1
|
Weber I, Oehrn CR. NoLiTiA: An Open-Source Toolbox for Non-linear Time Series Analysis. Front Neuroinform 2022; 16:876012. [PMID: 35811996 PMCID: PMC9263366 DOI: 10.3389/fninf.2022.876012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In many scientific fields including neuroscience, climatology or physics, complex relationships can be described most parsimoniously by non-linear mechanics. Despite their relevance, many neuroscientists still apply linear estimates in order to evaluate complex interactions. This is partially due to the lack of a comprehensive compilation of non-linear methods. Available packages mostly specialize in only one aspect of non-linear time-series analysis and most often require some coding proficiency to use. Here, we introduce NoLiTiA, a free open-source MATLAB toolbox for non-linear time series analysis. In comparison to other currently available non-linear packages, NoLiTiA offers (1) an implementation of a broad range of classic and recently developed methods, (2) an implementation of newly proposed spatially and time-resolved recurrence amplitude analysis and (3) an intuitive environment accessible even to users with little coding experience due to a graphical user interface and batch-editor. The core methodology derives from three distinct fields of complex systems theory, including dynamical systems theory, recurrence quantification analysis and information theory. Besides established methodology including estimation of dynamic invariants like Lyapunov exponents and entropy-based measures, such as active information storage, we include recent developments of quantifying time-resolved aperiodic oscillations. In general, the toolbox will make non-linear methods accessible to the broad neuroscientific community engaged in time series processing.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carina R. Oehrn
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Yin Z, Zhu G, Zhao B, Bai Y, Jiang Y, Neumann WJ, Kühn AA, Zhang J. Local field potentials in Parkinson's disease: A frequency-based review. Neurobiol Dis 2021; 155:105372. [PMID: 33932557 DOI: 10.1016/j.nbd.2021.105372] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) surgery offers a unique opportunity to record local field potentials (LFPs), the electrophysiological population activity of neurons surrounding the depth electrode in the target area. With direct access to the subcortical activity, LFP research has provided valuable insight into disease mechanisms and cognitive processes and inspired the advent of adaptive DBS for Parkinson's disease (PD). A frequency-based framework is usually employed to interpret the implications of LFP signatures in LFP studies on PD. This approach standardizes the methodology, simplifies the interpretation of LFP patterns, and makes the results comparable across studies. Importantly, previous works have found that activity patterns do not represent disease-specific activity but rather symptom-specific or task-specific neuronal signatures that relate to the current motor, cognitive or emotional state of the patient and the underlying disease. In the present review, we aim to highlight distinguishing features of frequency-specific activities, mainly within the motor domain, recorded from DBS electrodes in patients with PD. Associations of the commonly reported frequency bands (delta, theta, alpha, beta, gamma, and high-frequency oscillations) to motor signs are discussed with respect to band-related phenomena such as individual tremor and high/low beta frequency activity, as well as dynamic transients of beta bursts. We provide an overview on how electrophysiology research in DBS patients has revealed and will continuously reveal new information about pathophysiology, symptoms, and behavior, e.g., when combining deep LFP and surface electrocorticography recordings.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charite´ Campus Mitte, Charite´ - University Medicine Berlin, Berlin, Germany; Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Unter den Linden 6, 10099 Berlin, Germany; NeuroCure, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
4
|
