1
|
Henriques GM, Anjos-Santos A, Rodrigues IRS, Nascimento-Rocha V, Reis HS, Libarino-Santos M, Barros-Santos T, Yokoyama TS, Bertagna NB, Favoretto CA, Moraes CRG, Cruz FC, Barbosa PCR, Marinho EAV, Oliveira-Lima AJ, Berro LF. Ibogaine Blocks Cue- and Drug-Induced Reinstatement of Conditioned Place Preference to Ethanol in Male Mice. Front Pharmacol 2021; 12:739012. [PMID: 34621171 PMCID: PMC8490685 DOI: 10.3389/fphar.2021.739012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Ibogaine is a psychedelic extracted from the plant Tabernanthe iboga Baill. (Apocynaceae), natural from Africa, and has been proposed as a potential treatment for substance use disorders. In animal models, ibogaine reduces ethanol self-administration. However, no study to date has investigated the effects of ibogaine on ethanol-induced conditioned place preference (CPP). The present study aimed to investigate the effects of repeated treatment with ibogaine on the reinstatement of CPP to ethanol in male mice. The rewarding effects of ethanol (1.8 g/kg, i. p.) or ibogaine (10 or 30 mg/kg, p. o.) were investigated using the CPP model. Furthermore, we evaluated the effects of repeated treatment with ibogaine (10 or 30 mg/kg, p. o.) on the reinstatement of ethanol-induced CPP. Reinstatement was evaluated under two conditions: 1) during a priming injection re-exposure test in which animals received a priming injection of ethanol and had free access to the CPP apparatus; 2) during a drug-free test conducted 24 h after a context-paired re-exposure, in which subjects received an injection of ethanol and were confined to the compartment previously conditioned to ethanol. Our results show that ethanol, but not ibogaine, induced CPP in mice. Treatment with ibogaine after conditioning with ethanol blocked the reinstatement of ethanol-induced CPP, both during a drug priming reinstatement test and during a drug-free test conducted after re-exposure to ethanol in the ethanol-paired compartment. Our findings add to the literature suggesting that psychedelics, in particular ibogaine, may have therapeutic properties for the treatment of alcohol use disorder at doses that do not have rewarding effects per se.
Collapse
Affiliation(s)
| | - Alexia Anjos-Santos
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil.,Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Isa R S Rodrigues
- Department of Biological Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Henrique S Reis
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Thaísa Barros-Santos
- Department of Biological Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | - Thais S Yokoyama
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Natalia B Bertagna
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | | | | | - Fábio C Cruz
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, Brazil
| | - Paulo C R Barbosa
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil
| | | | - Laís F Berro
- Department of Health Sciences, Universidade Estadual De Santa Cruz, Ilhéus, Brazil.,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
2
|
Williams RG, Li KH, Phillips PEM. The Influence of Stress on Decision-Making: Effects of CRF and Dopamine Antagonism in the Nucleus Accumbens. Front Psychiatry 2021; 12:814218. [PMID: 35145440 PMCID: PMC8821535 DOI: 10.3389/fpsyt.2021.814218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The actions of corticotropin-releasing factor (CRF) in the core of the nucleus accumbens including increasing dopamine release and inducing conditioned place preference in stress-naïve animals. However, following two-day, repeated forced swim stress (rFSS), neither of these effects are present, indicating a stress-sensitive interaction between CRF and dopamine. To ascertain the degree to which this mechanism influences integrated, reward-based decision making, we used an operant concurrent-choice task where mice could choose between two liquid receptacles containing a sucrose solution or water delivery. Following initial training, either a CRF or dopamine antagonist, α-helical CRF (9-41) and flupenthixol, respectively, or vehicle was administered intracranially to the nucleus accumbens core. Next, the animals underwent rFSS, were reintroduced to the task, and were retested. Prior to stress, mice exhibited a significant preference for sucrose over water and made more total nose pokes into the sucrose receptacle than the water receptacle throughout the session. There were no observed sex differences. Stress did not robustly affect preference metrics but did increase the number of trial omissions compared to their stress-naïve, time-matched counterparts. Interestingly, flupenthixol administration did not affect sucrose choice but increased their nosepoke preference during the inter-trial interval, increased trial omissions, and decreased the total nosepokes during the ITI. In contrast, microinjections of α-helical CRF (9-41) did not affect omissions or ITI nosepokes but produced interactions with stress on choice metrics. These data indicate that dopamine and CRF both interact with stress to impact performance in the task but influence different behavioral aspects.
