent depression and insensitivity to the D(2) receptor specific agonist quinpirole and STR-GP synapses by frequency-dependent facilitation and quinpirole modulation. Chronic dopamine deprivation obtained in 6-OHDA lesioned animals boosted the amplitude of GP-GP IPSCs but did not modify STR-GP transmission and increased the amplitude of miniature IPSCs. Replacement of calcium by strontium confirmed that the quantal amplitude was increased at GP-GP synapses. Finally, we demonstrated that boosted GP-GP transmission promotes resetting of autonomous activity and rebound-burst firing after dopamine depletion. These results suggest that GP-GP synaptic transmission (but not STR-GP) is augmented by chronic dopamine depletion which could contribute to the aberrant GP neuronal activity observed in PD.
Collapse
Affiliation(s)
- Cristina Miguelez
- Univ. de Bordeaux, Institut des Maladies Neurodegeneratives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Gruber AJ, McDonald RJ. Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 2012; 6:50. [PMID: 22876225 PMCID: PMC3411069 DOI: 10.3389/fnbeh.2012.00050] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Motivated behavior exhibits properties that change with experience and partially dissociate among a number of brain structures. Here, we review evidence from rodent experiments demonstrating that multiple brain systems acquire information in parallel and either cooperate or compete for behavioral control. We propose a conceptual model of systems interaction wherein a ventral emotional memory network involving ventral striatum (VS), amygdala, ventral hippocampus, and ventromedial prefrontal cortex triages behavioral responding to stimuli according to their associated affective outcomes. This system engages autonomic and postural responding (avoiding, ignoring, approaching) in accordance with associated stimulus valence (negative, neutral, positive), but does not engage particular operant responses. Rather, this emotional system suppresses or invigorates actions that are selected through competition between goal-directed control involving dorsomedial striatum (DMS) and habitual control involving dorsolateral striatum (DLS). The hippocampus provides contextual specificity to the emotional system, and provides an information rich input to the goal-directed system for navigation and discriminations involving ambiguous contexts, complex sensory configurations, or temporal ordering. The rapid acquisition and high capacity for episodic associations in the emotional system may unburden the more complex goal-directed system and reduce interference in the habit system from processing contingencies of neutral stimuli. Interactions among these systems likely involve inhibitory mechanisms and neuromodulation in the striatum to form a dominant response strategy. Innate traits, training methods, and task demands contribute to the nature of these interactions, which can include incidental learning in non-dominant systems. Addition of these features to reinforcement learning models of decision-making may better align theoretical predictions with behavioral and neural correlates in animals.
Collapse
Affiliation(s)
- Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | |
Collapse
|
36
|
Liu LD, Prescott IA, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol 2012; 108:5-17. [DOI: 10.1152/jn.00527.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) in the globus pallidus internus (GPi) has been shown to improve dystonia, a movement disorder of repetitive twisting movements and postures. DBS at frequencies above 60 Hz improves dystonia, but the mechanisms underlying this frequency dependence are unclear. In patients undergoing dual-microelectrode mapping of the GPi, microstimulation has been shown to reduce neuronal firing, presumably due to synaptic GABA release. This study examined the effects of different microstimulation frequencies (1–100 Hz) and train length (0.5–20 s), with and without prior high-frequency stimulation (HFS) on neuronal firing and evoked field potentials (fEPs) in 13 dystonia patients. Pre-HFS, the average firing decreased as stimulation frequency increased and was silenced above 50 Hz. The average fEP amplitudes increased up to frequencies of 20–30 Hz but then declined and at 50 Hz, were only at 75% of baseline. In some cases, short latency fiber volleys and antidromic-like spikes were observed and followed high frequencies. Post-HFS, overall firing was reduced compared with pre-HFS, and the fEP amplitudes were enhanced at low frequencies, providing evidence of inhibitory synaptic plasticity in the GPi. In a patient with DBS electrodes already implanted in the GPi, recordings from four neurons in the subthalamic nucleus showed almost complete inhibition of firing with clinically effective but not clinically ineffective stimulation parameters. These data provide additional support for the hypothesis of stimulation-evoked GABA release from afferent synaptic terminals and reduction of neuronal firing during DBS and additionally, implicate excitation of GPi axon fibers and neurons and enhancement of inhibitory synaptic transmission by high-frequency GPi DBS as additional putative mechanisms underlying the clinical benefits of DBS in dystonia.