Weber I, Florin E, von Papen M, Visser-Vandewalle V, Timmermann L. Characterization of information processing in the subthalamic area of Parkinson’s patients. Neuroimage 2020; 209:116518. [DOI: 10.1016/j.neuroimage.2020.116518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
|
5
|
Zeng Q, Guan X, Guo T, Law Yan Lun JCF, Zhou C, Luo X, Shen Z, Huang P, Zhang M, Cheng G. The Ventral Intermediate Nucleus Differently Modulates Subtype-Related Networks in Parkinson's Disease. Front Neurosci 2019; 13:202. [PMID: 30914916 PMCID: PMC6421280 DOI: 10.3389/fnins.2019.00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Posture instability gait difficulty-dominant (PIGD) and tremor-dominant (TD) are two subtypes of Parkinson's disease (PD). The thalamus is involved in the neural circuits of both subtypes. However, which subregion of the thalamus has an influence on the PD subtypes remains unclear. Objective: To explore the core subregion of the thalamus showing a significant influence on the PD subtypes and its directional interaction between the PD subtypes. Methods: A total of 79 PD patients (43 TD and 36 PIGD) and 31 normal controls (NC) were enrolled, and the gray matter volume and perfusion characteristics in the thalamus were compared between the three groups. The subregion of the thalamus with significantly different perfusion and volume among three groups was used as the seed of a Granger causality analysis (GCA) to compare the causal connectivity between different subtypes. Results: Perfusion with an increased gradient among the three groups (TD > PIGD > NC) in the bilateral ventral intermediate nucleus (Vim) was observed, which was positively correlated with the clinical tremor scores. The GCA revealed that TD patients had enhanced causal connectivity from the bilateral Vim to the bilateral paracentral gyrus, M1 and the cerebellum compared with the NC group, while the PIGD subtype revealed an increased causal connectivity from the bilateral Vim to the bilateral premotor cortex (preM) and putamen. Additionally, there were positive correlations between the tremor scores and a causal connectivity from the Vim to the cerebellum. The connectivity from the right Vim to the right preM and the right putamen was positively correlated with the PIGD scores. Conclusion: This multilevel analysis showed that the Vim had a significant influence on the PD subtypes and that it differentially mediated the TD and PIGD-related causal connectivity pattern in PD.
Collapse
Affiliation(s)
- Qiaoling Zeng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jason C F Law Yan Lun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Kern DS, Picillo M, Thompson JA, Sammartino F, di Biase L, Munhoz RP, Fasano A. Interleaving Stimulation in Parkinson's Disease, Tremor, and Dystonia. Stereotact Funct Neurosurg 2019; 96:379-391. [PMID: 30654368 DOI: 10.1159/000494983] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Interleaving stimulation (ILS) in deep brain stimulation (DBS) provides individualized stimulation of 2 contacts delivered in alternating order. Currently, limited information on the utility of ILS exists. The aims of this study were to determine the practical applications and outcomes of ILS DBS in Parkinson's disease (PD), tremor, and dystonia. METHODS We performed a single-center, unblinded, retrospective chart review of all patients with DBS attempted on ILS at our referral center assessing for rationale and outcomes. RESULTS Fifty patients (PD, n = 27; tremor, n = 7; dystonia, n = 16 patients) tried ILS for 2 rationales: management of adverse effects (n = 29) and to improve clinical efficacy (n = 21). A total of 19 patients demonstrated improvement with ILS for adverse effect management predominately for the treatment of dyskinesias (n = 12). In the vast majority of dyskinetic patients, a contact added into the rostral zona incerta with ILS was performed. Nine out of 21 patients demonstrated improved clinical efficacy with ILS with all 6 PD patients who tried ILS for this rationale demonstrating benefit. CONCLUSIONS In PD, ILS provided benefits for dyskinesias and parkinsonism, with minimal improvement of other adverse effects. In tremor and dystonia, marginal effects in terms of mitigation of adverse effects and improvement of clinical outcomes were evident.
