1
|
González Sanabria J, Hurtado Paso M, Frontera T, Losavio A. Effect of endogenous purines on electrically evoked ACh release at the mouse neuromuscular junction. J Neurosci Res 2022; 100:1933-1950. [PMID: 35839285 DOI: 10.1002/jnr.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/11/2022]
Abstract
At the mouse neuromuscular junction, adenosine triphosphate (ATP), which is co-released with the neurotransmitter acetylcholine (ACh), and its metabolite adenosine, modulate neurotransmitter release by activating presynaptic inhibitory P2Y13 receptors (a subtype of ATP/adenosine diphosphate [ADP] receptor), inhibitory A1 and A3 adenosine receptors, and excitatory A2A adenosine receptors. To study the effect of endogenous purines, when phrenic-diaphragm preparations are depolarized by different nerve stimulation patterns, we analyzed the effect of the antagonists for P2Y13 , A1 , A3 , and A2A receptors (AR-C69931MX, 8-cyclopentyl-1,3-dipropylxanthine, MRS-1191, and SCH-58261, respectively) on the amplitude of the end-plate potentials of the trains, and contrasted these results with those obtained with the selective agonists of these receptors (2-methylthioadenosine 5'-diphosphate trisodium salt hydrate, 2-chloro-N6 -cyclopentyl-adenosine, inosine, and PSB-0777, respectively). During continuous 0.5-Hz stimulation, the amount of endogenous purines was not enough to activate purinergic receptors, while at continuous 5-Hz stimulation, an incipient action of endogenous purines on P2Y13 , A1 and A3 receptors might be evident just at the end of the trains. During continuous 50-Hz stimulation, the concentration of endogenous ATP/ADP and adenosine exerted an inhibitory action on ACh release after of the initial phase of the train, but when the nerve was stimulated at intermittent 50 Hz (5 bursts), this behavior was not observed. Excitatory A2A receptors were only activated when continuous 100-Hz stimulation was applied. In conclusion, when motor nerve terminals are depolarized by repetitive stimulation of the phrenic nerve, endogenous ATP/ADP and adenosine are able to fine-tune neurosecretion depending on the frequency and pattern of stimulation.
Collapse
Affiliation(s)
- Javier González Sanabria
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maximiliano Hurtado Paso
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tamara Frontera
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Losavio
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Alfredo Lanari - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE. ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 2022; 16:866802. [PMID: 35591942 PMCID: PMC9110780 DOI: 10.3389/fncel.2022.866802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of brain-derived neurotrophic factor (BDNF) processing by-products (proBDNF and BDNF prodomain) on the activity of mouse neuromuscular junctions (NMJs) were studied in synapses formed during the reinnervation of extensor digitorum longus muscle (m. EDL) and mature synapses of the diaphragm. The parameters of spontaneous miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were analyzed in presence of each of the BDNF maturation products (both – 1 nM). In newly formed NMJs, proBDNF caused an increase in the resting membrane potential of muscle fibers and a decrease in the frequency of MEPPs, which was prevented by tertiapin-Q, a G-protein-coupled inwardly rectifying potassium channels (GIRK) blocker but not by p75 receptor signaling inhibitor TAT-Pep5. proBDNF had no effect on the parameters of EPPs. BDNF prodomain in newly formed synapses had effects different from those of proBDNF: it increased the amplitude of MEPPs, which was prevented by vesamicol, an inhibitor of vesicular acetylcholine (ACh) transporter; and reduced the quantal content of EPPs. In mature NMJs, proBDNF did not influence MEPPs parameters, but BDNF prodomain suppressed both spontaneous and evoked ACh release: decreased the frequency and amplitude of MEPPs, and the amplitude and quantal content of EPPs. This effect of the BDNF prodomain was prevented by blocking GIRK channels, by TAT-Pep5 or by Rho-associated protein kinase (ROCK) inhibitor Y-27632. At the same time, the BDNF prodomain did not show any inhibitory effects in diaphragm motor synapses of pannexin 1 knockout mice, which have impaired purinergic regulation of neuromuscular transmission. The data obtained suggest that there is a previously unknown mechanism for the acute suppression of spontaneous and evoked ACh release in mature motor synapses, which involves the activation of p75 receptors, ROCK and GIRK channels by BDNF prodomain and requires interaction with metabotropic purinoreceptors. In general, our results show that both the precursor of BDNF and the product of its maturation have predominantly inhibitory effects on spontaneous and evoked ACh release in newly formed or functionally mature neuromuscular junctions, which are mainly opposite to the effects of BDNF. The inhibitory influences of both proteins related to brain neurotrophin are mediated via GIRK channels of mouse NMJs.
