1
|
Bizingre C, Bianchi C, Baudry A, Alleaume-Butaux A, Schneider B, Pietri M. Post-translational modifications in prion diseases. Front Mol Neurosci 2024; 17:1405415. [PMID: 39011540 PMCID: PMC11247024 DOI: 10.3389/fnmol.2024.1405415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
More than 650 reversible and irreversible post-translational modifications (PTMs) of proteins have been listed so far. Canonical PTMs of proteins consist of the covalent addition of functional or chemical groups on target backbone amino-acids or the cleavage of the protein itself, giving rise to modified proteins with specific properties in terms of stability, solubility, cell distribution, activity, or interactions with other biomolecules. PTMs of protein contribute to cell homeostatic processes, enabling basal cell functions, allowing the cell to respond and adapt to variations of its environment, and globally maintaining the constancy of the milieu interieur (the body's inner environment) to sustain human health. Abnormal protein PTMs are, however, associated with several disease states, such as cancers, metabolic disorders, or neurodegenerative diseases. Abnormal PTMs alter the functional properties of the protein or even cause a loss of protein function. One example of dramatic PTMs concerns the cellular prion protein (PrPC), a GPI-anchored signaling molecule at the plasma membrane, whose irreversible post-translational conformational conversion (PTCC) into pathogenic prions (PrPSc) provokes neurodegeneration. PrPC PTCC into PrPSc is an additional type of PTM that affects the tridimensional structure and physiological function of PrPC and generates a protein conformer with neurotoxic properties. PrPC PTCC into PrPSc in neurons is the first step of a deleterious sequence of events at the root of a group of neurodegenerative disorders affecting both humans (Creutzfeldt-Jakob diseases for the most representative diseases) and animals (scrapie in sheep, bovine spongiform encephalopathy in cow, and chronic wasting disease in elk and deer). There are currently no therapies to block PrPC PTCC into PrPSc and stop neurodegeneration in prion diseases. Here, we review known PrPC PTMs that influence PrPC conversion into PrPSc. We summarized how PrPC PTCC into PrPSc impacts the PrPC interactome at the plasma membrane and the downstream intracellular controlled protein effectors, whose abnormal activation or trafficking caused by altered PTMs promotes neurodegeneration. We discussed these effectors as candidate drug targets for prion diseases and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Bizingre
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | - Clara Bianchi
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | - Anne Baudry
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | | | - Benoit Schneider
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
- Ecole polytechnique, Institut Polytechnique de Paris, CNRS UMR7654, Palaiseau, France
| | - Mathéa Pietri
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| |
Collapse
|
2
|
Ortega-Gascó A, Parcerisas A, Hino K, Herranz-Pérez V, Ulloa F, Elias-Tersa A, Bosch M, García-Verdugo JM, Simó S, Pujadas L, Soriano E. Regulation of young-adult neurogenesis and neuronal differentiation by neural cell adhesion molecule 2 (NCAM2). Cereb Cortex 2023; 33:10931-10948. [PMID: 37724425 PMCID: PMC10629901 DOI: 10.1093/cercor/bhad340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Adult neurogenesis persists in mammals in the neurogenic zones, where newborn neurons are incorporated into preexisting circuits to preserve and improve learning and memory tasks. Relevant structural elements of the neurogenic niches include the family of cell adhesion molecules (CAMs), which participate in signal transduction and regulate the survival, division, and differentiation of radial glial progenitors (RGPs). Here we analyzed the functions of neural cell adhesion molecule 2 (NCAM2) in the regulation of RGPs in adult neurogenesis and during corticogenesis. We characterized the presence of NCAM2 across