Collapse
Affiliation(s)
- Drew S Kern
- Movement Disorders Center, Department of Neurology, University of Colorado, Denver, Colorado, USA, .,Movement Disorders Center, Department of Neurosurgery, University of Colorado, Denver, Colorado, USA,
| | - Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, Neuroscience Section, University of Salerno, Salerno, Italy
| | - John A Thompson
- Movement Disorders Center, Department of Neurosurgery, University of Colorado, Denver, Colorado, USA
| | - Francesco Sammartino
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University, Rome, Italy.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Weber I, Florin E, von Papen M, Timmermann L. The influence of filtering and downsampling on the estimation of transfer entropy. PLoS One 2017; 12:e0188210. [PMID: 29149201 PMCID: PMC5693301 DOI: 10.1371/journal.pone.0188210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/02/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer entropy (TE) provides a generalized and model-free framework to study Wiener-Granger causality between brain regions. Because of its nonparametric character, TE can infer directed information flow also from nonlinear systems. Despite its increasing number of applications in neuroscience, not much is known regarding the influence of common electrophysiological preprocessing on its estimation. We test the influence of filtering and downsampling on a recently proposed nearest neighborhood based TE estimator. Different filter settings and downsampling factors were tested in a simulation framework using a model with a linear coupling function and two nonlinear models with sigmoid and logistic coupling functions. For nonlinear coupling and progressively lower low-pass filter cut-off frequencies up to 72% false negative direct connections and up to 26% false positive connections were identified. In contrast, for the linear model, a monotonic increase was only observed for missed indirect connections (up to 86%). High-pass filtering (1 Hz, 2 Hz) had no impact on TE estimation. After low-pass filtering interaction delays were significantly underestimated. Downsampling the data by a factor greater than the assumed interaction delay erased most of the transmitted information and thus led to a very high percentage (67–100%) of false negative direct connections. Low-pass filtering increases the number of missed connections depending on the filters cut-off frequency. Downsampling should only be done if the sampling factor is smaller than the smallest assumed interaction delay of the analyzed network.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, University Hospital Giessen & Marburg, Marburg, Germany
- * E-mail: (IW); (LT)
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael von Papen
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Geophysics & Meteorology, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen & Marburg, Marburg, Germany
- * E-mail: (IW); (LT)
| |
Collapse
|
8
|
Florin E, Pfeifer J, Visser-Vandewalle V, Schnitzler A, Timmermann L. Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area. Neuroscience 2016; 332:170-80. [PMID: 27393252 DOI: 10.1016/j.neuroscience.2016.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Previous work on Parkinson's disease (PD) has indicated a predominantly afferent coupling between affected arm muscle activity and electrophysiological activity within the subthalamic nucleus (STN). So far, no information is available indicating which frequency components drive the afferent information flow in PD patients. Non-directional coupling e.g. by measuring coherence is primarily established in the beta band as well as at tremor frequency. Based on previous evidence it is likely that different subtypes of the disease are associated with different connectivity patterns. Therefore, we determined coherence and causality between local field potentials (LFPs) in the STN and surface electromyograms (EMGs) from the contralateral arm in 18 akinetic-rigid (AR) PD patients and 8 tremor-dominant (TD) PD patients. During the intraoperative recording, patients were asked to lift their forearm contralateral to the recording side. Significantly more afferent connections were detected for the TD patients for tremor-periods and non-tremor-periods combined as well as for only tremor periods. Within the STN 74% and 63% of the afferent connections are associated with coherence from 4-8Hz and 8-12Hz, respectively. However, when considering only tremor-periods significantly more afferent than efferent connections were associated with coherence from 12 to 20Hz across all recording heights. No difference between efferent and afferent connections is seen in the frequency range from 4 to 12Hz for all recording heights. For the AR patients, no significant difference in afferent and efferent connections within the STN was found for the different frequency bands. Still, for the AR patients dorsal of the STN significantly more afferent than efferent connections were associated with coherence in the frequency range from 12 to 16Hz. These results provide further evidence for the differential pathological oscillations and pathways present in AR and TD Parkinson patients.
