1
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
Numasawa K, Miyamoto T, Kizuka T, Ono S. Prediction error in implicit adaptation during visually- and memory-guided reaching tasks. Sci Rep 2024; 14:8582. [PMID: 38615053 PMCID: PMC11016115 DOI: 10.1038/s41598-024-59169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Human movements are adjusted by motor adaptation in order to maintain their accuracy. There are two systems in motor adaptation, referred to as explicit or implicit adaptation. It has been suggested that the implicit adaptation is based on the prediction error and has been used in a number of motor adaptation studies. This study aimed to examine the effect of visual memory on prediction error in implicit visuomotor adaptation by comparing visually- and memory-guided reaching tasks. The visually-guided task is thought to be implicit learning based on prediction error, whereas the memory-guided task requires more cognitive processes. We observed the adaptation to visuomotor rotation feedback that is gradually rotated. We found that the adaptation and retention rates were higher in the visually-guided task than in the memory-guided task. Furthermore, the delta-band power obtained by electroencephalography (EEG) in the visually-guided task was increased immediately following the visual feedback, which indicates that the prediction error was larger in the visually-guided task. Our results show that the visuomotor adaptation is enhanced in the visually-guided task because the prediction error, which contributes update of the internal model, was more reliable than in the memory-guided task. Therefore, we suggest that the processing of the prediction error is affected by the task-type, which in turn affects the rate of the visuomotor adaptation.
Collapse
Affiliation(s)
- Kosuke Numasawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takeshi Miyamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Tomohiro Kizuka
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Seiji Ono
- Institute of Health and Sport Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
3
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
4
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
5
|
Baker CM, Burks JD, Briggs RG, Conner AK, Glenn CA, Taylor KN, Sali G, McCoy TM, Battiste JD, O'Donoghue DL, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 7: The Lateral Parietal Lobe. Oper Neurosurg (Hagerstown) 2019; 15:S295-S349. [PMID: 30260428 DOI: 10.1093/ons/opy261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 7, we specifically address regions relevant to the lateral parietal lobe.
Collapse
Affiliation(s)
- Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kathleen N Taylor
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tressie M McCoy
- Department of Physical Therapy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
6
|
The neglected medial part of macaque area PE: segregated processing of reach depth and direction. Brain Struct Funct 2019; 224:2537-2557. [DOI: 10.1007/s00429-019-01923-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/13/2019] [Indexed: 11/26/2022]
|
7
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
8
|
Padberg J, Cooke DF, Cerkevich CM, Kaas JH, Krubitzer L. Cortical connections of area 2 and posterior parietal area 5 in macaque monkeys. J Comp Neurol 2019; 527:718-737. [PMID: 29663384 PMCID: PMC6191384 DOI: 10.1002/cne.24453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/04/2018] [Accepted: 03/25/2018] [Indexed: 01/28/2023]
Abstract
The overarching goal of the current investigation was to examine the connections of anterior parietal area 2 and the medial portion of posterior parietal area 5 in macaque monkeys; two areas that are part of a network involved reaching and grasping in primates. We injected neuroanatomical tracers into specified locations in each field and directly related labeled cells to histologically identified cortical field boundaries. Labeled cells were counted so that the relative density of projections to areas 2 and 5 from other cortical fields could be determined. Projections to area 2 were restricted and were predominantly from other somatosensory areas of the anterior parietal cortex (areas 1, 3b, and 3a), the second somatosensory area (S2), and from medial and lateral portions of area 5 (5M and 5L respectively). On the other hand, area 5M had very broadly distributed projections from a number of cortical areas including anterior parietal areas, from primary motor cortex (M1), premotor cortex (PM), the supplementary motor area (SMA), cortex on the medial wall, and from posterior parietal areas 5L and 7b. The more restricted pattern of connections of area 2 indicates that it processes somatic inputs locally and provides proprioceptive information to area 5M. 5M, which at least partially overlaps with functionally defined area MIP, receives inputs from somatosensory (predominantly from area 2), posterior parietal and motor cortex, which could provide the substrate for representing multiple coordinate systems necessary for planning ethologically relevant movements, particularly those involving the hand.