the main cell types of the neurogenic process in the dentate gyrus, revealing different levels of NCAM2 amid the progression of RGPs and the formation of neurons. We showed that Ncam2 overexpression in adult mice arrested progenitors in an RGP-like state, affecting the normal course of young-adult neurogenesis. Furthermore, changes in Ncam2 levels during corticogenesis led to transient migratory deficits but did not affect the survival and proliferation of RGPs, suggesting a differential role of NCAM2 in adult and embryonic stages. Our data reinforce the relevance of CAMs in the neurogenic process by revealing a significant role of Ncam2 levels in the regulation of RGPs during young-adult neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Alba Ortega-Gascó
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Department of Biosciences, Faculty of Sciences, Technology and Engineering, University of Vic – Central University of Catalonia (UVic-UCC), 13 Laura St., Vic 08500, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Vicente Herranz-Pérez
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Jaume I University, S/N Vicent Sos Baynat Ave., Castelló de la Plana 12006, Spain
| | - Fausto Ulloa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Alba Elias-Tersa
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| | - Miquel Bosch
- Department of Basic Sciences, International University of Catalonia (UIC), S/N Josep Trueta St., Sant Cugat del Vallès 08195, Spain
| | - José Manuel García-Verdugo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 7 Catedràtic Agustín Escardino Benlloch St., València 46010, Spain
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, 1275 Med Science Dr., Davis, CA 95616, USA
| | - Lluís Pujadas
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), 70 Roda Rd., Vic 08500, Spain
- Department of Experimental Sciences and Methodology, Faculty of Heath Sciences and Wellfare, University of Vic - Central University of Catalonia (UVic-UCC), 7 Sagrada Família St., Vic 08500, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology, and Immunology, Institute of Neurosciences, Universitat de Barcelona (UB), 643 Diagonal Ave., Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), CIBER, Instituto de Salud Carlos III, 4 Sinesio Delgado, Madrid 28031, Spain
| |
Collapse
|
3
|
Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Front Immunol 2022; 13:773191. [PMID: 35371036 PMCID: PMC8966389 DOI: 10.3389/fimmu.2022.773191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.
Collapse
Affiliation(s)
- Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
5
|
Huang R, Yuan DJ, Li S, Liang XS, Gao Y, Lan XY, Qin HM, Ma YF, Xu GY, Schachner M, Sytnyk V, Boltze J, Ma QH, Li S. NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis. J Cell Biol 2020; 219:132733. [PMID: 31816056 PMCID: PMC7039204 DOI: 10.1083/jcb.201902164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/31/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023] Open
Abstract
The development of cerebral cortex requires spatially and temporally orchestrated proliferation, migration, and differentiation of neural progenitor cells (NPCs). The molecular mechanisms underlying cortical development are, however, not fully understood. The neural cell adhesion molecule (NCAM) has been suggested to play a role in corticogenesis. Here we show that NCAM is dynamically expressed in the developing cortex. NCAM expression in NPCs is highest in the neurogenic period and declines during the gliogenic period. In mice bearing an NPC-specific NCAM deletion, proliferation of NPCs is reduced, and production of cortical neurons is delayed, while formation of cortical glia is advanced. Mechanistically, NCAM enhances actin polymerization in NPCs by interacting with actin-associated protein profilin2. NCAM-dependent regulation of NPCs is blocked by mutations in the profilin2 binding site. Thus, NCAM plays an essential role in NPC proliferation and fate decision during cortical development by regulating profilin2-dependent actin polymerization.