Collapse
Affiliation(s)
- Esther Florin
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.
| | | | | | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Kerpener Strasse 62, 50937 Köln, Germany.
| |
Collapse
|
9
|
Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, Vesper J, Wojtecki L, Schnitzler A. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease. ACTA ACUST UNITED AC 2013; 136:3659-70. [PMID: 24154618 DOI: 10.1093/brain/awt271] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electrophysiological studies suggest that rest tremor in Parkinson's disease is associated with an alteration of oscillatory activity. Although it is well known that tremor depends on cortico-muscular coupling, it is unclear whether synchronization within and between brain areas is specifically related to the presence and severity of tremor. To tackle this longstanding issue, we took advantage of naturally occurring spontaneous tremor fluctuations and investigated cerebral synchronization in the presence and absence of rest tremor. We simultaneously recorded local field potentials from the subthalamic nucleus, the magnetoencephalogram and the electromyogram of forearm muscles in 11 patients with Parkinson's disease (all male, age: 52-74 years). Recordings took place the day after surgery for deep brain stimulation, after withdrawal of anti-parkinsonian medication. We selected epochs containing spontaneous rest tremor and tremor-free epochs, respectively, and compared power and coherence between subthalamic nucleus, cortex and muscle across conditions. Tremor-associated changes in cerebro-muscular coherence were localized by Dynamic Imaging of Coherent Sources. Subsequently, cortico-cortical coupling was analysed by computation of the imaginary part of coherency, a coupling measure insensitive to volume conduction. After tremor onset, local field potential power increased at individual tremor frequency and cortical power decreased in the beta band (13-30 Hz). Sensor level subthalamic nucleus-cortex, cortico-muscular and subthalamic nucleus-muscle coherence increased during tremor specifically at tremor frequency. The increase in subthalamic nucleus-cortex coherence correlated with the increase in electromyogram power. On the source level, we observed tremor-associated increases in cortico-muscular coherence in primary motor cortex, premotor cortex and posterior parietal cortex contralateral to the tremulous limb. Analysis of the imaginary part of coherency revealed tremor-dependent coupling between these cortical areas at tremor frequency and double tremor frequency. Our findings demonstrate a direct relationship between the synchronization of cerebral oscillations and tremor manifestation. Furthermore, they suggest the feasibility of tremor detection based on local field potentials and might thus become relevant for the design of closed-loop stimulation systems.
Collapse
Affiliation(s)
- Jan Hirschmann
- 1 Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
García MR, Pearlmutter BA, Wellstead PE, Middleton RH. A slow axon antidromic blockade hypothesis for tremor reduction via deep brain stimulation. PLoS One 2013; 8:e73456. [PMID: 24066049 PMCID: PMC3774723 DOI: 10.1371/journal.pone.0073456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
Parkinsonian and essential tremor can often be effectively treated by deep brain stimulation. We propose a novel explanation for the mechanism by which this technique ameliorates tremor: a reduction of the delay in the relevant motor control loops via preferential antidromic blockade of slow axons. The antidromic blockade is preferential because the pulses more rapidly clear fast axons, and the distribution of axonal diameters, and therefore velocities, in the involved tracts, is sufficiently long-tailed to make this effect quite significant. The preferential blockade of slow axons, combined with gain adaptation, results in a reduction of the mean delay in the motor control loop, which serves to stabilize the feedback system, thus ameliorating tremor. This theory, without any tuning, accounts for several previously perplexing phenomena, and makes a variety of novel predictions.