Collapse
Affiliation(s)
- Jeffrey Padberg
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Dylan F. Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, V5A1S6, Canada
| | | | | | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, CA, 95618, USA
- Department of Psychology, University of California, Davis, CA, 95618, USA
| |
Collapse
|
9
|
Vestibular contributions to high-level sensorimotor functions. Neuropsychologia 2017; 105:144-152. [DOI: 10.1016/j.neuropsychologia.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
|
10
|
Benazet M, Thénault F, Whittingstall K, Bernier PM. Attenuation of visual reafferent signals in the parietal cortex during voluntary movement. J Neurophysiol 2016; 116:1831-1839. [PMID: 27466131 PMCID: PMC5144698 DOI: 10.1152/jn.00231.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/24/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that the cortical processing of somatosensory and auditory signals is attenuated when they result from self-generated actions compared with external events. This phenomenon is thought to result from an efference copy of motor commands used to predict the sensory consequences of an action through a forward model. The present work examined whether attenuation also takes place for visual reafferent signals from the moving limb during voluntary reaching movements. To address this issue, EEG activity was recorded in a condition in which visual feedback of the hand was provided in real time and compared with a condition in which it was presented with a 150-ms delay, thus creating a mismatch between the predicted and actual visual consequences of the movement. Results revealed that the amplitude of the N1 component of the visual event-related potential evoked by hand visual feedback over the parietal cortex was significantly smaller when presented in real time compared with when it was delayed. These data suggest that the cortical processing of visual reafferent signals is attenuated when they are correctly predicted, likely as a result of a forward model.
Collapse
Affiliation(s)
- Marc Benazet
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Thénault
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Whittingstall
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
- Département de Radiologie Diagnostique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada;
| |
Collapse
|
11
|
Torres EB, Nguyen J, Mistry S, Whyatt C, Kalampratsidou V, Kolevzon A. Characterization of the Statistical Signatures of Micro-Movements Underlying Natural Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-Phenotyping of Behavior in ASD. Front Integr Neurosci 2016; 10:22. [PMID: 27445720 PMCID: PMC4921802 DOI: 10.3389/fnint.2016.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023] Open
Abstract
Background: There is a critical need for precision phenotyping across neurodevelopmental disorders, especially in individuals who receive a clinical diagnosis of autism spectrum disorder (ASD). Phelan-McDermid deletion syndrome (PMS) is one such example, as it has a high penetrance of ASD. At present, no biometric characterization of the behavioral phenotype within PMS exists. Methods: We introduce a data-type and statistical framework that permits the personalized profiling of naturalistic behaviors. Walking patterns were assessed in 30 participants (16 PMS, 3 idiopathic-ASD and 11 age- and sex-matched controls). Each individual's micro-movement signatures were recorded at 240 Hz. We empirically estimated the parameters of the continuous Gamma family of probability distributions and calculated their ranges. These estimated stochastic signatures were then mapped on the Gamma plane to obtain several statistical indexes for each child. To help visualize complex patterns across the cohort, we introduce new tools that enable the assessment of connectivity and modularity indexes across the peripheral network of rotational joints. Results: Typical walking signatures are absent in all children with PMS as well as in the children with idiopathic-ASD (iASD). Underlying these patterns are atypical leg rotational acceleration signatures that render participants with PMS unstable with rotations that are much faster than controls. The median values of the estimated Gamma parameters serve as a cutoff to automatically separate children with PMS 5–7 years old from adolescents with PMS 12–16 years old, the former displaying more randomness and larger noise. The fluctuations in the arm's motions during the walking also have atypical statistics that separate males from females in PMS and show higher rates of noise accumulation in idiopathic ASD (iASD) children. Despite high heterogeneity, all iASD children have excess noise, a narrow range of probability-distribution shapes across the body joints and a distinct joint network connectivity pattern. Both PMS and iASD have systemic issues with noise in micro-motions across the body with specific signatures for each child that, as a cohort, selectively deviates from controls. Conclusions: We provide a new methodology for precision behavioral phenotyping with the potential to use micro-movement output noise as a natural classifier of neurodevelopmental disorders of known etiology. This approach may help us better understand idiopathic neurodevelopmental disorders and personalize the assessments of natural movements in these populations.
