1
|
Komiyama T, Takedomi H, Aoyama C, Goya R, Shimegi S. Acute exercise has specific effects on the formation process and pathway of visual perception in healthy young men. Eur J Neurosci 2023; 58:3239-3252. [PMID: 37424403 DOI: 10.1111/ejn.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Visual perception is formed over time through the formation process and visual pathway. Exercise improves visual perception, but it is unclear whether exercise modulates nonspecifically or specifically the formation process and pathway of visual perception. Healthy young men performed the visual detection task in a backward masking paradigm before and during cycling exercise at a mild intensity or rest (control). The task presented gratings of a circular patch (target) and annulus (mask) arranged concentrically as a visual stimulus and asked if the presence and striped pattern (feature) of the target were detected. The relationship between the orientations of the gratings of the target and the mask included iso-orientation and orthogonal orientation to investigate the orientation selectivity of the masking effect. The masking effect was evaluated by perceptual suppressive index (PSI). Exercise improved feature detection (∆PSI; Exercise: -20.6%, Control: 1.7%) but not presence detection (∆PSI; Exercise: 8.9%, Control: 29.6%) compared to the control condition, and the improving effect resulted from the attenuation of the non-orientation-selective (∆PSI; Exercise: -29.0%, Control: 16.8%) but not orientation-selective masking effect (∆PSI; Exercise: -3.1%, Control: 11.7%). These results suggest that exercise affects the formation process of the perceptual feature of the target stimulus by suppressively modulating the neural networks responsible for the non-orientation-selective surround interaction in the subcortical visual pathways, whose effects are inherited by the cortical visual pathways necessary for perceptual image formation. In conclusion, our findings suggest that acute exercise improves visual perception transiently through the modulation of a specific formation process of visual processing.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
| | - Hiromasa Takedomi
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| |
Collapse
|
2
|
Liu W, Cheng Y, Yuan X, Jiang Y. Looking more masculine among females: Spatial context modulates gender perception of face and biological motion. Br J Psychol 2023; 114:194-208. [PMID: 36302701 DOI: 10.1111/bjop.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 01/11/2023]
Abstract
Perception of visual information highly depends on spatial context. For instance, perception of a low-level visual feature, such as orientation, can be shifted away from its surrounding context, exhibiting a simultaneous contrast effect. Although previous studies have demonstrated the adaptation aftereffect of gender, a high-level visual feature, it remains largely unknown whether gender perception can also be shaped by a simultaneously presented context. In the present study, we found that the gender perception of a central face or a point-light walker was repelled away from the gender of its surrounding faces or walkers. A norm-based opponent model of lateral inhibition, which accounts for the adaptation aftereffect of high-level features, can also excellently fit the simultaneous contrast effect. But different from the reported contextual effect of low-level features, the simultaneous contrast effect of gender cannot be observed when the centre and the surrounding stimuli are from different categories, or when the surrounding stimuli are suppressed from awareness. These findings on one hand reveal a resemblance between the simultaneous contrast effect and the adaptation aftereffect of high-level features, on the other hand highlight different biological mechanisms underlying the contextual effects of low- and high-level visual features.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Yuhui Cheng
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiangyong Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
3
|
Mechanisms of Surround Suppression Effect on the Contrast Sensitivity of V1 Neurons in Cats. Neural Plast 2022; 2022:5677655. [PMID: 35299618 PMCID: PMC8923783 DOI: 10.1155/2022/5677655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/30/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
Surround suppression (SS) is a phenomenon that a neuron’s response to visual stimuli within the classical receptive field (cRF) is suppressed by a concurrent stimulation in the surrounding receptive field (sRF) beyond the cRF. Studies show that SS affects neuronal response contrast sensitivity in the primary visual cortex (V1). However, the underlying mechanisms remain unclear. Here, we examined SS effect on the contrast sensitivity of cats’ V1 neurons with different preferred SFs using external noise-masked visual stimuli and perceptual template model (PTM) analysis at the system level. The contrast sensitivity was evaluated by the inverted threshold contrast of neurons in response to circular gratings of different contrasts in the cRF with or without an annular grating in the sRF. Our results showed that SS significantly reduced the contrast sensitivity of cats’ V1 neurons. The SS-induced reduction of contrast sensitivity was not correlated with SS strength but was dependent on neuron’s preferred SF, with a larger reduction for neurons with low preferred SFs than those with high preferred SFs. PTM analysis of threshold versus external noise contrast (TvC) functions indicated that SS decreased contrast sensitivity by increasing both the internal additive noise and impact of external noise for neurons with low preferred SFs, but improving only internal additive noise for neurons with high preferred SFs. Furthermore, the SS effect on the contrast-response function of low- and high-SF neurons also exhibited different mechanisms in contrast gain and response gain. Collectively, these results suggest that the mechanisms of SS effect on neuronal contrast sensitivity may depend on neuronal populations with different SFs.
