1
|
Pennell TM, Mank JE, Alonzo SH, Hosken DJ. On the resolution of sexual conflict over shared traits. Proc Biol Sci 2024; 291:20240438. [PMID: 39082243 PMCID: PMC11289733 DOI: 10.1098/rspb.2024.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Anisogamy, different-sized male and female gametes, sits at the heart of sexual selection and conflict between the sexes. Sperm producers (males) and egg producers (females) of the same species generally share most, if not all, of the same genome, but selection frequently favours different trait values in each sex for traits common to both. The extent to which this conflict might be resolved, and the potential mechanisms by which this can occur, have been widely debated. Here, we summarize recent findings and emphasize that once the sexes evolve, sexual selection is ongoing, and therefore new conflict is always possible. In addition, sexual conflict is largely a multivariate problem, involving trait combinations underpinned by networks of interconnected genes. Although these complexities can hinder conflict resolution, they also provide multiple possible routes to decouple male and female phenotypes and permit sex-specific evolution. Finally, we highlight difficulty in the study of sexual conflict over shared traits and promising directions for future research.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| | - Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA95060, USA
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE), University of Exeter, Cornwall Campus, PenrynTR10 9EZ, UK
| |
Collapse
|
2
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
3
|
López-Rull I, Salaberría C, Fargallo JA. Plastic plumage colouration in response to experimental humidity supports Gloger's rule. Sci Rep 2023; 13:858. [PMID: 36646811 PMCID: PMC9842646 DOI: 10.1038/s41598-023-28090-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Knowing how animals adapt their phenotype to local temperature and humidity is key to understanding not only ecogeographical rules, but also how species will manage climate change, as current models predict changes in global patterns of temperature and precipitation. In endotherms, colour adaptations in response to climate have been under investigated, and their acclimatization-the individual capacity to reversibly adjust phenotype in response to different environments-is unknown. Geographic trends can provide clues about abiotic variables involved in colouration, as postulated by Gloger's rule, which predicts darker individuals in warm and humid regions. We tested whether house sparrows (Passer domesticus) can adjust colouration when faced with varying humidity conditions. We exposed birds to either a dry (humidity 45%) or a wet environment (70%) six months before their moult, and measured colouration in newly developed feathers in five parts of the body (bib, crown, crown stripe, belly and rump). As predicted by Gloger's rule, birds in wet conditions developed darker (bib and belly) and larger (bib) melanised plumage patches, than birds in dry conditions. Our result provides the first unequivocal evidence that the ability of individual birds to adjust their colouration may be a potential adaptation to climatic changes in endotherms.
Collapse
Affiliation(s)
- Isabel López-Rull
- Departamento Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n., 28933, Móstoles, Madrid, Spain.
| | - Concepción Salaberría
- Departamento Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n., 28933, Móstoles, Madrid, Spain
| | - Juan Antonio Fargallo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
4
|
Being Dark is Better: A Feral Pigeon Plumage Polymorphism as a Response to Urban Environments in Slovakia. EKOLÓGIA (BRATISLAVA) 2021. [DOI: 10.2478/eko-2021-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The purpose of this study was to determine the distribution and plumage phenotypes of the feral pigeon, Columba livia forma urbana (Gmelin, 1789), in Slovakia. Censuses carried out in the built-up areas of 16 towns and cities from November to February (2012–2018) counted and evaluated 3,123 individual birds. The most frequent were melanic colored birds (checker, T-pattern and spread phenotypes), which predominated in the population (51.6%, n = 1,613), followed by paler ones (42.1%, n = 1,316) and other types (6.2%, n = 194). A statistically significant difference was confirmed among the melanic and paler plumage phenotypes (χ2 = 81.49, df = 15, p < 0.0001). Correlation confirmed the different importance of city area and human density on the maintenance of dark and/or pale pigeons living in cities.