Collapse
Affiliation(s)
- Rui Huang
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - De-Juan Yuan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
- Physiology Department, Dalian Medical University, Dalian, China
| | - Shao Li
- Physiology Department, Dalian Medical University, Dalian, China
| | - Xue-Song Liang
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Yue Gao
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Xiao-Yan Lan
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Hua-Min Qin
- Pathology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu-Fang Ma
- Biochemistry and Molecular Biology Department, Dalian Medical University, Dalian, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- W.M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
- Correspondence to Shen Li:
| | - Shen Li
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
- Quanhong Ma:
| |
Collapse
|
6
|
Łuczkowska K, Rogińska D, Ulańczyk Z, Paczkowska E, Schmidt CA, Machaliński B. Molecular Mechanisms of Bortezomib Action: Novel Evidence for the miRNA-mRNA Interaction Involvement. Int J Mol Sci 2020; 21:E350. [PMID: 31948068 PMCID: PMC6981510 DOI: 10.3390/ijms21010350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Bortezomib is an anti-tumor agent, which inhibits 26S proteasome degrading ubiquitinated proteins. While apoptotic transcription-associated activation in response to bortezomib has been suggested, mechanisms related to its influence on post-transcriptional gene silencing mediated regulation by non-coding RNAs remain not fully elucidated. In the present study, we examined changes in global gene and miRNA expression and analyzed the identified miRNA-mRNA interactions after bortezomib exposure in human neuroblastoma cells to define pathways affected by this agent in this type of cells. Cell viability assays were performed to assess cytotoxicity of bortezomib. Global gene and miRNA expression profiles of neuroblastoma cells after 24-h incubation with bortezomib were determined using genome-wide RNA and miRNA microarray technology. Obtained results were then confirmed by qRT-PCR and Western blot. Further bioinformatical analysis was performed to identify affected biological processes and pathways. In total, 719 genes and 28 miRNAs were downregulated, and 319 genes and 61 miRNAs were upregulated in neuroblastoma cells treated with bortezomib. Possible interactions between dysregulated miRNA/mRNA, which could be linked to bortezomib-induced neurotoxicity, affect neurogenesis, cellular calcium transport, and neuron death. Bortezomib might exert toxic effects on neuroblastoma cells and regulate miRNA-mRNA interactions influencing vital cellular functions. Further studies on the role of specific miRNA-mRNA interactions are needed to elucidate mechanisms of bortezomib action.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| | - Christian Andreas Schmidt
- Department of Internal Medicine C-Haematology, and Oncology, Stem Cell Transplantation, Palliative Care, University Hospital Greifswald, Ernst-Moritz-Arndt University, 17489 Greifswald, Germany;
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland (D.R.); (E.P.)
| |
Collapse
|
7
|
Allyl isothiocyanate attenuates oxidative stress and inflammation by modulating Nrf2/HO-1 and NF-κB pathways in traumatic brain injury in mice. Mol Biol Rep 2018; 46:241-250. [DOI: 10.1007/s11033-018-4465-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
|
8
|
Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018; 97:442-461. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Adult tissue homeostasis and repair relies on prompt and appropriate intervention by tissue-specific adult stem cells (SCs). SCs have the ability to self-renew; upon appropriate stimulation, they proliferate and give rise to specialized cells. An array of environmental signals is important for maintenance of the SC pool and SC survival, behavior, and fate. Within this special microenvironment, commonly known as the stem cell niche (SCN), SC behavior and fate are regulated by soluble molecules and direct molecular contacts via adhesion molecules providing connections to local supporting cells and the extracellular matrix. Besides the extensively discussed array of soluble molecules, the expression of adhesion molecules and molecular contacts is another fundamental mechanism regulating niche occupancy and SC mobilization upon activation. Some adhesion molecules are differentially expressed and have tissue-specific consequences, likely reflecting the structural differences in niche composition and design, especially the presence or absence of a stromal counterpart. However, the distribution and identity of intercellular molecular contacts for adhesion and adhesion-mediated signaling within stromal and non-stromal SCN have not been thoroughly studied. This review highlights common details or significant differences in cell-to-cell contacts within representative stromal and non-stromal niches that could unveil new standpoints for stem cell biology and therapy.
Collapse
|
9
|
Westphal N, Theis T, Loers G, Schachner M, Kleene R. Nuclear fragments of the neural cell adhesion molecule NCAM with or without polysialic acid differentially regulate gene expression. Sci Rep 2017; 7:13631. [PMID: 29051583 PMCID: PMC5648764 DOI: 10.1038/s41598-017-14056-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) is the major carrier of polysialic acid (PSA) which modulates NCAM functions of neural cells at the cell surface. In previous studies, we have shown that stimulation of cultured neurons with surrogate NCAM ligands leads to the generation and nuclear import of PSA-lacking and -carrying NCAM fragments. Here, we show that the nuclear import of the PSA-carrying NCAM fragment is mediated by positive cofactor 4 and cofilin, which we identified as novel PSA-binding proteins. In the nucleus, the PSA-carrying NCAM fragment interacts via PSA with PC4 and cofilin, which are involved in RNA polymerase II-dependent transcription. Microarray analysis revealed that the nuclear PSA-carrying and -lacking NCAM fragments affect expression of different genes. By qPCR and immunoblot analysis we verified that the nuclear PSA-carrying NCAM fragment increases mRNA and protein expression of nuclear receptor subfamily 2 group F member 6, whereas the PSA-lacking NCAM fragment increases mRNA and protein expression of low density lipoprotein receptor-related protein 2 and α-synuclein. Differential gene expression evoked by nuclear NCAM fragments without and with PSA indicates that PSA-carrying and -lacking NCAM play different functional roles in the nervous system.
