1
|
Balogh CM, Barrett SCH. An experimental field study of inbreeding depression in an outcrossing invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1393294. [PMID: 39267999 PMCID: PMC11390429 DOI: 10.3389/fpls.2024.1393294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Inbreeding depression is likely to play an important role during biological invasion. But relatively few studies have investigated the fitness of selfed and outcrossed offspring in self-incompatible invasive plants in natural environments in their introduced range. Moreover, the majority of studies on inbreeding depression have investigated self-compatible species with mixed mating, and less is known about the intensity of inbreeding depression in outcrossing self-incompatible species. Here, we address these questions experimentally by comparing selfed and outcrossed progeny of purple loosestrife (Lythrum salicaria) over four growing seasons, including three under field conditions in a freshwater marsh in southern Ontario, Canada, a region where L. salicaria is highly invasive. The tristylous mating system of L. salicaria involves disassortative mating among floral morphs enforced by trimorphic incompatibility. However, owing to partial incompatibility, self-fertilized seed can be obtained by manual self-pollination thus facilitating comparisons of selfed and outcrossed progeny. We compared progeny with and without intraspecific competition from selfed or outcrossed neighbours and examined the influence of breeding treatment and competition on fitness correlates by measuring a range of life-history traits including: proportion of seeds germinating, days to germination, survival, proportion of plants flowering, time to flowering, vegetative mass, and inflorescence number and mass. We analysed data for each trait using functions from time series estimates of growth and two multiplicative estimates of fitness. We detected varying intensities of inbreeding depression for several traits in three of the four years of the experiment, including inflorescence mass and reproductive output. Cumulative inbreeding depression over four years averaged δ = 0.48 and 0.68, depending on the method used to estimate multiplicative fitness. The competition treatments did not significantly affect plant performance and the magnitude of inbreeding depression. Given the primarily outcrossing mating system of L. salicaria populations, the detection of inbreeding depression for several key life-history traits was as predicted by theory. Our results suggests that biparental inbreeding and low selfing in colonizing populations may have significant effects on demographic parameters such as population growth.
Collapse
Affiliation(s)
- Christopher M Balogh
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Nihranz CT, Walker WS, Brown SJ, Mescher MC, De Moraes CM, Stephenson AG. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. AMERICAN JOURNAL OF BOTANY 2020; 107:286-297. [PMID: 31944272 PMCID: PMC7064912 DOI: 10.1002/ajb2.1402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - William S. Walker
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven J. Brown
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mark C. Mescher
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Andrew G. Stephenson
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
3
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Schrieber K, Wolf S, Wypior C, Höhlig D, Keller SR, Hensen I, Lachmuth S. Release from natural enemies mitigates inbreeding depression in native and invasive Silene latifolia populations. Ecol Evol 2019; 9:3564-3576. [PMID: 30962911 PMCID: PMC6434559 DOI: 10.1002/ece3.4990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/12/2019] [Accepted: 01/26/2019] [Indexed: 01/01/2023] Open
Abstract
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out- and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field-collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species' native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.
Collapse
Affiliation(s)
- Karin Schrieber
- Department of Chemical Ecology, Faculty of BiologyBielefeld UniversityBielefeldGermany
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Sabrina Wolf
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Catherina Wypior
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Diana Höhlig
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | | | - Isabell Hensen
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne Lachmuth
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
5
|
Haber AI, Rivera Sustache J, Carr DE. A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in
Mimulus guttatus. Ecosphere 2018. [DOI: 10.1002/ecs2.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ariela I. Haber
- Department of Environmental Sciences University of Virginia Charlottesville Virginia 22904 USA
| | | | - David E. Carr
- Blandy Experimental Farm University of Virginia Boyce Virginia 22620 USA
| |
Collapse
|
6
|
Sun S, Klebaner F, Tian T. Mathematical modelling for variations of inbreeding populations fitness with single and polygenic traits. BMC Genomics 2017; 18:196. [PMID: 28361703 PMCID: PMC5374587 DOI: 10.1186/s12864-017-3492-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inbreeding mating has been widely accepted as the key mechanism to enhance homozygosity which normally will decrease the fitness of the population. Although this result has been validated by a large amount of biological data from the natural populations, a mathematical proof of these experimental discoveries is still not complete. A related question is whether we can extend the well-established result regarding the mean fitness from a randomly mating population to inbreeding populations. A confirmative answer may provide insights into the frequent occurrence of self-fertilization populations. RESULTS This work presents a theoretic proof of the result that, for a large inbreeding population with directional relative genotype fitness, the mean fitness of population increases monotonically. However, it cannot be extended to the case with over-dominant genotype fitness. In addition, by employing multiplicative intersection hypothesis, we prove that inbreeding mating does decrease the mean fitness of polygenic population in general, but does not decrease the mean fitness with mixed dominant-recessive genotypes. We also prove a novel result that inbreeding depression depends on not only the mating pattern but also genetic structure of population. CONCLUSIONS For natural inbreeding populations without serious inbreeding depression, our theoretical analysis suggests the majority of its genotypes should be additive or dominant-recessive genotypes. This result gives a reason to explain why many hermaphroditism populations do not show severe inbreeding depression. In addition, the calculated purging rate shows that inbreeding mating purges the deleterious mutants more efficiently than randomly mating does.