Collapse
|
5
|
Senczuk G, Gramolini L, Avella I, Mori E, Menchetti M, Aloise G, Castiglia R. No association between candidate genes for color determination and color phenotype in
Hierophis viridiflavus,
and characterization of a contact zone. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti University of Molise Campobasso Italy
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” Università “La Sapienza” Roma Rome Italy
| | - Laura Gramolini
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” Università “La Sapienza” Roma Rome Italy
- Institut für Biologie Humboldt‐Universität zu Berlin Berlin Germany
| | - Ignazio Avella
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” Università “La Sapienza” Roma Rome Italy
- CIBIO/InBIO ‐ Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto Vairão Portugal
| | - Emiliano Mori
- Istituto di Ricerca sugli Ecosistemi Terrestri Consiglio Nazionale delle Ricerche Sesto Fiorentino Italy
| | | | - Gaetano Aloise
- Museo di Storia Naturale della Calabria e Orto Botanico Università della Calabria Rende Italy
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” Università “La Sapienza” Roma Rome Italy
- Museo di Anatomia Comparata “Battista Grassi” Università “La Sapienza” Roma Rome Italy
| |
Collapse
|
6
|
Morosinotto C, Brommer JE, Lindqvist A, Ahola K, Aaltonen E, Karstinen T, Karell P. Fledging Mass Is Color Morph Specific and Affects Local Recruitment in a Wild Bird. Am Nat 2020; 196:609-619. [DOI: 10.1086/710708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
San-Jose LM, Roulin A. On the Potential Role of the Neural Crest Cells in Integrating Pigmentation Into Behavioral and Physiological Syndromes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
8
|
Differential fitness effects of moonlight on plumage colour morphs in barn owls. Nat Ecol Evol 2019; 3:1331-1340. [PMID: 31477846 PMCID: PMC6728161 DOI: 10.1038/s41559-019-0967-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The Moon cycle exposes nocturnal life to variation in environmental light. However, whether moonlight shapes the fitness of nocturnal species with distinct colour variants remains unknown. Combining long-term monitoring, high-resolution GPS tracking, and experiments on prey, we show that barn owls (Tyto alba) with distinct plumage colourations are differently affected by moonlight. The reddest owls are less successful hunting and providing food to their offspring during moonlit nights, which associates with lower body mass and survival of the youngest nestlings and with female mates starting to lay eggs at low moonlight levels. Although moonlight should make white owls more conspicuous to prey, hunting and fitness of the whitest owls are positively or un-affected by moonlight. We experimentally show that, under full-moon conditions, white plumages trigger longer freezing times in the prey, which should facilitate prey catchability. We propose that the barn owl’s white plumage, a rare trait among nocturnal predators, exploits the known aversion of rodents to bright light, explaining why, counterintuitively, moonlight impacts less the whitest owls. Our study provides evidence for the long-suspected influence of the Moon on the evolution of colouration in nocturnal species, highlighting the importance of colour in nocturnal ecosystems.
Collapse
|
9
|
Svensson EI, Goedert D, Gómez-Llano MA, Spagopoulou F, Nava-Bolaños A, Booksmythe I. Sex differences in local adaptation: what can we learn from reciprocal transplant experiments? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0420. [PMID: 30150219 DOI: 10.1098/rstb.2017.0420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Local adaptation is of fundamental interest to evolutionary biologists. Traditionally, local adaptation has been studied using reciprocal transplant experiments to quantify fitness differences between residents and immigrants in pairwise transplants between study populations. Previous studies have detected local adaptation in some cases, but others have shown lack of adaptation or even maladaptation. Recently, the importance of different fitness components, such as survival and fecundity, to local adaptation have been emphasized. Here, we address another neglected aspect in studies of local adaptation: sex differences. Given the ubiquity of sexual dimorphism in life histories and phenotypic traits, this neglect is surprising, but may be partly explained by differences in research traditions and terminology in the fields of local adaptation and sexual selection. Studies that investigate differences in mating success between resident and immigrants across populations tend to be framed in terms of reproductive and behavioural isolation, rather than local adaptation. We briefly review the published literature that bridges these areas and suggest that reciprocal transplant experiments could benefit from quantifying both male and female fitness components. Such a more integrative research approach could clarify the role of sex differences in the evolution of local adaptations.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
| | - Debora Goedert
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Foteini Spagopoulou
- Animal Ecology, Department of Ecology and Evolution, Uppsala University, 752 36 Uppsala, Sweden
| | - Angela Nava-Bolaños