Collapse
Affiliation(s)
- Elizabeth B Torres
- Department of Psychology, Computer Science, Rutgers Center for Cognitive Sciences and Computational Biomedicine Imaging and Modelling Center of Computer Science, Rutgers The State University of New Jersey New Brunswick, NJ, USA
| | - Jillian Nguyen
- Graduate Program in Neuroscience, Rutgers The State University of New Jersey New Brunswick, NJ, USA
| | - Sejal Mistry
- Department of Mathematics, Rutgers The State University of New Jersey New Brunswick, NJ, USA
| | - Caroline Whyatt
- Department of Psychology, Rutgers The State University of New Jersey New Brunswick, NJ, USA
| | - Vilelmini Kalampratsidou
- Department of Computer Science, Rutgers The State University of New Jersey New Brunswick, NJ, USA
| | - Alexander Kolevzon
- Psychiatry, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
12
|
Rao HM, San Juan J, Shen FY, Villa JE, Rafie KS, Sommer MA. Neural Network Evidence for the Coupling of Presaccadic Visual Remapping to Predictive Eye Position Updating. Front Comput Neurosci 2016; 10:52. [PMID: 27313528 PMCID: PMC4889583 DOI: 10.3389/fncom.2016.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability," quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.
Collapse
Affiliation(s)
- Hrishikesh M Rao
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Juan San Juan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Fred Y Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Jennifer E Villa
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Kimia S Rafie
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Pratt School of Engineering, Duke UniversityDurham, NC, USA; Department of Neurobiology, Duke School of Medicine, Duke UniversityDurham, NC, USA; Center for Cognitive Neuroscience, Duke UniversityDurham, NC, USA
| |
Collapse
|
13
|
Nguyen J, Majmudar U, Papathomas TV, Silverstein SM, Torres EB. Schizophrenia: The micro-movements perspective. Neuropsychologia 2016; 85:310-26. [DOI: 10.1016/j.neuropsychologia.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Zhou Y, Liu Y, Lu H, Wu S, Zhang M. Neuronal representation of saccadic error in macaque posterior parietal cortex (PPC). eLife 2016; 5. [PMID: 27097103 PMCID: PMC4865368 DOI: 10.7554/elife.10912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 04/18/2016] [Indexed: 11/18/2022] Open
Abstract
Motor control, motor learning, self-recognition, and spatial perception all critically depend on the comparison of motor intention to the actually executed movement. Despite our knowledge that the brainstem-cerebellum plays an important role in motor error detection and motor learning, the involvement of neocortex remains largely unclear. Here, we report the neuronal computation and representation of saccadic error in macaque posterior parietal cortex (PPC). Neurons with persistent pre- and post-saccadic response (PPS) represent the intended end-position of saccade; neurons with late post-saccadic response (LPS) represent the actual end-position of saccade. Remarkably, after the arrival of the LPS signal, the PPS neurons’ activity becomes highly correlated with the discrepancy between intended and actual end-position, and with the probability of making secondary (corrective) saccades. Thus, this neuronal computation might underlie the formation of saccadic error signals in PPC for speeding up saccadic learning and leading the occurrence of secondary saccade. DOI:http://dx.doi.org/10.7554/eLife.10912.001
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yining Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haidong Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
15
|
Torres EB, Isenhower RW, Nguyen J, Whyatt C, Nurnberger JI, Jose JV, Silverstein SM, Papathomas TV, Sage J, Cole J. Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors. Front Neurol 2016; 7:8. [PMID: 26869988 PMCID: PMC4735831 DOI: 10.3389/fneur.2016.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/18/2016] [Indexed: 01/09/2023] Open
Abstract
There is a critical need for new analytics to personalize behavioral data analysis across different fields, including kinesiology, sports science, and behavioral neuroscience. Specifically, to better translate and integrate basic research into patient care, we need to radically transform the methods by which we describe and interpret movement data. Here, we show that hidden in the “noise,” smoothed out by averaging movement kinematics data, lies a wealth of information that selectively differentiates neurological and mental disorders such as Parkinson’s disease, deafferentation, autism spectrum disorders, and schizophrenia from typically developing and typically aging controls. In this report, we quantify the continuous forward-and-back pointing movements of participants from a large heterogeneous cohort comprising typical and pathological cases. We empirically estimate the statistical parameters of the probability distributions for each individual in the cohort and report the parameter ranges for each clinical group after characterization of healthy developing and aging groups. We coin this newly proposed platform for individualized behavioral analyses “precision phenotyping” to distinguish it from the type of observational–behavioral phenotyping prevalent in clinical studies or from the “one-size-fits-all” model in basic movement science. We further propose the use of this platform as a unifying statistical framework to characterize brain disorders of known etiology in relation to idiopathic neurological disorders with similar phenotypic manifestations.