Collapse
Affiliation(s)
- Shuhao Sun
- School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Fima Klebaner
- School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Tianhai Tian
- School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
7
|
Sandner TM, Matthies D. The effects of stress intensity and stress type on inbreeding depression in Silene vulgaris. Evolution 2016; 70:1225-38. [PMID: 27110935 DOI: 10.1111/evo.12929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 02/03/2023]
Abstract
Inbreeding depression (ID) is generally assumed to increase under stressful conditions, but a number of studies have found the opposite pattern, that is that crossed offspring were more capable of exploiting benign conditions. Alternatively, the phenotypic variation hypothesis predicts that not stress intensity, but enhanced phenotypic variation in an environment leads to increased ID. We subjected inbred and crossed offspring of Silene vulgaris to drought, simulated herbivory, copper contamination, and two levels of nutrient deficiency and shade. In contrast to the predominant expectation, most stress treatments decreased inbreeding depression. With increasing nutrient limitation, ID decreased strongly, whereas under increasing shade ID did not change. These differences may be due to purging in the population of origin where conditions are nutrient-poor and dry, but not shaded. In contrast to the greenhouse experiment, ID was higher in a field site than in a more benign common garden. However, the predictions of the phenotypic variation hypothesis were met in both the greenhouse and the field versus garden experiment. The results suggest that there may be no general relationship between ID and stress intensity, but specific effects of stress type and the novelty and variability of the environment.
Collapse
Affiliation(s)
- Tobias Michael Sandner
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Diethart Matthies
- Department of Ecology, Faculty of Biology, Philipps-University Marburg, D-35043 Marburg, Germany
| |
Collapse
|
8
|
Schrieber K, Lachmuth S. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success. Biol Rev Camb Philos Soc 2016; 92:939-952. [DOI: 10.1111/brv.12263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Karin Schrieber
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
| | - Susanne Lachmuth
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; 04103 Leipzig Germany
| |
Collapse
|
9
|
Dulya OV, Mikryukov VS. Genetic variation and selfing rate in Lychnis flos-cuculi along an industrial pollution gradient. THE NEW PHYTOLOGIST 2016; 209:1083-1095. [PMID: 26354007 DOI: 10.1111/nph.13636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
We studied nine populations of a meadow mixed-mating plant Lychnis flos-cuculi growing in a gradient of copper smelter emissions. We hypothesize that metal tolerant populations in the polluted areas have experienced a loss of genetic variation and are more selfing than the populations from the unpolluted areas. One hundred and thirty-five parental plants and 1059 offspring were genotyped with six microsatellite markers. Selfing rates were assessed manually, with Rmes, Mltr and Colony2. Soil toxicity, population density and pollinators' activity were estimated in the studied areas. Populations from the heavily polluted area have experienced a strong founder effect. However, at present, they are characterized by high densities. A recent genetic explosion was registered for the population from the most polluted site, probably due to forest thinning under pollution effects. Selfing rates estimated with different approaches agreed well only for populations with high genetic variation; they comprised 0-0.23 and were similar between polluted and clean areas. Self-fertilization in L. flos-cuculi hardly represents a mechanism for the fixation of advantageous alleles and a barrier for gene flow from non-tolerant populations. The employment of different methods of selfing rate estimation in populations with low genetic variation appears to be necessary, though not a guarantee of reliable conclusions.