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510 Ciudad de México, México.,Secretaría de Educación Abierta y Continua, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.U., 04510 Ciudad de México, México
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, 3800 Victoria, Australia
| |
Collapse
|
10
|
Roulin A, Uva V, Romano A. A melanin-based trait is more strongly related to body size in the tropics than in temperate regions in the globally distributed barn owl family. J Evol Biol 2018; 31:1932-1944. [DOI: 10.1111/jeb.13386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
- Wissenschaftskolleg zu Berlin; Berlin Germany
| | - Vera Uva
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
| | - Andrea Romano
- Department of Ecology and Evolution; University of Lausanne; Biophore, Lausanne Switzerland
| |
Collapse
|
11
|
Fargallo JA, Martínez F, Wakamatsu K, Serrano D, Blanco G. Sex-Dependent Expression and Fitness Consequences of Sunlight-Derived Color Phenotypes. Am Nat 2018; 191:726-743. [DOI: 10.1086/697218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Oosthuizen WC, Altwegg R, Nevoux M, Bester MN, de Bruyn PJN. Phenotypic selection and covariation in the life-history traits of elephant seals: heavier offspring gain a double selective advantage. OIKOS 2018. [DOI: 10.1111/oik.04998] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- W. Chris Oosthuizen
- Dept of Zoology and Entomology; Mammal Research Inst., Univ. of Pretoria; Private Bag X20 Hatfield, Pretoria 0028 South Africa
- Centre for Statistics in Ecology, Environment and Conservation, Dept of Statistical Sciences; Univ. of Cape Town; Rondebosch South Africa
| | - Res Altwegg
- Centre for Statistics in Ecology, Environment and Conservation, Dept of Statistical Sciences; Univ. of Cape Town; Rondebosch South Africa
- African Climate and Development Initiative; Univ. of Cape Town; Rondebosch South Africa
| | - Marie Nevoux
- Dept of Zoology and Entomology; Mammal Research Inst., Univ. of Pretoria; Private Bag X20 Hatfield, Pretoria 0028 South Africa
| | - M. N. Bester
- Dept of Zoology and Entomology; Mammal Research Inst., Univ. of Pretoria; Private Bag X20 Hatfield, Pretoria 0028 South Africa
- INRA; UMR 0985 Ecology and Health of Ecosystems; Rennes France
| | - P. J. Nico de Bruyn
- Dept of Zoology and Entomology; Mammal Research Inst., Univ. of Pretoria; Private Bag X20 Hatfield, Pretoria 0028 South Africa
| |
Collapse
|
13
|
Ciach M, Czyż S, Wieloch M. Bill colour pattern in Bewick’s swan: information on sex and body size displayed on face? ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2017.1310761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Michał Ciach
- Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, Faculty of Forestry, University of Agriculture, 29 Listopada 46, 31-425 Kraków, Poland
| | - Stanisław Czyż
- Polish Swan Study Group, Leśna 38/31, Jaroszowiec, 32-310 Klucze, Poland
| | - Maria Wieloch
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Nadwiślańska 108, 80-680 Gdańsk, Poland
| |
Collapse
|
14
|
San-Jose LM, Ducret V, Ducrest AL, Simon C, Roulin A. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls. Evolution 2017; 71:2469-2483. [PMID: 28861897 DOI: 10.1111/evo.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Béziers P, Ducrest AL, Simon C, Roulin A. Circulating testosterone and feather-gene expression of receptors and metabolic enzymes in relation to melanin-based colouration in the barn owl. Gen Comp Endocrinol 2017; 250:36-45. [PMID: 28457648 DOI: 10.1016/j.ygcen.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/11/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
Knowledge of how and why secondary sexual characters are associated with sex hormones is important to understand their signalling function. Such a link can occur if i) testosterone participates in the elaboration of sex-traits, ii) the display of an ornament triggers behavioural response in conspecifics that induce a rise in testosterone, or iii) genes implicated in the elaboration of a sex-trait pleiotropically regulate testosterone physiology. To evaluate the origin of the co-variation between melanism and testosterone, we measured this hormone and the expression of enzymes involved in its metabolism in feathers of barn owl (Tyto alba) nestlings at the time of melanogenesis and in adults outside the period of melanogenesis. Male nestlings displaying smaller black feather spots had higher levels of circulating testosterone, potentially suggesting that testosterone could block the production of eumelanin pigments, or that genes involved in the production of small spots pleiotropically regulate testosterone production. In contrast, the enzyme 5α-reductase, that metabolizes testosterone to DHT, was more expressed in feathers of reddish-brown than light-reddish nestlings. This is consistent with the hypothesis that testosterone might be involved in the expression of reddish-brown pheomelanic pigments. In breeding adults, male barn owls displaying smaller black spots had higher levels of circulating testosterone, whereas in females the opposite result was detected during the rearing period, but not during incubation. The observed sex- and age-specific co-variations between black spottiness and testosterone in nestling and adult barn owls may not result from testosterone-dependent melanogenesis, but from melanogenic genes pleiotropically regulating testosterone, or from colour-specific life history strategies that influence testosterone levels.