Collapse
Affiliation(s)
- Nina Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Thomas Theis
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| |
Collapse
|
10
|
Gulisano W, Bizzoca A, Gennarini G, Palmeri A, Puzzo D. Role of the adhesion molecule F3/Contactin in synaptic plasticity and memory. Mol Cell Neurosci 2016; 81:64-71. [PMID: 28038945 DOI: 10.1016/j.mcn.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) have a pivotal role in building and maintaining synaptic structures during brain development participating in axonal elongation and pathfinding, glial guidance of neuronal migration, as well as myelination. CAMs expression persists in the adult brain particularly in structures undergoing postnatal neurogenesis and involved in synaptic plasticity and memory as the hippocampus. Among the neural CAMs, we have recently focused on F3/Contactin, a glycosylphosphatidyl inositol-anchored glycoprotein belonging to the immunoglobulin superfamily, involved in neuronal development, synaptic maintenance and organization of neuronal networks. Here, we discuss our recent data suggesting that F3/Contactin exerts a role in hippocampal synaptic plasticity and memory in adult and aged mice. In particular, we have studied long-term potentiation (LTP), spatial and object recognition memory, and phosphorylation of the transcription factor cAMP-Responsive-Element Binding protein (CREB) in a transgenic mouse model of F3/Contactin overexpression. We also investigated whether F3/Contactin might influence neuronal apoptosis and the production of amyloid-beta peptide (Aβ), known to be one of the main pathogenetic hallmarks of Alzheimer's disease (AD). In conclusion, a further understanding of F3/Contactin role in synaptic plasticity and memory might have interesting clinical outcomes in cognitive disorders, such as aging and AD, offering innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Slapšak U, Salzano G, Amin L, Abskharon RNN, Ilc G, Zupančič B, Biljan I, Plavec J, Giachin G, Legname G. The N Terminus of the Prion Protein Mediates Functional Interactions with the Neuronal Cell Adhesion Molecule (NCAM) Fibronectin Domain. J Biol Chem 2016; 291:21857-21868. [PMID: 27535221 DOI: 10.1074/jbc.m116.743435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
The cellular form of the prion protein (PrPC) is a highly conserved glycoprotein mostly expressed in the central and peripheral nervous systems by different cell types in mammals. A misfolded, pathogenic isoform, denoted as prion, is related to a class of neurodegenerative diseases known as transmissible spongiform encephalopathy. PrPC function has not been unequivocally clarified, and it is rather defined as a pleiotropic protein likely acting as a dynamic cell surface scaffolding protein for the assembly of different signaling modules. Among the variety of PrPC protein interactors, the neuronal cell adhesion molecule (NCAM) has been studied in vivo, but the structural basis of this functional interaction is still a matter of debate. Here we focused on the structural determinants responsible for human PrPC (HuPrP) and NCAM interaction using stimulated emission depletion (STED) nanoscopy, SPR, and NMR spectroscopy approaches. PrPC co-localizes with NCAM in mouse hippocampal neurons, and this interaction is mainly mediated by the intrinsically disordered PrPC N-terminal tail, which binds with high affinity to the NCAM fibronectin type-3 domain. NMR structural investigations revealed surface-interacting epitopes governing the interaction between HuPrP N terminus and the second module of the NCAM fibronectin type-3 domain. Our data provided molecular details about the interaction between HuPrP and the NCAM fibronectin domain, and revealed a new role of PrPC N terminus as a dynamic and functional element responsible for protein-protein interaction.