Collapse
Affiliation(s)
- Olesya V Dulya
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 8th March Street 202, Ekaterinburg, 620144, Russia
| | - Vladimir S Mikryukov
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, 8th March Street 202, Ekaterinburg, 620144, Russia
| |
Collapse
|
10
|
Johnson MT, Campbell SA, Barrett SC. Evolutionary Interactions Between Plant Reproduction and Defense Against Herbivores. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054215] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc T.J. Johnson
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6 Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Stuart A. Campbell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| |
Collapse
|
11
|
Joschinski J, van Kleunen M, Stift M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata? Evol Ecol 2015. [DOI: 10.1007/s10682-015-9786-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Campbell SA. Ecological mechanisms for the coevolution of mating systems and defence. THE NEW PHYTOLOGIST 2015; 205:1047-53. [PMID: 25729803 DOI: 10.1111/nph.13212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.
Collapse
|
13
|
Campbell SA, Halitschke R, Thaler JS, Kessler A. Plant mating systems affect adaptive plasticity in response to herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:481-490. [PMID: 24580720 DOI: 10.1111/tpj.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
The fitness consequences of mating system variation (e.g. inbreeding) have been studied for at least 200 years, yet the ecological consequences of this variation remain poorly understood. Most plants are capable of inbreeding, and also exhibit a remarkable suite of adaptive phenotypic responses to ecological stresses such as herbivory. We tested the consequences of experimental inbreeding on phenotypic plasticity in resistance and growth (tolerance) traits in Solanum carolinense (Solanaceae). Inbreeding reduced the ability of plants to up-regulate resistance traits following damage. Moreover, inbreeding disrupted growth trait responses to damage, indicating the presence of deleterious mutations at loci regulating growth under stress. Production of the phytohormones abscisic and indole acetic acid, and wounding-induced up-regulation of the defence signalling phytohormone jasmonic acid were all significantly reduced under inbreeding, indicating a phytohormonal basis for inbreeding effects on growth and defence trait regulation. We conclude that the plasticity of induced responses is negatively affected by inbreeding, with implications for fragmented populations facing mate limitation and stress as a consequence of environmental change.
Collapse
Affiliation(s)
- Stuart A Campbell
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
14
|
Kariyat RR, Scanlon SR, Moraski RP, Stephenson AG, Mescher MC, De Moraes CM. Plant inbreeding and prior herbivory influence the attraction of caterpillars (Manduca sexta) to odors of the host plant Solanum carolinense (Solanaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:376-80. [PMID: 24509799 DOI: 10.3732/ajb.1300295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PREMISE OF THIS STUDY The mediation of plant-insect interactions by plant odors has been studied extensively, but most previous work has focused on documenting the role of constitutive and herbivore- or pathogen-induced plant volatiles as foraging cues for insect herbivores and their natural enemies. Relatively little work has explored genotypic variation in plant-odor profiles within species, and few studies have addressed the perception and use of olfactory cues by lepidopteran larvae or other herbivores during feeding. METHODS We examined the effects of plant breeding (inbred vs. outbred individuals) and plant exposure to prior herbivory on the preferences of caterpillars (Manduca sexta) for odors of Solanum carolinense in leaf-disc and whole-plant choice assays. KEY RESULTS Second- and third-instar larvae of M. sexta clearly and consistently preferred undamaged over herbivore-damaged plants of both breeding types and also consistently preferred inbred over outbred plants that had the same damage status. Similar preferences were observed even when plants were covered with bridal-veil cloth to mask visual cues, demonstrating that olfactory cues influence larval preferences. CONCLUSIONS The observed preferences are consistent with our previous findings regarding the constitutive and induced volatile profiles of inbred and outbred horsenettle plants and their effects on plant-herbivore interactions. They furthermore correspond to differences in host-plant quality predicted by previous work and, thus, suggest that naive larvae of M. sexta can accurately assess aspects of host-plant quality via olfactory cues perceived at a distance.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | | | | | | | | | | |
Collapse
|
15
|
Carr DE, Eubanks MD. Interactions between insect herbivores and plant mating systems. ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:185-203. [PMID: 24160428 DOI: 10.1146/annurev-ento-011613-162049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Self-pollination is common in plants, and limited seed and pollen dispersal can create localized inbreeding even within outcrossing plants. Consequently, insects regularly encounter inbred plants in nature. Because inbreeding results in elevated homozygosity, greater expression of recessive alleles, and subsequent phenotypic changes in inbred plants, inbreeding may alter plant-insect interactions. Recent research has found that plant inbreeding alters resistance and tolerance to herbivores, alters the attraction and susceptibility of plants to insects that vector plant pathogens, and alters visitation rates of insect pollinators. These results suggest that interactions with insects can increase or decrease inbreeding depression (the loss of fitness due to self-fertilization) and subsequently alter the evolution of selfing within plant populations. Future work needs to focus on the mechanisms underlying genetic variation in the effects of inbreeding on plant-insect interactions and the consequences of altered plant-insect interactions on the evolution of plant defense and plant mating systems.