Collapse
Affiliation(s)
- Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Pischedda A, Chippindale AK. Direct benefits of choosing a high-fitness mate can offset the indirect costs associated with intralocus sexual conflict. Evolution 2017; 71:1710-1718. [PMID: 28369895 DOI: 10.1111/evo.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
Abstract
Intralocus sexual conflict generates a cost to mate choice: high-fitness partners transmit genetic variation that confers lower fitness to offspring of the opposite sex. Our earlier work in the fruit fly, Drosophila melanogaster, revealed that these indirect genetic costs were sufficient to reverse potential "good genes" benefits of sexual selection. However, mate choice can also confer direct fitness benefits by inducing larger numbers of progeny. Here, we consider whether direct benefits through enhanced fertility could offset the costs associated with intralocus sexual conflict in D. melanogaster. Using hemiclonal analysis, we found that females mated to high-fitness males produced 11% more offspring compared to those mated to low-fitness males, and high-fitness females produced 34% more offspring than low-fitness females. These direct benefits more than offset the reduction in offspring fitness caused by intralocus sexual conflict, creating a net fitness benefit for each sex to pairing with a high-fitness partner. Our findings highlight the need to consider both direct and indirect effects when investigating the fitness impacts of mate choice. Direct fitness benefits may shelter sexually antagonistic alleles from selection, suggesting a novel mechanism for the maintenance of fitness variation.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Biological Sciences, Mississippi State University, Mississippi, 39762
| | - Adam K Chippindale
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
17
|
Bolton PE, Rollins LA, Brazill-Boast J, Kim KW, Burke T, Griffith SC. The colour of paternity: extra-pair paternity in the wild Gouldian finch does not appear to be driven by genetic incompatibility between morphs. J Evol Biol 2016; 30:174-190. [PMID: 27758066 DOI: 10.1111/jeb.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/16/2016] [Indexed: 02/02/2023]
Abstract
In socially monogamous species, individuals can use extra-pair paternity and offspring sex allocation as adaptive strategies to ameliorate costs of genetic incompatibility with their partner. Previous studies on domesticated Gouldian finches (Erythrura gouldiae) demonstrated a genetic incompatibility between head colour morphs, the effects of which are more severe in female offspring. Domesticated females use differential sex allocation, and extra-pair paternity with males of compatible head colour, to reduce fitness costs associated with incompatibility in mixed-morph pairings. However, laboratory studies are an oversimplification of the complex ecological factors experienced in the wild and may only reflect the biology of a domesticated species. This study aimed to examine the patterns of parentage and sex ratio bias with respect to colour pairing combinations in a wild population of the Gouldian finch. We utilized a novel PCR assay that allowed us to genotype the morph of offspring before the morph phenotype develops and to explore bias in morph paternity and selection at the nest. Contrary to previous findings in the laboratory, we found no effect of pairing combinations on patterns of extra-pair paternity, offspring sex ratio or selection on morphs in nestlings. In the wild, the effect of morph incompatibility is likely much smaller, or absent, than was observed in the domesticated birds. Furthermore, the previously studied domesticated population is genetically differentiated from the wild population, consistent with the effects of domestication. It is possible that the domestication process fostered the emergence (or enhancement) of incompatibility between colour morphs previously demonstrated in the laboratory.