Collapse
Affiliation(s)
- Elizabeth B Torres
- Psychology Department, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, USA; Computer Science Department, Center for Biomedical Imaging and Modeling, Rutgers University, New Brunswick, NJ, USA
| | | | - Jillian Nguyen
- Psychology Department, Rutgers University , New Brunswick, NJ , USA
| | - Caroline Whyatt
- Psychology Department, Rutgers University , New Brunswick, NJ , USA
| | - John I Nurnberger
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Jorge V Jose
- Department of Physics, Indiana University, Bloomington, IN, USA; Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, IN, USA
| | - Steven M Silverstein
- Department of Psychiatry, Rutgers University Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| | - Thomas V Papathomas
- Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, USA
| | - Jacob Sage
- Movement Disorders, Rutgers University Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| | - Jonathan Cole
- Poole Hospital and Bournemouth University , Poole , UK
| |
Collapse
|
16
|
Tramper JJ, Medendorp WP. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion. J Neurophysiol 2015; 114:3211-9. [PMID: 26490289 DOI: 10.1152/jn.00576.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022] Open
Abstract
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms.
Collapse
Affiliation(s)
- J J Tramper
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W P Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Daie K, Goldman MS, Aksay ERF. Spatial patterns of persistent neural activity vary with the behavioral context of short-term memory. Neuron 2015; 85:847-60. [PMID: 25661184 DOI: 10.1016/j.neuron.2015.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/25/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
A short-term memory can be evoked by different inputs and control separate targets in different behavioral contexts. To address the circuit mechanisms underlying context-dependent memory function, we determined through optical imaging how memory is encoded at the whole-network level in two behavioral settings. Persistent neural activity maintaining a memory of desired eye position was imaged throughout the oculomotor integrator after saccadic or optokinetic stimulation. While eye position was encoded by the amplitude of network activity, the spatial patterns of firing were context dependent: cells located caudally generally were most persistent following saccadic input, whereas cells located rostrally were most persistent following optokinetic input. To explain these data, we computationally identified four independent modes of network activity and found these were differentially accessed by saccadic and optokinetic inputs. These results show how a circuit can simultaneously encode memory value and behavioral context, respectively, in its amplitude and spatial pattern of persistent firing.
Collapse
Affiliation(s)
- Kayvon Daie
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
18
|
Gutteling TP, Selen LPJ, Medendorp WP. Parallax-sensitive remapping of visual space in occipito-parietal alpha-band activity during whole-body motion. J Neurophysiol 2014; 113:1574-84. [PMID: 25505108 DOI: 10.1152/jn.00477.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion.