Collapse
Affiliation(s)
- Rapheal G Williams
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kevin H Li
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Klenowski PM, Tapper AR. Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions. Handb Exp Pharmacol 2018; 248:187-212. [PMID: 29423839 DOI: 10.1007/164_2017_89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Pina MM, Cunningham CL. Involvement of ventral tegmental area ionotropic glutamate receptors in the expression of ethanol-induced conditioned place preference. Behav Brain Res 2016; 313:23-29. [PMID: 27378337 DOI: 10.1016/j.bbr.2016.06.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 01/13/2023]
Abstract
The ventral tegmental area (VTA) is a well-established neural substrate of reward-related processes. Activity within this structure is increased by the primary and conditioned rewarding effects of abused drugs and its engagement is heavily reliant on excitatory input from structures upstream. In the case of drug seeking, it is thought that exposure to drug-associated cues engages glutamatergic VTA afferents that signal directly to dopamine cells, thereby triggering this behavior. It is unclear, however, whether glutamate input to VTA is directly involved in ethanol-associated cue seeking. Here, the role of intra-VTA ionotropic glutamate receptor (iGluR) signaling in ethanol-cue seeking was evaluated in DBA/2J mice using an ethanol conditioned place preference (CPP) procedure. Intra-VTA iGluRs α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)/kainate and N-methyl-d-aspartate (NMDAR) were blocked during ethanol CPP expression by co-infusion of antagonist drugs 6,7-dinitroquinoxaline-2,3-dione (DNQX; AMPA/kainate) and d-(-)-2-Amino-5-phosphonopentanoic acid (AP5; NMDA). Compared to aCSF, bilateral infusion of low (1 DNQX+100 AP5ng/side) and high (5 DNQX+500 AP5ng/side) doses of the AMPAR and NMDAR antagonist cocktail into VTA blocked ethanol CPP expression. This effect was site specific, as DNQX/AP5 infusion proximal to VTA did not significantly impact CPP expression. An increase in activity was found at the high but not low dose of DNQX/AP5. These findings demonstrate that activation of iGluRs within the VTA is necessary for ethanol-associated cue seeking, as measured by CPP.
Collapse
Affiliation(s)
- Melanie M Pina
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239-3098, USA.
| | - Christopher L Cunningham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| |
Collapse
|
5
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
6
|
Chaudhri N, Woods CA, Sahuque LL, Gill TM, Janak PH. Unilateral inactivation of the basolateral amygdala attenuates context-induced renewal of Pavlovian-conditioned alcohol-seeking. Eur J Neurosci 2013; 38:2751-61. [PMID: 23758059 PMCID: PMC4079556 DOI: 10.1111/ejn.12278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022]
Abstract
Environmental contexts associated with drug use promote craving in humans and drug-seeking in animals. We hypothesized that the basolateral amygdala (BLA) itself as well as serial connectivity between the BLA and nucleus accumbens core (NAC core) were required for context-induced renewal of Pavlovian-conditioned alcohol-seeking. Male Long-Evans rats were trained to discriminate between two conditioned stimuli (CS): a CS+ that was paired with ethanol (EtOH, 20%, v/v) delivery into a fluid port (0.2 mL/CS+, 3.2 mL per session) and a CS- that was not. Entries into the port during each CS were measured. Next, rats received extinction in a different context where both cues were presented without EtOH. At test, responding to the CS+ and CS- without EtOH was evaluated in the prior training context. Control subjects showed a selective increase in CS+ responding relative to extinction, indicative of renewal. This effect was blocked by pre-test, bilateral inactivation of the BLA using a solution of GABA receptor agonists (0.1 mm muscimol and 1.0 mm baclofen; M/B; 0.3 μL per side). Renewal was also attenuated following unilateral injections of M/B into the BLA, combined with either M/B, the dopamine D1 receptor antagonist SCH 23390 (0.6 μg per side) or saline infusion in the contralateral NAC core. Hence, unilateral BLA inactivation was sufficient to disrupt renewal, highlighting a critical role for functional activity in the BLA in enabling the reinstatement of alcohol-seeking driven by an alcohol context.