Collapse
|
3
|
Uchitel OD, González Inchauspe C, Weissmann C. Synaptic signals mediated by protons and acid-sensing ion channels. Synapse 2019; 73:e22120. [PMID: 31180161 DOI: 10.1002/syn.22120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon-type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid-sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine-seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.
Collapse
Affiliation(s)
- Osvaldo D Uchitel
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlota González Inchauspe
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Carina Weissmann
- Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Ciudad Universitaria, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Mechanism of P2X7 receptor-dependent enhancement of neuromuscular transmission in pannexin 1 knockout mice. Purinergic Signal 2018; 14:459-469. [PMID: 30362043 DOI: 10.1007/s11302-018-9630-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023] Open
Abstract
P2X7 receptors are present in presynaptic membranes of motor synapses, but their regulatory role in modulation of neurotransmitter release remains poorly understood. P2X7 receptors may interact with pannexin 1 channels to form a purinergic signaling unit. The potential mechanism of P2X7 receptor-dependent modulation of acetylcholine (ACh) release was investigated by recording miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in neuromuscular junctions of wild-type (WT) and pannexin 1 knockout (Panx1-/-) mice. Modulation of P2X7 receptors with the selective inhibitor A740003 or the selective agonist BzATP did not alter the parameters of either spontaneous or evoked ACh release in WT mice. In Panx1-/- mice, BzATP-induced activation of P2X7 receptors resulted in a uniformly increased quantal content of EPPs during a short stimulation train. This effect was accompanied by an increase in the size of the readily releasable pool, while the release probability did not change. Inhibition of calmodulin by W-7 or of calcium/calmodulin-dependent kinase II (CaMKII) by KN-93 completely prevented the potentiating effect of BzATP on the EPP quantal content. The blockade of L-type calcium channels also prevented BzATP action on evoked synaptic activity. Thus, the activation of presynaptic P2X7 receptors in mice lacking pannexin 1 resulted in enhanced evoked ACh release. Such enhanced release was provoked by triggering the calmodulin- and CaMKII-dependent signaling pathway, followed by activation of presynaptic L-type calcium channels. We suggest that in WT mice, this pathway is downregulated due to pannexin 1-dependent tonic activation of inhibitory presynaptic purinergic receptors, which overcomes P2X7-mediated effects.
Collapse
|
5
|
Bertone NI, Groisman AI, Mazzone GL, Cano R, Tabares L, Uchitel OD. Carbonic anhydrase inhibitor acetazolamide shifts synaptic vesicle recycling to a fast mode at the mouse neuromuscular junction. Synapse 2017; 71. [PMID: 28873252 DOI: 10.1002/syn.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus neuromuscular junctions (NMJs) from mice to investigate the modulation of synaptic transmission and vesicle recycling by AZ. Transmitter release was minimally affected by AZ, as evidenced by evoked and spontaneous end-plate potential measurements. However, optical evaluation with FM-styryl dyes of vesicle exocytosis elicited by 50 Hz stimuli showed a strong reduction in fluorescence loss in AZ treated NMJ, an effect that was abolished by bathing the NMJ in Hepes. The remaining dye was quenched by bromophenol, a small molecule capable of diffusing inside vesicles. Furthermore, in transgenic mice expressing Synaptophysin-pHluorin (SypHy), the fluorescence responses of motor nerve terminals to a 50 Hz train of stimuli was decrease to a 50% of controls in the presence of AZ. Immunohistochemistry experiments to evaluate the state of the Myosin light chain kinase (MLCK), an enzyme involved in vesicle recycling, demonstrated that MLCK phosphorylation was much stronger in the presence than AZ than in its absence in 50 Hz stimulated NMJs. We postulate that AZ, via cytosol acidification and activation of MLCK, shifts synaptic vesicle recycling to a fast (kiss-and-run) mode, which changes synaptic performance. These changes may contribute to the therapeutic action reported in many neurological syndromes like ataxia, epilepsy, and migraine.
Collapse
Affiliation(s)
- Nicolas Ivan Bertone
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ayelén Ivana Groisman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Graciela Lujan Mazzone
- Laboratorios de Investigación aplicada en Neurociencias (LIAN)-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina
| | - Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
6
|
Tarasova EO, Miteva AS, Gaidukov AE, Balezina OP. The role of adenosine receptors and L-type calcium channels in the regulation of the mediator secretion in mouse motor synapses. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2015. [DOI: 10.1134/s1990747815050141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|