Collapse
Affiliation(s)
- T P Gutteling
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L P J Selen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W P Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Passingham RE, Chung A, Goparaju B, Cowey A, Vaina LM. Using action understanding to understand the left inferior parietal cortex in the human brain. Brain Res 2014; 1582:64-76. [PMID: 25086203 DOI: 10.1016/j.brainres.2014.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
Humans have a sophisticated knowledge of the actions that can be performed with objects. In an fMRI study we tried to establish whether this depends on areas that are homologous with the inferior parietal cortex (area PFG) in macaque monkeys. Cells have been described in area PFG that discharge differentially depending upon whether the observer sees an object being brought to the mouth or put in a container. In our study the observers saw videos in which the use of different objects was demonstrated in pantomime; and after viewing the videos, the subject had to pick the object that was appropriate to the pantomime. We found a cluster of activated voxels in parietal areas PFop and PFt and this cluster was greater in the left hemisphere than in the right. We suggest a mechanism that could account for this asymmetry, relate our results to handedness and suggest that they shed light on the human syndrome of apraxia. Finally, we suggest that during the evolution of the hominids, this same pantomime mechanism could have been used to 'name' or request objects.
Collapse
Affiliation(s)
- R E Passingham
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| | - A Chung
- Brain and Vision Research Laboratory, Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - B Goparaju
- Brain and Vision Research Laboratory, Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston, MA 02215, USA
| | - A Cowey
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| | - L M Vaina
- Brain and Vision Research Laboratory, Department of Biomedical Engineering, 44 Cummington Mall, Boston University, Boston, MA 02215, USA; Massachussetts General Hospital, Harvard Medical School, Department of Neurology & Radiology, 15 Parkman Street, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Leclercq G, Blohm G, Lefèvre P. Accounting for direction and speed of eye motion in planning visually guided manual tracking. J Neurophysiol 2013; 110:1945-57. [DOI: 10.1152/jn.00130.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.
Collapse
Affiliation(s)
- Guillaume Leclercq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; and
- Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
|
22
|
Torres EB, Isenhower RW, Yanovich P, Rehrig G, Stigler K, Nurnberger J, José JV. Strategies to develop putative biomarkers to characterize the female phenotype with autism spectrum disorders. J Neurophysiol 2013; 110:1646-62. [PMID: 23864377 DOI: 10.1152/jn.00059.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current observational inventories used to diagnose autism spectrum disorders (ASD) apply similar criteria to females and males alike, despite developmental differences between the sexes. Recent work investigating the chronology of diagnosis in ASD has raised the concern that females run the risk of receiving a delayed diagnosis, potentially missing a window of opportunity for early intervention. Here, we retake this issue in the context of the objective measurements of natural behaviors that involve decision-making processes. Within this context, we quantified movement variability in typically developing (TD) individuals and those diagnosed with ASD across different ages. We extracted the latencies of the decision movements and velocity-dependent parameters as the hand movements unfolded for two movement segments within the reach: movements intended toward the target and withdrawing movements that spontaneously, without instruction, occurred incidentally. The stochastic signatures of the movement decision latencies and the percent of time to maximum speed differed between males and females with ASD. This feature was also observed in the empirically estimated probability distributions of the maximum speed values, independent of limb size. Females with ASD showed different dispersion than males with ASD. The distinctions found for females with ASD were better appreciated compared with those of TD females. In light of these results, behavioral assessment of autistic traits in females should be performed relative to TD females to increase the chance of detection.