Collapse
Affiliation(s)
- Liu D. Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Ian A. Prescott
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jonathan O. Dostrovsky
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - William D. Hutchison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Schultheiss NW, Edgerton JR, Jaeger D. Robustness, variability, phase dependence, and longevity of individual synaptic input effects on spike timing during fluctuating synaptic backgrounds: a modeling study of globus pallidus neuron phase response properties. Neuroscience 2012; 219:92-110. [PMID: 22659567 DOI: 10.1016/j.neuroscience.2012.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
A neuron's phase response curve (PRC) shows how inputs arriving at different times during the spike cycle differentially affect the timing of subsequent spikes. Using a full morphological model of a globus pallidus (GP) neuron, we previously demonstrated that dendritic conductances shape the PRC in a spike frequency-dependent manner, suggesting different functional roles of perisomatic and distal dendritic synapses in the control of patterned network activity. In the present study we extend this analysis to examine the impact of physiologically realistic high conductance states on somatic and dendritic PRCs and the time course of spike train perturbations. First, we found that average somatic and dendritic PRCs preserved their shapes and spike frequency dependence when the model was driven by spatially-distributed, stochastic conductance inputs rather than tonic somatic current. However, responses to inputs during specific synaptic backgrounds often deviated substantially from the average PRC. Therefore, we analyzed the interactions of PRC stimuli with transient fluctuations in the synaptic background on a trial-by-trial basis. We found that the variability in responses to PRC stimuli and the incidence of stimulus-evoked added or skipped spikes were stimulus-phase-dependent and reflected the profile of the average PRC, suggesting commonality in the underlying mechanisms. Clear differences in the relation between the phase of input and variability of spike response between dendritic and somatic inputs indicate that these regions generally represent distinct dynamical subsystems of synaptic integration with respect to influencing the stability of spike time attractors generated by the overall synaptic conductance.
Collapse
Affiliation(s)
- N W Schultheiss
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
38
|
Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. J Neurosci 2011; 31:10919-36. [PMID: 21795543 DOI: 10.1523/jneurosci.6062-10.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. In contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings, it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study, we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD.
Collapse
|
39
|
Wilson CJ, Beverlin B, Netoff T. Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front Syst Neurosci 2011; 5:50. [PMID: 21734868 PMCID: PMC3122072 DOI: 10.3389/fnsys.2011.00050] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/05/2011] [Indexed: 11/13/2022] Open
Abstract
High frequency deep-brain stimulation of the subthalamic nucleus (deep brain stimulation, DBS) relieves many of the symptoms of Parkinson's disease in humans and animal models. Although the treatment has seen widespread use, its therapeutic mechanism remains paradoxical. The subthalamic nucleus is excitatory, so its stimulation at rates higher than its normal firing rate should worsen the disease by increasing subthalamic excitation of the globus pallidus. The therapeutic effectiveness of DBS is also frequency and intensity sensitive, and the stimulation must be periodic; aperiodic stimulation at the same mean rate is ineffective. These requirements are not adequately explained by existing models, whether based on firing rate changes or on reduced bursting. Here we report modeling studies suggesting that high frequency periodic excitation of the subthalamic nucleus may act by desynchronizing the firing of neurons in the globus pallidus, rather than by changing the firing rate or pattern of individual cells. Globus pallidus neurons are normally desynchronized, but their activity becomes correlated in Parkinson's disease. Periodic stimulation may induce chaotic desynchronization by interacting with the intrinsic oscillatory mechanism of globus pallidus neurons. Our modeling results suggest a mechanism of action of DBS and a pathophysiology of Parkinsonism in which synchrony, rather than firing rate, is the critical pathological feature.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Biology, University of Texas at San Antonio San Antonio, TX, USA
| | | | | |
Collapse
|
40
|