Collapse
Affiliation(s)
- Urška Slapšak
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Giulia Salzano
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy
| | - Ladan Amin
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy
| | - Romany N N Abskharon
- the Structural Biology Research Center, Vrije Universiteit Brussel, VIB, Pleinlaan 2, 1050, Brussels, Belgium, the National Institute of Oceanography and Fisheries (NIOF), 11516 Cairo, Egypt, and the Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Gregor Ilc
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia, the EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - Blaž Zupančič
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ivana Biljan
- the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb HR-10000, Croatia
| | - Janez Plavec
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia, the EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia, the Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia,
| | - Gabriele Giachin
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy, the Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000-Grenoble, France
| | - Giuseppe Legname
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy,
| |
Collapse
|
12
|
Wobst H, Schmitz B, Schachner M, Diestel S, Leshchyns'ka I, Sytnyk V. Kinesin-1 promotes post-Golgi trafficking of NCAM140 and NCAM180 to the cell surface. J Cell Sci 2015; 128:2816-29. [PMID: 26101351 DOI: 10.1242/jcs.169391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule (NCAM, also known as NCAM1) is important during neural development, because it contributes to neurite outgrowth in response to its ligands at the cell surface. In the adult brain, NCAM is involved in regulating synaptic plasticity. The molecular mechanisms underlying delivery of NCAM to the neuronal cell surface remain poorly understood. We used a protein macroarray and identified the kinesin light chain 1 (KLC1), a component of the kinesin-1 motor protein, as a binding partner of the intracellular domains of the two transmembrane isoforms of NCAM, NCAM140 and NCAM180. KLC1 binds to amino acids CGKAGPGA within the intracellular domain of NCAM and colocalizes with kinesin-1 in the Golgi compartment. Delivery of NCAM180 to the cell surface is increased in CHO cells and neurons co-transfected with kinesin-1. We further demonstrate that the p21-activated kinase 1 (PAK1) competes with KLC1 for binding to the intracellular domain of NCAM and contributes to the regulation of the membrane insertion of NCAM. Our results indicate that NCAM is delivered to the cell surface through a kinesin-1-mediated transport mechanism in a PAK1-dependent manner.
Collapse
Affiliation(s)
- Hilke Wobst
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Brigitte Schmitz
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082, USA Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Simone Diestel
- Institute of Nutrition and Food Science, Department of Human Metabolomics, University of Bonn, Bonn 53115, Germany
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Chen MM, Zhao GW, He P, Jiang ZL, Xi X, Xu SH, Ma DM, Wang Y, Li YC, Wang GH. Improvement in the neural stem cell proliferation in rats treated with modified "Shengyu" decoction may contribute to the neurorestoration. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:9-19. [PMID: 25704929 DOI: 10.1016/j.jep.2015.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood". The modified "Shengyu" decoction (MSD) used in the present study was designed to treat traumatic brain injury (TBI) on the basis of the "Shengyu" decoction, in which additional four herbs were added. Many ingredients in these herbs have been demonstrated to be effective for the treatment of brain injury. The present study was performed to evaluate the neurorestorative effect and the underlying mechanisms of MSD on the rat brain after a TBI. MATERIALS AND METHODS TBI was induced in the right cerebral cortex of adult rats using Feeney's weight-drop method. Intragastrical administration of MSD (1.0 ml/200 g) was begun 6h after TBI. The neurological functions and neuronal loss in the cortex and hippocampus were determined. The levels of nerve growth-related factors GDNF, NGF, NCAM, TN-C, and Nogo-A and the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+) immunoreactive cells in the brain ipsilateral to TBI were also measured. Moreover, the influences of MSD on these variables were observed at the same time. RESULTS We found that treatment with MSD in TBI rats ameliorated the neurological functions and alleviated neuronal loss. MSD treatment elevated the expression of GDNF, NGF, NCAM, and TN-C, and inhibited the expression of Nogo-A. Moreover, MSD treatment increased the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), and BrdU(+)/NeuN(+) immunoreactive cells in the cortex and hippocampus. CONCLUSION The present results suggest that MSD treatment in TBI rats could improve the proliferation of neural stem/progenitor cells and differentiation into neurons, which may facilitate neural regeneration and tissue repair and thus contribute to the recovery of neurological functions. These effects of modified "Shengyu" decoction may provide a foundation for the use of MSD as a prescription of medicinal herbs in the traditional medicine to treat brain injuries in order to improve the neurorestoration.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guang-Wei Zhao
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China; Department of Neurology, The People׳s Hospital of Gaocheng, Hebei 052160, China
| | - Peng He
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China.