Collapse
|
23
|
Suzuki L, Coulon P, Sabel-Goedknegt EH, Ruigrok TJH. Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 2012; 32:10854-69. [PMID: 22875920 PMCID: PMC6621006 DOI: 10.1523/jneurosci.0857-12.2012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/25/2022] Open
Abstract
The cerebrocerebellar connection makes use of two of the largest fiber tracts in the mammalian brain, i.e., the cerebral and medial cerebellar peduncles. Neuroanatomical approaches aimed to elucidate the organization of this important connection have been hindered by its multisynaptic nature, the complex organization of its components, and the dependency of conventional tracers on precisely placed injections. To overcome these problems, we used rabies virus (RV) as a retrograde transneuronal tracer. RV was injected simultaneously with cholera toxin β subunit (CTb) into selected areas of the cerebellar cortex of 18 male Wistar rats. A survival time of 48-50 h resulted in first- and second-order labeling of RV in combination with first-order labeling of CTb. The distribution of CTb-labeled neurons in the inferior olive established the zonal identity of the injection site. In this way, it was possible to examine the cortical distribution of neurons from which disynaptic cerebrocerebellar projections to specific cerebellar loci originate. The results show that this distribution covaries with the identity of the injected cerebellar lobule. More subtle changes were present when different zones of the same lobule were injected. The C1 zone of lobule VIII receives a more prominent projection from the somatosensory cortex compared with the C2/D zones. The laterally positioned D zones receive information from more rostral regions of the cerebral cortex. The vermis of lobule VII receives a prominent input from the retrosplenial and orbitofrontal cortices. Different injection sites also result in differences in laterality of the connections.
Collapse
Affiliation(s)
- Lucia Suzuki
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands, and
| | - Patrice Coulon
- Institut des Neurosciences de la Timone, CNRS and Aix-Marseille Université, 13385 Marseille Cedex 05, France
| | - Erika H. Sabel-Goedknegt
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands, and
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus University Medical Center Rotterdam, 3000CA Rotterdam, The Netherlands, and
| |
Collapse
|
24
|
Binocular retinal image differences influence eye-position signals for perceived visual direction. Vision Res 2012; 62:220-7. [PMID: 22560955 DOI: 10.1016/j.visres.2012.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/23/2022]
Abstract
Correctly perceiving the direction of a visible object with respect to one's self (egocentric visual direction) requires that information about the location of the image on the retina (oculocentric visual direction) be combined with signals about the position of the eyes in the head. The Wells-Hering laws that govern the perception of visual direction and modern restatements of these laws assume implicitly that retinal and eye-position information are independent of one another. By measuring observers' manual pointing responses to targets in different horizontal locations, we show that retinal and eye-position information are not treated independently in the brain. In particular, decreasing the relative visibility of one eye's retinal image reduces the strength of the eye-position signal associated with that eye. The results can be accounted for by interactions between eye-specific retinal and eye-position signals at a common neural location.
Collapse
|
25
|
Medendorp WP, Buchholz VN, Van Der Werf J, Leoné FTM. Parietofrontal circuits in goal-oriented behaviour. Eur J Neurosci 2011; 33:2017-27. [PMID: 21645097 DOI: 10.1111/j.1460-9568.2011.07701.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parietal and frontal cortical areas play important roles in the control of goal-oriented behaviour. This review examines how signal processing in the parietal and frontal eye fields is involved in coding and storing space, directing attention and processing the sensorimotor transformation for saccades. After a survey of the functional specialization of these areas in monkeys, we discuss homologous regions in the human brain in terms of topographic organization, storage capacity, target selection, spatial remapping, reference frame transformations and effector specificity. The overall picture suggests that bottom-up sensory, top-down cognitive signals and efferent motor signals are integrated in dynamic sensorimotor maps as part of a functionally flexible parietofrontal network. Neuronal synchronization in these maps may be instrumental in amplifying behaviourally relevant representations and setting up a functional pathway to route information in this parietofrontal circuit.