Collapse
|
4
|
Caffeine improves contrast sensitivity of freely moving rats. Physiol Behav 2019; 199:111-117. [DOI: 10.1016/j.physbeh.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022]
|
5
|
Gheorghiu E, Kingdom FAA. Dynamics of contextual modulation of perceived shape in human vision. Sci Rep 2017; 7:43274. [PMID: 28230085 PMCID: PMC5322363 DOI: 10.1038/srep43274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022] Open
Abstract
In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the context of the phenomenon known as the shape aftereffect. In the shape aftereffect, prolonged viewing, or adaptation to a particular contour's shape causes a shift in the perceived shape of a subsequently viewed contour. Shape aftereffects are suppressed when the adaptor contour is surrounded by a texture of similarly-shaped contours, a surprising result given that the surround contours are all potential adaptors. Here we determine the motion and temporal properties of this form of contextual modulation. We varied the relative motion directions, speeds and temporal phases between the central adaptor contour and the surround texture and measured for each manipulation the degree to which the shape aftereffect was suppressed. Results indicate that contextual modulation of shape processing is selective to motion direction, temporal frequency and temporal phase. These selectivities are consistent with one aim of vision being to segregate contours that define objects from those that form textured surfaces.
Collapse
Affiliation(s)
- Elena Gheorghiu
- University of Stirling, Department of Psychology, Stirling, FK9 4LA, Scotland, United Kingdom
| | - Frederick A. A. Kingdom
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Qc, Canada
| |
Collapse
|
6
|
Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence. Vis Neurosci 2016; 33:E007. [PMID: 27485162 DOI: 10.1017/s0952523816000031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.
Collapse
|
7
|
Alitto HJ, Usrey WM. Surround suppression and temporal processing of visual signals. J Neurophysiol 2015; 113:2605-17. [PMID: 25652919 DOI: 10.1152/jn.00480.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 11/22/2022] Open
Abstract
Extraclassical surround suppression strongly modulates responses of neurons in the retina, lateral geniculate nucleus (LGN), and primary visual cortex. Although a great deal is known about the spatial properties of extraclassical suppression and the role it serves in stimulus size tuning, relatively little is known about how extraclassical suppression shapes visual processing in the temporal domain. We recorded the spiking activity of retinal ganglion cells and LGN neurons in the cat to test the hypothesis that extraclassical suppression influences temporal features of visual responses in the early visual system. Our results demonstrate that extraclassical suppression not only shifts the distribution of interspike intervals in a manner that decreases the efficacy of neuronal communication, it also decreases the reliability of neuronal responses to visual stimuli and it decreases the duration of visual responses, an effect that underlies a rightward shift in the temporal frequency tuning of LGN neurons. Taken together, these results reveal a dynamic relationship between extraclassical suppression and the temporal features of neuronal responses.
Collapse
Affiliation(s)
- Henry J Alitto
- Center for Neuroscience, University of California-Davis, Davis, California; Department of Neurobiology, Physiology, and Behavior, University of California-Davis, Davis, California; and
| | - W Martin Usrey
- Center for Neuroscience, University of California-Davis, Davis, California; Department of Neurobiology, Physiology, and Behavior, University of California-Davis, Davis, California; and Department of Neurology, University of California-Davis, Sacramento, California
| |
Collapse
|
8
|
Shimegi S, Ishikawa A, Kida H, Sakamoto H, Hara SI, Sato H. Spatiotemporal characteristics of surround suppression in primary visual cortex and lateral geniculate nucleus of the cat. J Neurophysiol 2014; 112:603-19. [DOI: 10.1152/jn.00221.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the primary visual cortex (V1), a neuronal response to stimulation of the classical receptive field (CRF) is predominantly suppressed by a stimulus presented outside the CRF (extraclassical receptive field, ECRF), a phenomenon referred to as ECRF suppression. To elucidate the neuronal mechanisms and origin of ECRF suppression in V1 of anesthetized cats, we examined the temporal properties of the spatial extent and orientation specificity of ECRF suppression in V1 and the lateral geniculate nucleus (LGN), using stationary-flashed sinusoidal grating. In V1, we found three components of ECRF suppression: 1) local and fast, 2) global and fast, and 3) global and late. The local and fast component, which resulted from within 2° of the boundary of the CRF, started no more than 10 ms after the onset of the CRF response and exhibited low specificity for the orientation of the ECRF stimulus. These spatiotemporal properties corresponded to those of geniculate ECRF suppression, suggesting that the local and fast component of V1 is inherited from the LGN. In contrast, the two global components showed rather large spatial extents ∼5° from the CRF boundary and high specificity for orientation, suggesting that their possible origin is the cortex, not the LGN. Correspondingly, the local component was observed in all neurons of the thalamocortical recipient layer, while the global component was biased toward other layers. Therefore, we conclude that both subcortical and cortical mechanisms with different spatiotemporal properties are involved in ECRF suppression.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Ayako Ishikawa
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Hiroyuki Kida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroshi Sakamoto
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Sin-ichiro Hara
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan; and
| |
Collapse
|
9
|
Naito T, Kasamatsu T, Sato H. Spike synchronization in cat primary visual cortex depends on similarity of surround-suppression magnitude. Eur J Neurosci 2014; 39:934-945. [PMID: 24393437 DOI: 10.1111/ejn.12469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
In the primary visual cortex (V1), the spike synchronization seen in neuron pairs with non-overlapping receptive fields can be explained by similarities in their preferred orientation (PO). However, this is not true for pairs with overlapping receptive fields, as they can still exhibit spike synchronization even if their POs are only weakly correlated. Here, we investigated the relationship between spike synchronization and suppressive modulation derived from classical receptive-field surround (surround suppression). We found that layer 4 and layer 2/3 pairs exhibited mainly asymmetric spike synchronization that had non-zero time-lags and was dependent on both the similarity of the PO and the strength of surround suppression. In contrast, layer 2/3 and layer 2/3 pairs showed mainly symmetric spike synchronization that had zero time-lag and was dependent on the similarity of the strength of surround suppression but not on the similarity in POs. From these results, we propose that in cat V1 there exists a functional network that mainly depends on the similarity in surround suppression, and that in layer 2/3 neurons the network maintains surround suppression that is primarily inherited from layer 4 neurons.