Kita H, Kita T. Role of Striatum in the Pause and Burst Generation in the Globus Pallidus of 6-OHDA-Treated Rats. Front Syst Neurosci 2011; 5:42. [PMID: 21713126 PMCID: PMC3113166 DOI: 10.3389/fnsys.2011.00042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Electrophysiological studies in patients and animal models of Parkinson's disease (PD) often reported increased burst activity of neurons in the basal ganglia. Neurons in the globus pallidus external (GPe) segment in 6-hydroxydopamine (6-OHDA)-treated hemi-parkinsonian rats fire with strong bursts interrupted by pauses. The goal of this study was to evaluate the hypothesis that dopamine (DA)-depletion increases burst firings of striatal (Str) neurons projecting to the GPe and that the increased Str–GPe burst inputs play a significant role in the generation of pauses and bursts in GPe and its projection sites. To evaluate this hypothesis, the unitary activity of Str and GPe was recorded from control and 6-OHDA-treated rats anesthetized with 0.5–1% isoflurane. The occurrence of pauses and bursts in the firings of GPe neurons was significantly higher in 6-OHDA than in normal rats. Muscimol injection into the Str of 6-OHDA rats increased average firing rate and greatly reduced the pauses and bursts in GPe. Recordings from Str revealed that most of the presumed projection neurons in control rats have very low spontaneous activity, and even the occasional neurons that did exhibit spontaneous burst firings did so with an average rate of less than 2 Hz. In DA-depleted Str, neurons having stronger bursts and a higher average firing rate were encountered more frequently. Juxtacellular labeling revealed that most of these neurons were medium spiny neurons projecting only to GPe. Injection of a behaviorally effective dose of methyl-l-DOPA into the Str of 6-OHDA rats significantly increased the average firing rate and decreased the number of pauses of GPe neurons. These data validate the hypothesis that DA-depletion increases burst firings of Str neurons projecting to the GPe and that the increased Str–GPe burst inputs play a significant role in the generation of pauses and bursts in GPe. These results suggest that treatment to reduce burst Str–GPe inhibitory inputs may help to restore some PD disabilities.
Collapse
Affiliation(s)
- Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
41
|
Gross A, Sims RE, Swinny JD, Sieghart W, Bolam JP, Stanford IM. Differential localization of GABA(A) receptor subunits in relation to rat striatopallidal and pallidopallidal synapses. Eur J Neurosci 2011; 33:868-78. [PMID: 21219474 DOI: 10.1111/j.1460-9568.2010.07552.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of α1, α2 and α3 GABA(A) receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the α1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the α1 subunits at both synapses. However, the application of drugs selective for the α2, α3 and α5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-α1 subunits. Immunofluorescence revealed widespread distribution of the α1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the γ2 subunit indicated strong immunoreactivity for GABA(A) α3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABA(A) α2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABA(A) α subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity.
Collapse
Affiliation(s)
- A Gross
- Aston University, School of Life and Health Sciences, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
42
|
Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. Neuromolecular Med 2009; 11:281-96. [PMID: 19757210 DOI: 10.1007/s12017-009-8088-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/25/2009] [Indexed: 02/08/2023]
Abstract
Over the past several decades there has been considerable progress in our basic knowledge as to the mechanisms and factors regulating Mn toxicity. The disorder known as manganism is associated with the preferential accumulation of Mn in the globus pallidus of the basal ganglia which is generally considered to be the major and initial site of injury. Because the area of the CNS comprising the basal ganglia is very complex and dependent on the precise function and balance of several neurotransmitters, it is not surprising that symptoms of manganism often overlap with that of Parkinson's disease. The fact that neurological symptoms and onset of Mn toxicity are quite broad and can vary unpredictably probably reflects specific genetic variance of the physiological and biochemical makeup within the basal ganglia in any individual. Differences in response to Mn overexposure are, thus, likely due to underlying genetic variability which ultimately presents in deviations in both susceptibility as well as the characteristics of the neurological lesions and symptoms expressed. Although chronic exposure to Mn is not the initial causative agent provoking Parkinsonism, there is evidence suggesting that persistent exposure can predispose an individual to acquire dystonic movements associated with Parkinson's disease. As noted in this review, there appears to be common threads between the two disorders, as mutations in the genes, parkin and ATP13A2, associated with early onset of Parkinsonism, may also predispose an individual to develop Mn toxicity. Mutations in both genes appear to effect transport of Mn into the cell. These genetic difference coupled with additional environmental or nutritional factors must also be considered as contributing to the severity and onset of manganism.
Collapse
|
43
|
Diversity in long-term synaptic plasticity at inhibitory synapses of striatal spiny neurons. Learn Mem 2009; 16:474-8. [PMID: 19633136 DOI: 10.1101/lm.1439909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term potentiation (LTP) at synapses among spiny neurons (intrinsic striatal circuitry); a postsynaptically dependent long-term depression (LTD) at synapses between spiny and pallidal neurons (indirect pathway); and a presynaptically dependent LTP at strionigral synapses (direct pathway). Interestingly, long-term synaptic plasticity differs at these synapses. The functional consequences of these long-term plasticity variations during learning of procedural memories are discussed.
Collapse
|