Collapse
Affiliation(s)
- W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, NL 6500 HE, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Tanaka M, Kunimatsu J. Contribution of the central thalamus to the generation of volitional saccades. Eur J Neurosci 2011; 33:2046-57. [PMID: 21645100 DOI: 10.1111/j.1460-9568.2011.07699.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesions in the motor thalamus can cause deficits in somatic movements. However, the involvement of the thalamus in the generation of eye movements has only recently been elucidated. In this article, we review recent advances into the role of the thalamus in eye movements. Anatomically, the anterior group of the intralaminar nuclei and paralaminar portion of the ventrolateral, ventroanterior and mediodorsal nuclei of the thalamus send massive projections to the frontal eye field and supplementary eye field. In addition, these parts of the thalamus, collectively known as the 'oculomotor thalamus', receive inputs from the cerebellum, the basal ganglia and virtually all stages of the saccade-generating pathways in the brainstem. In their pioneering work in the 1980s, Schlag and Schlag-Rey found a variety of eye movement-related neurons in the oculomotor thalamus, and proposed that this region might constitute a 'central controller' playing a role in monitoring eye movements and generating self-paced saccades. This hypothesis has been evaluated by recent experiments in non-human primates and by clinical observations of subjects with thalamic lesions. In addition, several recent studies have also addressed the involvement of the oculomotor thalamus in the generation of anti-saccades and the selection of targets for saccades. These studies have revealed the impact of subcortical signals on the higher-order cortical processing underlying saccades, and suggest the possibility of future studies using the oculomotor system as a model to explore the neural mechanisms of global cortico-subcortical loops and the neural basis of a local network between the thalamus and cortex.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| | | |
Collapse
|
27
|
Abstract
Powerful transneuronal tracing technologies exploit the ability of some neurotropic viruses to travel across neuronal pathways and to function as self-amplifying markers. Rabies virus is the only viral tracer that is entirely specific, as it propagates exclusively between connected neurons by strictly unidirectional (retrograde) transneuronal transfer, allowing for the stepwise identification of neuronal connections of progressively higher order. Transneuronal tracing studies in primates and rodent models prior to the development of clinical disease have provided valuable information on rabies pathogenesis. We have shown that rabies virus propagation occurs at chemical synapses but not via gap junctions or cell-to-cell spread. Infected neurons remain viable, as they can express their neurotransmitters and cotransport other tracers. Axonal transport occurs at high speed, and all populations of the same synaptic order are infected simultaneously regardless of their neurotransmitters, synaptic strength, and distance, showing that rabies virus receptors are ubiquitously distributed within the CNS. Conversely, in the peripheral nervous system, rabies virus receptors are present only on motor endplates and motor axons, since uptake and transneuronal transmission to the CNS occur exclusively via the motor route, while sensory and autonomic endings are not infected. Infection of sensory and autonomic ganglia requires longer incubation times, as it reflects centrifugal propagation from the CNS to the periphery, via polysynaptic connections from sensory and autonomic neurons to the initially infected motoneurons. Virus is recovered from end organs only after the development of rabies because anterograde spread to end organs is likely mediated by passive diffusion, rather than active transport mechanisms.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Neurobiologie et Développement, UPR3294 CNRS, Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Abstract
Until recently, single-stranded negative sense RNA viruses (ssNSVs) were one of only a few important human viral pathogens, which could not be created from cDNA. The inability to manipulate their genomes hindered their detailed genetic analysis. A key paper from Conzelmann's laboratory in 1994 changed this with the publication of a method to recover rabies virus (RABV) from cDNA. This discovery not only dramatically changed the broader field of ssNSV biology but also opened a whole new avenue for studying RABV pathogenicity, developing novel RABV vaccines as well a new generation of RABV-based vaccine vectors, and creating research tools important in neuroscience such as neuronal tracing.
Collapse
Affiliation(s)
- Emily A Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
29
|
Medendorp WP. Spatial constancy mechanisms in motor control. Philos Trans R Soc Lond B Biol Sci 2011; 366:476-91. [PMID: 21242137 DOI: 10.1098/rstb.2010.0089] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye-head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals.