| | - Xin Xi
- Department of Neurosurgery and Chinese Medicine, The People׳s Hospital of Nantong, Jiangsu 226001, China
| | - Shi-Hui Xu
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Dong-Ming Ma
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China
| | - Yong Wang
- Department of Neurosurgery and Chinese Medicine, The People׳s Hospital of Nantong, Jiangsu 226001, China
| | - Yong-Cai Li
- Department of Neurosurgery, The People׳s Hospital of Ningxia, Yinchuan, Ningxia 750021, China.
| | - Guo-Hua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
14
|
Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons. Stem Cells Int 2015; 2015:647437. [PMID: 26064138 PMCID: PMC4430666 DOI: 10.1155/2015/647437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/14/2022] Open
Abstract
Human embryonic stem cells (hESCs) are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs). hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson's disease.
Collapse
|
15
|
Dahmen AC, Fergen MT, Laurini C, Schmitz B, Loke I, Thaysen-Andersen M, Diestel S. Paucimannosidic glycoepitopes are functionally involved in proliferation of neural progenitor cells in the subventricular zone. Glycobiology 2015; 25:869-80. [DOI: 10.1093/glycob/cwv027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/24/2015] [Indexed: 12/23/2022] Open
|
16
|
Puzzo D, Bizzoca A, Loreto C, Guida CA, Gulisano W, Frasca G, Bellomo M, Castorina S, Gennarini G, Palmeri A. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice. Neurobiol Aging 2015; 36:1702-1715. [PMID: 25659859 DOI: 10.1016/j.neurobiolaging.2015.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Carla Loreto
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Chiara A Guida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppina Frasca
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Bellomo
- Faculty of Psychology and Educational Sciences, University "Kore", Enna, Italy
| | - Sergio Castorina
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Hu BY, Liu XJ, Qiang R, Jiang ZL, Xu LH, Wang GH, Li X, Peng B. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1243-55. [PMID: 25046825 DOI: 10.1016/j.jep.2014.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng, the root of Panax ginseng C.A. Meyer, is a traditional medicinal herb that has been widely used in Asia for the treatment of many diseases through its effects of reinforcing vitality, strengthening the bodily resistance to pathogenic factors, engendering body liquids and allaying thirst, relieving uneasiness of the body and mind and benefiting intelligence, reducing body weight and prolonging life. Ginsenosides are the most important biologically active substances in ginseng. Many reports have suggested that ginsenosides could exert prominent neuroprotective and neurotrophic effects, promote neural stem/progenitor cell (NSC) proliferation and promote neurite outgrowth and neuronal network formation. The present study aimed to investigate whether treatment with ginsenosides could facilitate NSC proliferation in the hippocampal formation after traumatic brain injury (TBI) and contribute to the recovery of neurological functions including learning and memory. MATERIALS AND METHODS The modified Feeney׳s method was used to induce a TBI in rats. Ginseng total saponins (GTS) were treated intraperitoneally twice a day for 1 week after the TBI. The neurological functions, morphology of the hippocampus, expression of nerve growth-related factors and number of NSCs in the hippocampal formation ipsilateral to the trauma were determined. RESULTS We determined 1) GTS (5-80 mg/kg) treatment after a TBI improved the recovery of neurological functions, including learning and memory, and reduced cell loss in the hippocampal area. The effects of GTS at 20, 40, 60, and 80 mg/kg were better than the effects of GTS at 5 and 10 mg/kg. 2) GTS treatment (20 mg/kg) after a TBI increased the expression of NGF, GDNF and NCAM, inhibited the expression of Nogo-A, Nogo-B, TN-C, and increased the number of BrdU/nestin positive NSCs in the hippocampal formation. CONCLUSIONS GTS treatment in rats after a TBI alleviated the secondary brain injury and ameliorated the neurological functions with an effective dose limit of 5-80 mg/kg. GTS regulated the expression of nerve growth-related factors and improved the proliferation of neural stem/progenitor cells, which might facilitate neural regeneration and tissue repair, and might contribute to the recovery of neurological functions, including learning and memory. These effects of GTS might provide a foundation for the use of ginseng as a medicinal herb to enhance intelligence, reduce the aging process and prolong life in the traditional medicine.