Collapse
Affiliation(s)
- N Chaudhri
- Department of Psychology, Concordia University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
7
|
Young EA, Dreumont SE, Cunningham CL. Role of nucleus accumbens dopamine receptor subtypes in the learning and expression of alcohol-seeking behavior. Neurobiol Learn Mem 2013; 108:28-37. [PMID: 23742917 DOI: 10.1016/j.nlm.2013.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 11/25/2022]
Abstract
These studies examined the roles of dopamine D1- and D2-like receptors within the nucleus accumbens (Acb) in the acquisition and expression of ethanol-induced (2g/kg) conditioned place preference (CPP) in adult male DBA/2J mice. Bilateral intra-Acb infusions of the D1-like dopamine receptor antagonist SCH23390 (0.05, 0.5μg/side) or the D2-like dopamine receptor antagonist raclopride (0.5-5.0μg/side) were administered 30min before each ethanol conditioning trial (acquisition studies) or before preference tests (expression studies). CPP was conditioned to tactile cues using an unbiased apparatus and procedure. Intra-Acb infusion of SCH23390 prevented CPP acquisition, whereas intra-Acb infusion of raclopride did not. Intra-Acb infusion of both antagonists, however, dose-dependently reduced ethanol-stimulated locomotor activity during conditioning. In contrast, intra-Acb antagonist infusion had no effect on ethanol CPP expression, suggesting that dopamine's role in the Acb is limited to neurobiological processes engaged during the learning of the relationship between contextual cues and ethanol reward. Control experiments showed that intra-Acb injection of SCH23390 alone produced no place conditioning and did not interfere with the acquisition of conditioned place aversion induced by lithium chloride, suggesting that the antagonist's effect on ethanol CPP was not due to a more general detrimental effect on associative learning. Overall, these data suggest that D1-like (but not D2-like) dopamine Acb receptors play an important role in the learning of context-ethanol associations, either by modulating the magnitude of ethanol reward or the rate of learning about ethanol reward.
Collapse
Affiliation(s)
- Emily A Young
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, United States
| | - Sarah E Dreumont
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, United States
| | - Christopher L Cunningham
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, United States.
| |
Collapse
|
8
|
Mulholland PJ. K(Ca)2 channels: novel therapeutic targets for treating alcohol withdrawal and escalation of alcohol consumption. Alcohol 2012; 46:309-15. [PMID: 22464787 DOI: 10.1016/j.alcohol.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023]
Abstract
Small-conductance, calcium-activated potassium (K(Ca)2) channels influence neuronal firing properties, intrinsic excitability, and NMDA receptor-dependent synaptic responses and plasticity. In this mini-review, we discuss new evidence that chronic alcohol-associated plasticity critically involves K(Ca)2 channels in hippocampus, ventral tegmental area, and nucleus accumbens. K(Ca)2 channel activity can modulate the magnitude of excitation of midbrain dopamine neurons induced by acute alcohol exposure. Emerging evidence indicates that K(Ca)2 channels regulate neuroadaptations to chronic alcohol that contribute to withdrawal hyperexcitability and escalation of voluntary alcohol consumption. Restoring K(Ca)2 channel activity can attenuate the severity of the alcohol withdrawal syndrome in vivo and withdrawal-associated neurotoxicity in vitro. Pharmacological modulation of K(Ca)2 channels can bi-directionally influence drinking behavior in rat and mouse models of voluntary alcohol consumption. Collectively, these studies using various rodent models have clearly indicated a central role for K(Ca)2 channels in the neuroplasticity of chronic alcohol exposure. In addition, accumulating evidence suggests that K(Ca)2 channels are a novel therapeutic target to alleviate the symptoms of alcohol withdrawal and reduce high amounts of alcohol drinking.
Collapse
|
9
|
Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011; 214:805-18. [PMID: 21107540 PMCID: PMC3063857 DOI: 10.1007/s00213-010-2082-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 10/30/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Recent studies suggest that orexin/hypocretin is involved in drug reward and drug-seeking behaviors, including ethanol self-administration. However, orexin's role in ethanol-induced seeking behaviors remains unclear. OBJECTIVE These studies examined the role of orexin in the acquisition and expression of ethanol conditioned place preference (CPP) using the orexin 1 receptor (OX1R) antagonist SB-334867. METHODS Effects of SB-334867 (0-30 mg/kg) on locomotor activity were determined in DBA/2J mice (Experiment 1). SB-334867 (0-30 mg/kg) was administered during acquisition of ethanol (2 g/kg) CPP to determine whether orexin signaling is required (Experiment 2). Blood ethanol concentrations (BECs) were measured after ethanol (2 g/kg) injection to determine whether SB-334867 (30 mg/kg) pretreatment altered ethanol pharmacokinetics (Experiment 3). Finally, SB-334867 (0-40 mg/kg) was given before ethanol-free preference testing (Experiments 4 and 5). RESULTS SB-334867 did not alter basal locomotor activity (Experiment 1). SB-334867 (30 mg/kg) reduced ethanol-induced locomotor stimulation, but did not affect the acquisition of ethanol CPP (Experiment 2) or BEC, suggesting no alteration in ethanol pharmacokinetics (Experiment 3). Although OX1R antagonism blocked expression of a weak ethanol CPP (Experiment 4), it did not affect expression of a moderate to strong CPP (Experiment 5). CONCLUSIONS Blockade of OX1R by systemic administration of SB-334867 reduced ethanol-stimulated activity, but did not affect acquisition or expression of ethanol-induced CPP, suggesting that orexin does not influence ethanol's primary or conditioned rewarding effects. Other neurotransmitter systems may be sufficient to support acquisition and expression of CPP despite alterations in orexin signaling.