Collapse
Affiliation(s)
- David E Carr
- Blandy Experimental Farm, University of Virginia, Boyce, Virginia 22620;
| | | |
Collapse
|
16
|
Kalske A, Mutikainen P, Muola A, Scheepens JF, Laukkanen L, Salminen JP, Leimu R. Simultaneous inbreeding modifies inbreeding depression in a plant-herbivore interaction. Ecol Lett 2013; 17:229-38. [PMID: 24304923 DOI: 10.1111/ele.12223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022]
Abstract
Because inbreeding is common in natural populations of plants and their herbivores, herbivore-induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among-population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant-herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore-induced selection against self-fertilisation in plants may diminish.
Collapse
Affiliation(s)
- Aino Kalske
- Section of Ecology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
17
|
Plant mating system transitions drive the macroevolution of defense strategies. Proc Natl Acad Sci U S A 2013; 110:3973-8. [PMID: 23431190 DOI: 10.1073/pnas.1213867110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the factors that shape macroevolutionary patterns in functional traits is a central goal of evolutionary biology. Alternative strategies of sexual reproduction (inbreeding vs. outcrossing) have divergent effects on population genetic structure and could thereby broadly influence trait evolution. However, the broader evolutionary consequences of mating system transitions remain poorly understood, with the exception of traits related to reproduction itself (e.g., pollination). Across a phylogeny of 56 wild species of Solanaceae (nightshades), we show here that the repeated, unidirectional transition from ancestral self-incompatibility (obligate outcrossing) to self-compatibility (increased inbreeding) leads to the evolution of an inducible (vs. constitutive) strategy of plant resistance to herbivores. We demonstrate that inducible and constitutive defense strategies represent evolutionary alternatives and that the magnitude of the resulting macroevolutionary tradeoff is dependent on the mating system. Loss of self-incompatibility is also associated with the evolution of increased specificity in induced plant resistance. We conclude that the evolution of sexual reproductive variation may have profound effects on plant-herbivore interactions, suggesting a new hypothesis for the evolution of two primary strategies of plant defense.
Collapse
|
18
|
Campbell SA, Thaler JS, Kessler A. Plant chemistry underlies herbivore-mediated inbreeding depression in nature. Ecol Lett 2012; 16:252-60. [PMID: 23216879 DOI: 10.1111/ele.12036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/13/2012] [Accepted: 10/18/2012] [Indexed: 12/19/2022]
Abstract
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant-herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore-mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature.
Collapse
Affiliation(s)
- Stuart A Campbell
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
19
|
Leimu R, Kloss L, Fischer M. Inbreeding alters activities of the stress-related enzymes chitinases and β-1,3-glucanases. PLoS One 2012; 7:e42326. [PMID: 22879940 PMCID: PMC3411783 DOI: 10.1371/journal.pone.0042326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis-related proteins, chitinases (CHT) and β-1,3-glucanases (GLU), are stress proteins up-regulated as response to extrinsic environmental stress in plants. It is unknown whether these PR proteins are also influenced by inbreeding, which has been suggested to constitute intrinsic genetic stress, and which is also known to affect the ability of plants to cope with environmental stress. We investigated activities of CHT and GLU in response to inbreeding in plants from 13 Ragged Robin (Lychnis flos-cuculi) populations. We also studied whether activities of these enzymes were associated with levels of herbivore damage and pathogen infection in the populations from which the plants originated. We found an increase in pathogenesis-related protein activity in inbred plants from five out of the 13 investigated populations, which suggests that these proteins may play a role in how plants respond to intrinsic genetic stress brought about by inbreeding in some populations depending on the allele frequencies of loci affecting the expression of CHT and the past levels of inbreeding. More importantly, we found that CHT activities were higher in plants from populations with higher levels of herbivore or pathogen damage, but inbreeding reduced CHT activity in these populations disrupting the increased activities of this resistance-related enzyme in populations where high resistance is beneficial. These results provide novel information on the effects of plant inbreeding on plant–enemy interactions on a biochemical level.