Collapse
Affiliation(s)
- Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| | - Takuji Kasamatsu
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Medicine, Osaka University, Health and Sport Science Building, 1-17 Machikaneyama, Osaka, Toyonaka, 560-0043, Japan
| |
Collapse
|
10
|
Effects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat. Neurosci Res 2013; 77:143-54. [PMID: 24055599 DOI: 10.1016/j.neures.2013.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation tuning of LGN neurons. The resulting orientation tuning was clearly contrast-invariant. Furthermore, blocking intrathalamic inhibition by iontophoretically administering γ-aminobutyric acid (GABA)A receptor antagonists, such as bicuculline and GABAzine, slightly but significantly weakened the contrast invariance. Our results suggest that orientation tuning in the LGN is caused by an elliptical classical receptive field and orientation-tuned surround suppression, and that its contrast invariance is ensured by local GABAA inhibition. This contrast-invariant orientation tuning in LGN neurons may contribute to the contrast-invariant orientation tuning seen in V1 neurons.
Collapse
|
11
|
Kimura A, Shimegi S, Hara S, Okamoto M, Sato H. Role of GABAergic inhibition in shaping the spatial frequency tuning of neurons and its contrast dependency in the dorsal lateral geniculate nucleus of cat. Eur J Neurosci 2013; 37:1270-83. [DOI: 10.1111/ejn.12149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Akihiro Kimura
- Graduate School of Medicine; Osaka University; Toyonaka; Osaka; Japan
| | | | - Shin'ichiro Hara
- Graduate School of Frontier Biosciences; Osaka University; Toyonaka; Osaka; Japan
| | - Masahiro Okamoto
- Graduate School of Frontier Biosciences; Osaka University; Toyonaka; Osaka; Japan
| | | |
Collapse
|
12
|
Romo PA, Wang C, Zeater N, Solomon SG, Dreher B. Phase sensitivities, excitatory summation fields, and silent suppressive receptive fields of single neurons in the parastriate cortex of the cat. J Neurophysiol 2011; 106:1688-712. [DOI: 10.1152/jn.00894.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recorded single-neuron activity from cytoarchitectonic area 18 of anesthetized (0.4–0.7% isoflurane in 65% N2O-35% O2 gaseous mixture) domestic cats. Neurons were identified as simple or complex on the basis of the ratios between the phase-variant (F1) component and the mean firing rate (F0) of spike responses to optimized (orientation, direction, spatial and temporal frequencies, size) high-contrast, luminance-modulated, sine-wave drifting gratings (simple: F1/F0 spike-response ratios > 1; complex: F1/F0 spike-response ratios < 1). The predominance (∼80%) of simple cells among the neurons recorded from the principal thalamorecipient layers supports the idea that most simple cells in area 18 might constitute a putative early stage in the visual information processing. Apart from the “spike-generating” regions (the classical receptive fields, CRFs), the receptive fields of three-quarters of area 18 neurons contain silent, extraclassical suppressive regions (ECRFs). The spatial extent of summation areas of excitatory responses was negatively correlated with the strength of the ECRF-induced suppression of spike responses. Lowering the stimulus contrast resulted in an expansion of the summation areas of excitatory responses accompanied by a reduction in the strength of the ECRF-induced suppression. The spatial and temporal frequency and orientation tunings of the ECRFs were much broader than those of the CRFs. Hence, the ECRFs of area 18 neurons appear to be largely “inherited” from their dorsal thalamic inputs. In most area 18 cells, costimulation of CRFs and ECRFs resulted in significant increases in F1/F0 spike-response ratios, and thus there was a contextually modulated functional continuum between the simple and complex cells.
Collapse
Affiliation(s)
- Phillip A. Romo
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Chun Wang
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie Zeater
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Samuel G. Solomon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Bogdan Dreher
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, and University of Sydney Node of the Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|