Collapse
Affiliation(s)
- W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, PO Box 9104, NL-6500 HE Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Xu Y, Wang X, Peck C, Goldberg ME. The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. J Neurophysiol 2011; 106:71-7. [PMID: 21346201 DOI: 10.1152/jn.00668.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A proprioceptive representation of eye position exists in area 3a of primate somatosensory cortex (Wang X, Zhang M, Cohen IS, Goldberg ME. Nat Neurosci 10: 640-646, 2007). This eye position signal is consistent with a fusimotor response (Taylor A, Durbaba R, Ellaway PH, Rawlinson S. J Physiol 571: 711-723, 2006) and has two components during a visually guided saccade task: a short-latency phasic response followed by a tonic response. While the early phasic response can be excitatory or inhibitory, it does not accurately reflect the eye's orbital position. The late tonic response appears to carry the proprioceptive eye position signal, but it is not clear when this component emerges and whether the onset of this signal is reliable. To test the temporal dynamics of the tonic proprioceptive signal, we used an oculomotor smooth pursuit task in which saccadic eye movements and phasic proprioceptive responses are suppressed. Our results show that the tonic proprioceptive eye position signal consistently lags the actual eye position in the orbit by ~60 ms under a variety of eye movement conditions. To confirm the proprioceptive nature of this signal, we also studied the responses of neurons in a vestibuloocular reflex (VOR) task in which the direction of gaze was held constant; response profiles and delay times were similar in this task, suggesting that this signal does not represent angle of gaze and does not receive visual or vestibular inputs. The length of the delay suggests that the proprioceptive eye position signal is unlikely to be used for online visual processing for action, although it could be used to calibrate an efference copy signal.
Collapse
Affiliation(s)
- Yixing Xu
- Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | |
Collapse
|
31
|
Prevosto V, Graf W, Ugolini G. Proprioceptive pathways to posterior parietal areas MIP and LIPv from the dorsal column nuclei and the postcentral somatosensory cortex. Eur J Neurosci 2011; 33:444-60. [PMID: 21226771 DOI: 10.1111/j.1460-9568.2010.07541.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posterior parietal cortex (PPC) serves as an interface between sensory and motor cortices by integrating multisensory signals with motor-related information. Sensorimotor transformation of somatosensory signals is crucial for the generation and updating of body representations and movement plans. Using retrograde transneuronal transfer of rabies virus in combination with a conventional tracer, we identified direct and polysynaptic somatosensory pathways to two posterior parietal areas, the ventral lateral intraparietal area (LIPv) and the rostral part of the medial intraparietal area (MIP) in macaque monkeys. In addition to direct projections from somatosensory areas 2v and 3a, respectively, we found that LIPv and MIP receive disynaptic inputs from the dorsal column nuclei as directly as these somatosensory areas, via a parallel channel. LIPv is the target of minor neck muscle-related projections from the cuneate (Cu) and the external cuneate nuclei (ECu), and direct projections from area 2v, that likely carry kinesthetic/vestibular/optokinetic-related signals. In contrast, MIP receives major arm and shoulder proprioceptive inputs disynaptically from the rostral Cu and ECu, and trisynaptically (via area 3a) from caudal portions of these nuclei. These findings have important implications for the understanding of the influence of proprioceptive information on movement control operations of the PPC and the formation of body representations. They also contribute to explain the specific deficits of proprioceptive guidance of movement associated to optic ataxia.
Collapse
Affiliation(s)
- Vincent Prevosto
- Laboratoire de Neurobiologie Cellulaire et Moléculaire (NBCM), FRE3295 CNRS, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
32
|
Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods 2010; 194:2-20. [DOI: 10.1016/j.jneumeth.2009.12.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
33
|
Chang SWC, Papadimitriou C, Snyder LH. Using a compound gain field to compute a reach plan. Neuron 2010; 64:744-55. [PMID: 20005829 DOI: 10.1016/j.neuron.2009.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
A gain field, the scaling of a tuned neuronal response by a postural signal, may help support neuronal computation. Here, we characterize eye and hand position gain fields in the parietal reach region (PRR). Eye and hand gain fields in individual PRR neurons are similar in magnitude but opposite in sign to one another. This systematic arrangement produces a compound gain field that is proportional to the distance between gaze location and initial hand position. As a result, the visual response to a target for an upcoming reach is scaled by the initial gaze-to-hand distance. Such a scaling is similar to what would be predicted in a neural network that mediates between eye- and hand-centered representations of target location. This systematic arrangement supports a role of PRR in visually guided reaching and provides strong evidence that gain fields are used for neural computations.
Collapse
Affiliation(s)
- Steve W C Chang
- Department of Anatomy and Neurobiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|