Collapse
Affiliation(s)
- Míriam R. García
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Barak A. Pearlmutter
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
- Department of Computer Science, National University of Ireland Maynooth, Co. Kildare, Ireland
- * E-mail:
| | - Peter E. Wellstead
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Richard H. Middleton
- Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
- Centre for Complex Dynamic Systems & Control, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
11
|
Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations. Exp Brain Res 2013; 228:141-53. [PMID: 23665751 DOI: 10.1007/s00221-013-3545-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
The applicability of corticomuscular coherence (CMC) as a connectivity measure is limited since only 40-50 % of the healthy population presents significant CMC. In this study, we applied continuous joint position perturbations to obtain a more reliable measure of connectivity in motor control. We evaluated the coherence between joint position perturbations and EEG (position-cortical coherence, PCC) and CMC. Healthy subjects performed two isotonic force tasks against the handle of a wrist manipulator. The baseline task was isometric; in the perturbed task, the handle moved continuously with small amplitude. The position perturbation signal covered frequencies between 5 and 29 Hz. In the perturbed task, all subjects had significant PCC and 86 % of the subjects had significant CMC, on both stimulus and non-stimulus frequencies. In the baseline task, CMC was present in only 45 % of the subjects, mostly on beta-band frequencies. The position perturbations during an isotonic force task elicited PCC in all subjects and elicited CMC in most subjects on both stimulus and non-stimulus frequencies. Perturbed CMC possibly arises by two separate processes: an intrinsic process, similar to the process in an unperturbed task, involving both efferent and afferent pathways; and a process related to the excitation of the afferent and efferent pathways by the perturbation. These processes cannot be separated. PCC, however, reflects connectivity via the afferent pathways only. As PCC was present in all healthy subjects, we propose this coherence as a reliable measure for connectivity in motor control via the afferent pathways.
Collapse
|
12
|
Florin E, Dafsari HS, Reck C, Barbe MT, Pauls KAM, Maarouf M, Sturm V, Fink GR, Timmermann L. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease. Neuroscience 2013; 240:106-16. [PMID: 23454540 DOI: 10.1016/j.neuroscience.2013.02.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 11/17/2022]
Abstract
Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback.
Collapse
Affiliation(s)
- E Florin
- Department of Neurology, University Hospital Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Does increased gamma activity in patients suffering from Parkinson's disease counteract the movement inhibiting beta activity? Neuroscience 2013; 237:42-50. [PMID: 23391866 DOI: 10.1016/j.neuroscience.2013.01.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/11/2013] [Accepted: 01/20/2013] [Indexed: 11/23/2022]
Abstract
Akinesia and rigidity are cardinal symptoms of Parkinson's disease (PD). Previous studies analysing event-related desynchronization during movement onset associated both symptoms with pathologically increased oscillations in the beta frequency range. By focusing on the movement onset only, these studies cannot, however, shed light onto the question how oscillatory activity is changed during continuous movements. To investigate this issue, we compared the power of the local field potentials (LFP) within and above the subthalamic nucleus (STN) during rest, an isometric hold condition of the forearm, and a fist flexion and extension task in 13 patients with idiopathic PD during implantation of deep brain stimulation (DBS) electrodes. During fist flexion and extension (relative to rest), significantly increased activity in the low beta (12-18 Hz) and gamma (30-48 Hz) frequency ranges was observed within the STN, while during hold (compared to rest) no significant difference was found. For the regions above the STN the power during fist movements (compared to rest) was significantly higher, i.e. in the range of 18-30 Hz, with no significant changes in the gamma frequency range. Beta activity is claimed to inhibit movement and thereby could render fist movements more exhausting. Therefore, the observed increase in beta activity in the STN during fist movements might result in bradykinesia as experienced by many patients. We hypothesise that in order to enable repetitive fist movement despite increased beta activity, "prokinetic" gamma activity may be increased as a compensatory mechanism.
Collapse
|
14
|
Thatcher RW. Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Dev Neuropsychol 2012; 37:476-96. [PMID: 22889341 DOI: 10.1080/87565641.2011.619241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electroencephalogram (EEG) coherence is a mixture of phase locking interrupted by phase shifts in the spontaneous EEG. Average reference, Laplacian transforms, and independent component (ICA) reconstruction of time series can distort physiologically generated phase differences and invalidate the computation of coherence and phase differences as well as in the computation of directed coherence and phase reset. Time domain measures of phase shift and phase lock are less prone to artifact and are independent of volume conduction. Cross-frequency synchrony in the surface EEG and in Low Resolution Electromagnetic Tomography (LORETA) provides insights into dynamic functions of the brain.