Collapse
Affiliation(s)
- Bao-Ying Hu
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Xian-Jin Liu
- Department of Infectious Diseases, The Third People׳s Hospital of Nantong, 99 Central Qingnian Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Ren Qiang
- Department of Infectious Diseases, The Third People׳s Hospital of Nantong, 99 Central Qingnian Road, Chongchuan District, Jiangsu, Nantong 226001, China.
| | - Zheng-Lin Jiang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China.
| | - Li-Hua Xu
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Guo-Hua Wang
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Xia Li
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| | - Bin Peng
- Department of Neuropharmacology, Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Chongchuan District, Jiangsu, Nantong 226001, China
| |
Collapse
|
18
|
Nazeri A, Ganjgahi H, Roostaei T, Nichols T, Zarei M. Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer's disease. Neuroimage 2014; 102 Pt 2:657-65. [PMID: 25173418 DOI: 10.1016/j.neuroimage.2014.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023] Open
Abstract
Proteomic and imaging markers have been widely studied as potential biomarkers for diagnosis, monitoring and prognosis of Alzheimer's disease. In this study, we used Alzheimer Disease Neuroimaging Initiative dataset and performed parallel independent component analysis on cross sectional and longitudinal proteomic and imaging data in order to identify the best proteomic model for diagnosis, monitoring and prediction of Alzheimer disease (AD). We used plasma proteins measurement and imaging data from AD and healthy controls (HC) at the baseline and 1 year follow-up. Group comparisons at baseline and changes over 1 year were calculated for proteomic and imaging data. The results were fed into parallel independent component analysis in order to identify proteins that were associated with structural brain changes cross sectionally and longitudinally. Regression model was used to find the best model that can discriminate AD from HC, monitor AD and to predict MCI converters from non-converters. We showed that five proteins are associated with structural brain changes in the brain. These proteins could discriminate AD from HC with 57% specificity and 89% sensitivity. Four proteins whose change over 1 year were associated with brain structural changes could discriminate AD from HC with sensitivity of 93%, and specificity of 92%. This model predicted MCI conversion to AD in 2 years with 94% accuracy. This model has the highest accuracy in prediction of MCI conversion to AD within the ADNI-1 dataset. This study shows that combination of selected plasma protein levels and MR imaging is a useful method in identifying potential biomarker.
Collapse
Affiliation(s)
- Arash Nazeri
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Habib Ganjgahi
- National Brain Mapping Centre, and Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran 4739, Iran; Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Tina Roostaei
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Thomas Nichols
- Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Mojtaba Zarei
- National Brain Mapping Centre, and Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran 4739, Iran.