Collapse
Affiliation(s)
- Charlene M. Voorhees
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Christopher L. Cunningham
- Department of Behavioral Neuroscience, L470 Portland Alcohol Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
10
|
Gremel CM, Young EA, Cunningham CL. Blockade of opioid receptors in anterior cingulate cortex disrupts ethanol-seeking behavior in mice. Behav Brain Res 2011; 219:358-62. [PMID: 21219940 DOI: 10.1016/j.bbr.2010.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022]
Abstract
The anterior cingulate cortex (ACC) and opioid receptors have been suggested to play a role in attributing incentive motivational properties to drug-related cues. We examined whether blockade of ACC opioid receptors would reduce cue-induced ethanol-seeking behavior in mice. We show that intra-ACC opioid receptor blockade disrupted expression of an ethanol-induced conditioned place preference, suggesting that endogenous opioid modulation in the ACC may be critical for maintaining the cue's conditioned rewarding effects.
Collapse
Affiliation(s)
- Christina M Gremel
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
11
|
Lucke-Wold B. The Varied Uses of Conditioned Place Preference in Behavioral Neuroscience Research: An Investigation of Alcohol Administration in Model Organisms. IMPULSE (COLUMBIA, S.C.) 2011; 2011. [PMID: 27284386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Place conditioning procedures have been used to study human addiction to alcohol for the past several years. This experimental resource has been utilized successfully due to the fact that investigators can carefully manipulate the experimental design in order to explore specific hypotheses. Only three choices exist regarding animal response to place conditioning: aversion, preference, or no change. This review provides an in-depth analysis of five variables commonly adjusted or changed in place conditioning experiments with ethanol. These include: apparatus design, administration methods, choice of model organism, age of model organism, and model paradigms. It is suggested that the two-chamber design, the intragastric administration, the mouse model, the adolescent age group, and the pre-exposure to stress paradigm are the best current options available in place conditioning experiments with ethanol. The basis for evaluation used throughout this review is that investigators should adjust the variables employed in place conditioning experiments in a manner that most accurately represents and models complex human addiction to alcohol.
Collapse
|
12
|
Inhibition of extracellular signal-regulated kinase (ERK) activity with SL327 does not prevent acquisition, expression, and extinction of ethanol-seeking behavior in mice. Behav Brain Res 2010; 217:399-407. [PMID: 21074569 DOI: 10.1016/j.bbr.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 11/24/2022]
Abstract
Although extracellular signal-regulated kinase (ERK) activity is essential for the acquisition of a variety of associative learning tasks, its involvement in the acquisition and extinction of ethanol (EtOH)-induced conditioned place preference (CPP) remains unknown. Therefore, in these experiments we examined the effects of the ERK-kinase (MEK)-inhibitor SL327 on acquisition and expression of EtOH-CPP as well as the dose- and time-dependent effects of SL327 on CPP extinction. The parametric findings of Experiment 1 showed that three 30-min (but not 15- or 5-min) non-reinforced trials were required to completely extinguish EtOH-CPP in male, DBA/2J mice. In Experiments 2 and 3, SL327 (30 and 50mg/kg), administered 30 or 90min prior to extinction trials, was unable to impair EtOH-CPP extinction. Experiment 4 showed that SL327 (50mg/kg) had no effect on acquisition of EtOH-CPP or the development of EtOH-induced sensitization during conditioning. When administered prior to testing in Experiments 5 and 6, SL327 did not alter expression of EtOH-CPP but did reduce test activity. Importantly, SL327 significantly reduced pERK protein levels when assessed in the dorsal striatum and motor cortex (Experiment 7). Together, these data suggest that EtOH-related learning and EtOH reward in mice, as assessed with CPP, are not impaired by the systemically administered MEK-inhibitor SL327.
Collapse
|