Collapse
Affiliation(s)
- Roosa Leimu
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
| | | | | |
Collapse
|
20
|
Ridley CE, Hangelbroek HH, Wagenius S, Stanton-Geddes J, Shaw RG. The effect of plant inbreeding and stoichiometry on interactions with herbivores in nature: Echinacea angustifolia and its specialist aphid. PLoS One 2011; 6:e24762. [PMID: 21935460 PMCID: PMC3172291 DOI: 10.1371/journal.pone.0024762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022] Open
Abstract
Fragmentation of once widespread communities may alter interspecific interactions by changing genetic composition of interacting populations as well as their abundances and spatial distributions. In a long-term study of a fragmented population of Echinacea angustifolia, a perennial plant native to the North American prairie, we investigated influences on its interaction with a specialist aphid and tending ants. We grew plant progeny of sib-matings (I), and of random pairings within (W) and between (B) seven remnants in a common field within 8 km of the source remnants. During the fifth growing season, we determined each plant's burden of aphids and ants, as well as its size and foliar elemental composition (C, N, P). We also assayed composition (C, N) of aphids and ants. Early in the season, progeny from genotypic classes B and I were twice as likely to harbor aphids, and in greater abundance, than genotypic class W; aphid loads were inversely related to foliar concentration of P and positively related to leaf N and plant size. At the end of the season, aphid loads were indistinguishable among genotypic classes. Ant abundance tracked aphid abundance throughout the season but showed no direct relationship with plant traits. Through its potential to alter the genotypic composition of remnant populations of Echinacea, fragmentation can increase Echinacea's susceptibility to herbivory by its specialist aphid and, in turn, perturb the abundance and distribution of aphids.
Collapse
Affiliation(s)
- Caroline E. Ridley
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Helen H. Hangelbroek
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Stuart Wagenius
- Division of Plant Science and Conservation, Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - John Stanton-Geddes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
21
|
Muola A, Mutikainen P, Laukkanen L, Lilley M, Leimu R. The role of inbreeding and outbreeding in herbivore resistance and tolerance in Vincetoxicum hirundinaria. ANNALS OF BOTANY 2011; 108:547-55. [PMID: 21803741 PMCID: PMC3158690 DOI: 10.1093/aob/mcr174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Inbreeding via self-fertilization may have negative effects on plant fitness (i.e. inbreeding depression). Outbreeding, or cross-fertilization between genetically dissimilar parental plants, may also disrupt local adaptation or allelic co-adaptation in the offspring and again lead to reduced plant fitness (i.e. outbreeding depression). Inbreeding and outbreeding may also increase plant vulnerability to natural enemies by altering plant quality or defence. The effects of inbreeding and outbreeding on plant size and response to herbivory in the perennial herb, Vincetoxicum hirundinaria, were investigated. METHODS Greenhouse experiments were conducted using inbred and outbred (within- and between-population) offspring of 20 maternal plants from four different populations, quantifying plant germination, size, resistance against the specialist folivore, Abrostola asclepiadis, and tolerance of simulated defoliation. KEY RESULTS Selfed plants were smaller and more susceptible to damage by A. asclepiadis than outcrossed plants. However, herbivore biomass on selfed and outcrossed plants did not differ. The effects of inbreeding on plant performance and resistance did not differ among plant populations or families, and no inbreeding depression at all was found in tolerance of defoliation. Between-population outcrossing had no effect on plant performance or resistance against A. asclepiadis, indicating a lack of outbreeding depression. CONCLUSIONS Since inbreeding depression negatively affects plant size and herbivore resistance, inbreeding may modify the evolution of the interaction between V. hirundinaria and its specialist folivore. The results further suggest that herbivory may contribute to the maintenance of a mixed mating system of the host plants by selecting for outcrossing and reduced susceptibility to herbivore attack, and thus add to the growing body of evidence on the effects of inbreeding on the mating system evolution of the host plants and the dynamics of plant-herbivore interactions.