| | | |
Collapse
|
19
|
Puzzo D, Bizzoca A, Privitera L, Furnari D, Giunta S, Girolamo F, Pinto M, Gennarini G, Palmeri A. F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice. Hippocampus 2013; 23:1367-82. [PMID: 23939883 DOI: 10.1002/hipo.22186] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
F3/contactin, a cell-adhesion molecule belonging to the immunoglobulin supergene family, is involved in several aspects of neural development including synapse building, maintenance and functioning. Here, we examine F3/contactin function in adult hippocampal neurogenesis, synaptic plasticity, and memory, using as a model TAG/F3 transgenic mice, where F3/contactin overexpression was induced under control of regulatory sequences from the human TAG-1 (TAX-1) gene. Transgenic mice aged 5 (M5) and 12 (M12) months exhibited an increase in hippocampal size, which correlated with positive effects on precursor proliferation and NeuN expression, these data suggesting a possible role for F3/contactin in promoting adult hippocampal neurogenesis. On the functional level, TAG/F3 mice exhibited increased CA1 long-term potentiation and improved spatial and object recognition memory, notably at 12 months of age. Interestingly, these mice showed an increased expression of the phosphorylated transcription factor CREB, which may represent the main molecular correlate of the observed morphological and functional effects. Altogether, these findings indicate for the first time that F3/contactin plays a role in promoting adult hippocampal neurogenesis and that this effect correlates with improved synaptic function and memory.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Neuronal regeneration and axonal re-growth in the injured mammalian central nervous system remains an unsolved field. To date, three myelin-associated proteins [Nogo or reticulon 4 (RTN4), myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG)] are known to inhibit axonal regeneration via activation of the neuronal glycosylphosphatidylinositol-anchored Nogo receptor [NgR, together with p75 neurotrophin receptor (p75NTR) and Lingo-1]. In the present study we describe the novel protein MANI (myelin-associated neurite-outgrowth inhibitor) that localizes to neural membranes. Functional characterization of MANI overexpressing neural stem cells (NSCs) revealed that the protein promotes differentiation into catecholaminergic neurons. Yeast two-hybrid screening and co-immunoprecipitation experiments confirmed the cell division cycle protein 27 (Cdc27) as an interacting partner of Mani. The analyses of Mani-overexpressing PC12 cells demonstrated that Mani retards neuronal axonal growth as a positive effector of Cdc27 expression and activity. We show that knockdown of Cdc27, a component of the anaphase-promoting complex (APC), leads to enhanced neurite outgrowth. Our finding describes the novel MANI-Cdc27-APC pathway as an important cascade that prevents neurons from extending axons, thus providing implications for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Manisha Mishra
- Department of Molecular and Cell Biology, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
21
|
Sundaramurthi H, Manavalan A, Ramachandran U, Hu JM, Sze SK, Heese K. Phenotyping of Tianma-Stimulated Differentiated Rat Neuronal B104 Cells by Quantitative Proteomics. Neurosignals 2011; 20:48-60. [DOI: 10.1159/000331492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/04/2011] [Indexed: 01/22/2023] Open
|
22
|
New insights into the altered fibronectin matrix and extrasynaptic transmission in the aging brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jcgg.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Sun W, Kim H, Moon Y. Control of neuronal migration through rostral migration stream in mice. Anat Cell Biol 2010; 43:269-79. [PMID: 21267400 PMCID: PMC3026178 DOI: 10.5115/acb.2010.43.4.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 01/18/2023] Open
Abstract
During the nervous system development, immature neuroblasts have a strong potential to migrate toward their destination. In the adult brain, new neurons are continuously generated in the neurogenic niche located near the ventricle, and the newly generated cells actively migrate toward their destination, olfactory bulb, via highly specialized migratory route called rostral migratory stream (RMS). Neuroblasts in the RMS form chains by their homophilic interactions, and the neuroblasts in chains continually migrate through the tunnels formed by meshwork of astrocytes, glial tube. This review focuses on the development and structure of RMS and the regulation of neuroblast migration in the RMS. Better understanding of RMS migration may be crucial for improving functional replacement therapy by supplying endogenous neuronal cells to the injury sites more efficiently.
Collapse
Affiliation(s)
- Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
24
|
Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 2010; 12:341-50. [PMID: 20305650 DOI: 10.1038/ncb2040] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/04/2010] [Indexed: 01/09/2023]
Abstract
In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory tracts and brain ventricles. The development and function of these organs critically depend on efficient directional fluid flow ensured by the alignment of ciliary beating. To identify the mechanisms involved in this process, we analysed motile cilia of mouse brain ventricles, using biophysical and molecular approaches. Our results highlight an original orientation mechanism for ependymal cilia whereby basal bodies first dock apically with random orientations, and then reorient in a common direction through a coupling between hydrodynamic forces and the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This identifies a direct link between external hydrodynamic cues and intracellular PCP signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic forces as long-range polarity signals, argue for a possible sensory role of ependymal cilia, and will be of interest for the study of fluid flow-mediated morphogenesis.
Collapse
|