Collapse
Affiliation(s)
- Robert W Thatcher
- NeuroImaging Laboratory, Applied Neuroscience Research Institute, St. Petersburg, Florida, USA.
| |
Collapse
|
15
|
Florin E, Pfeifer J. Statistical pitfalls in the comparison of multivariate causality measures for effective causality. Comput Biol Med 2012; 43:131-4. [PMID: 23237454 DOI: 10.1016/j.compbiomed.2012.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/04/2012] [Accepted: 11/15/2012] [Indexed: 11/26/2022]
Abstract
The study of Wu et al. (2011) compared the performance of six different causality measures when the autoregressive process was estimated with the Dynamic Autoregressive Neuromagnetic Causal Imaging (DANCI) algorithm to help applied researchers in choosing the best method to estimate effective connectivity. This letter to the editor argues that four methodological restrictions limit the applicability of the results to actual applied research. First, there is no formal test for the significance of a connection between two channels. Second, the simulation results are affected by sizeable sampling variability. Third, only overestimation of the true model order is considered. Fourth, the comparison between methods always involves a joint hypothesis test. The letter discusses the limitations for applied researchers resulting from those restrictions and points to future research directions to overcome them.
Collapse
Affiliation(s)
- Esther Florin
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | | |
Collapse
|
16
|
Weiss D, Breit S, Hoppe J, Hauser AK, Freudenstein D, Krüger R, Sauseng P, Govindan RB, Gerloff C. Subthalamic nucleus stimulation restores the efferent cortical drive to muscle in parallel to functional motor improvement. Eur J Neurosci 2012; 35:896-908. [PMID: 22393899 DOI: 10.1111/j.1460-9568.2012.08014.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathological synchronization in large-scale motor networks constitutes a pathophysiological hallmark of Parkinson's disease (PD). Corticomuscular synchronization in PD is pronounced in lower frequency bands (< 10 Hz), whereas efficient cortical motor integration in healthy persons is driven in the beta frequency range. Electroencephalogram and electromyogram recordings at rest and during an isometric precision grip task were performed in four perioperative sessions in 10 patients with PD undergoing subthalamic nucleus deep-brain stimulation: (i) 1 day before (D0); (ii) 1 day after (D1); (iii) 8 days after implantation of macroelectrodes with stimulation off (D8StimOff); and (iv) on (D8StimOn). Analyses of coherence and phase delays were performed in order to challenge the effects of microlesion and stimulation on corticomuscular coherence (CMC). Additionally, local field potentials recorded from the subthalamic nucleus on D1 allowed comprehensive mapping of motor-related synchronization in subthalamocortical and cerebromuscular networks. Motor performance improved at D8StimOn compared with D0 and D8StimOff paralleled by a reduction of muscular activity and CMC in the theta band (3.9-7.8 Hz) and by an increase of CMC in the low-beta band (13.7-19.5 Hz). Efferent motor cortical drives to muscle presented mainly below 10 Hz on D8StimOff that were suppressed on D8StimOn and occurred on higher frequencies from 13 to 45 Hz. On D1, coherence of the high-beta band (20.5-30.2 Hz) increased during movement compared with rest in subthalamomuscular and corticomuscular projections, whereas it was attenuated in subcorticocortical projections. The present findings lend further support to the concept of pathological network synchronization in PD that is beneficially modulated by stimulation.
Collapse
Affiliation(s)
- Daniel Weiss
- German Centre of Neurodegenerative Diseases, Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Timmermann L, Florin E. Parkinson's disease and pathological oscillatory activity: Is the beta band the bad guy? — New lessons learned from low-frequency deep brain stimulation. Exp Neurol 2012; 233:123-5. [DOI: 10.1016/j.expneurol.2011.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/22/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
18
|
Timmermann L, Fink GR. Pathological network activity in Parkinson's disease: from neural activity and connectivity to causality? Brain 2011; 134:332-4. [PMID: 21278405 DOI: 10.1093/brain/awq381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany.
| | | |
Collapse
|