Collapse
Affiliation(s)
- Anne Muola
- Section of Ecology, University of Turku, FI-20014, Turku, Finland.
| | | | | | | | | |
Collapse
|
22
|
BELLO-BEDOY R, NÚÑEZ-FARFÁN J. The effect of inbreeding on defence against multiple enemies in Datura stramonium. J Evol Biol 2010; 24:518-30. [DOI: 10.1111/j.1420-9101.2010.02185.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bello-Bedoy R, Cruz LL, Núñez-Farfán J. Inbreeding alters a plant-predispersal seed predator interaction. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9448-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Leimu R, Fischer M. Between-population outbreeding affects plant defence. PLoS One 2010; 5:e12614. [PMID: 20838662 PMCID: PMC2935481 DOI: 10.1371/journal.pone.0012614] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies.
Collapse
Affiliation(s)
- Roosa Leimu
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | | |
Collapse
|
25
|
Leimu R, Vergeer P, Angeloni F, Ouborg NJ. Habitat fragmentation, climate change, and inbreeding in plants. Ann N Y Acad Sci 2010; 1195:84-98. [DOI: 10.1111/j.1749-6632.2010.05450.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Bello-Bedoy R, Núñez-Farfán J. Cost of inbreeding in resistance to herbivores in Datura stramonium. ANNALS OF BOTANY 2010; 105:747-53. [PMID: 20237119 PMCID: PMC2859913 DOI: 10.1093/aob/mcq038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Experiments show that inbred progenies are frequently more damaged by herbivores than outcrossed progenies, suggesting that selfing is costly when herbivores are present and can increase the magnitude of inbreeding depression in survival and reproductive components of fitness. The present study assesses whether inbreeding increases herbivory and estimates the magnitude of inbreeding depression on reproductive components of fitness in the annual plant Datura stramonium. METHODS Two experiments were performed under natural conditions of herbivory to assess the effect of inbreeding on plant damage in D. stramonium. In the first experiment, outcrossed progeny was generated using foreign pollen donors, whereas inbred progeny was produced by self-pollination. In both groups, survival, herbivore damage and reproductive components of fitness were measured. In the second experiment, inbred and outcrossed progenies were produced using only local pollen donors, and only damage by herbivores was measured. KEY RESULTS Despite yearly variation in damage caused by the same specialist herbivores, inbred progeny suffered consistently more damage than outcrossed progeny. There was a significant inbreeding depression for fruit number (delta = 0.3), seed number per fruit (delta = 0.19) and seed number per plant (delta = 0.43). Furthermore, significant genetic variation amongst families in the magnitude of inbreeding depression was observed. DISCUSSION The results suggest that the plant's mating system modified the pattern of herbivory by specialist insects in D. stramonium. Inbred plants suffer not only from the genetic cost of low vigour but also from greater damage by herbivores. The mechanism by which inbreeding reduces plant resistance to herbivores remains unknown but is an interesting area for future research.
Collapse
|
27
|
Kramer AT, Havens K. Plant conservation genetics in a changing world. TRENDS IN PLANT SCIENCE 2009; 14:599-607. [PMID: 19748300 DOI: 10.1016/j.tplants.2009.08.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/29/2009] [Accepted: 08/10/2009] [Indexed: 05/08/2023]
Abstract
Plant conservation genetics provides tools to guide conservation and restoration efforts, measure and monitor success, and ultimately minimize extinction risk by conserving species as dynamic entities capable of evolving in the face of changing conditions. We consider the application of these tools to rare and common species alike, as ongoing threats that increasingly limit their resilience, evolutionary potential and survival. Whereas neutral marker studies have contributed much to conservation genetics, we argue for a renewed focus on quantitative genetic studies to determine how, or if, species will adapt to changing conditions. Because restoration plays an increasingly vital role in conservation, we discuss additional genetic considerations and research questions that must be actively studied now to effectively inform future actions.
Collapse
Affiliation(s)
- Andrea T Kramer
- Botanic Gardens Conservation International USA, Chicago Botanic Garden, Glencoe, IL 60022, USA
| | | |
Collapse
|
28
|
Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans. Heredity (Edinb) 2009; 104:52-60. [DOI: 10.1038/hdy.2009.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
PORCHER E, KELLY JK, CHEPTOU PO, ECKERT CG, JOHNSTON MO, KALISZ S. The genetic consequences of fluctuating inbreeding depression and the evolution of plant selfing rates. J Evol Biol 2009; 22:708-17. [DOI: 10.1111/j.1420-9101.2009.01705.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|