Collapse
Affiliation(s)
- P E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - L A Rollins
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic., Australia
| | - J Brazill-Boast
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - K-W Kim
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - T Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - S C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
18
|
Rajpurohit S, Richardson R, Dean J, Vazquez R, Wong G, Schmidt PS. Pigmentation and fitness trade-offs through the lens of artificial selection. Biol Lett 2016; 12:20160625. [PMID: 28120808 PMCID: PMC5095197 DOI: 10.1098/rsbl.2016.0625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/02/2016] [Indexed: 11/12/2022] Open
Abstract
Pigmentation is a classic phenotype that varies widely and adaptively in nature both within and among taxa. Genes underlying pigmentation phenotype are highly pleiotropic, creating the potential for functional trade-offs. However, the basic tenets of this trade-off hypothesis with respect to life-history traits have not been directly addressed. In natural populations of Drosophila melanogaster, the degree of melanin pigmentation covaries with fecundity and several other fitness traits. To examine correlations and potential trade-offs associated with variation in pigmentation, we selected replicate outbred populations for extreme pigmentation phenotypes. Replicate populations responded rapidly to the selection regime and after 100 generations of artificial selection were phenotyped for pigmentation as well as the two basic fitness parameters of fecundity and longevity. Our data demonstrate that selection on pigmentation resulted in a significant shift in both fecundity and longevity profiles. Selection for dark pigmentation resulted in greater fecundity and no pronounced change in longevity, whereas selection for light pigmentation decreased longevity but did not affect fecundity. Our results indicate the pleiotropic nature of alleles underlying pigmentation phenotype and elucidate possible trade-offs between pigmentation and fitness traits that may shape patterns of phenotypic variation in natural populations.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| | - Rani Richardson
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| | - John Dean
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| | - Raul Vazquez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| | - Grace Wong
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Ducret V, Gaigher A, Simon C, Goudet J, Roulin A. Sex-specific allelic transmission bias suggests sexual conflict at MC1R. Mol Ecol 2016; 25:4551-63. [PMID: 27480981 DOI: 10.1111/mec.13781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages.
Collapse
Affiliation(s)
- Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| | - Arnaud Gaigher
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
20
|
Roulin A. Evolutionary trade-off between naturally- and sexually-selected melanin-based colour traits in worldwide barn owls and allies. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore Building CH-1015 Lausanne Switzerland
| |
Collapse
|
21
|
Burns M, Tsurusaki N. Male Reproductive Morphology Across Latitudinal Clines and Under Long-Term Female Sex-Ratio Bias. Integr Comp Biol 2016; 56:715-27. [DOI: 10.1093/icb/icw017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Bolton PE, Rollins LA, Griffith SC. Colour polymorphism is likely to be disadvantageous to some populations and species due to genetic architecture and morph interactions. Mol Ecol 2016; 25:2713-8. [PMID: 27178202 DOI: 10.1111/mec.13632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/22/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Polymorphism describes two or more distinct, genetically determined, phenotypes that co-occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
23
|
Roulin A, Randin CF. Barn owls display larger black feather spots in cooler regions of the British Isles. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Building Biophore; 1015 Lausanne Switzerland
| | - Christophe F. Randin
- Department of Ecology and Evolution; University of Lausanne; Building Biophore; 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Romano A, Costanzo A, Caprioli M, Parolini M, Ambrosini R, Rubolini D, Saino N. Better-surviving barn swallow mothers produce more and better-surviving sons. Evolution 2016; 70:1120-8. [PMID: 26990898 DOI: 10.1111/evo.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long-term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother-son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.
Collapse
Affiliation(s)
- Andrea Romano
- Department of Biosciences, University of Milan, I-20133, Milan, Italy.
| | | | - Manuela Caprioli
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Marco Parolini
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Roberto Ambrosini
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, I-20126, Milan, Italy
| | - Diego Rubolini
- Department of Biosciences, University of Milan, I-20133, Milan, Italy
| | - Nicola Saino
- Department of Biosciences, University of Milan, I-20133, Milan, Italy.
| |
Collapse
|
25
|
Soulsbury CD, Kervinen M, Lebigre C. Curse of the black spot: spotting negatively correlates with fitness in black grouse Lyrurus tetrix. Behav Ecol 2016. [DOI: 10.1093/beheco/arw057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
López-Rull I, Vergara P, Martínez-Padilla J, Fargallo JA. Early constraints in sexual dimorphism: survival benefits of feminized phenotypes. J Evol Biol 2015; 29:231-40. [DOI: 10.1111/jeb.12779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- I. López-Rull
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid España
| | - P. Vergara
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid España
| | - J. Martínez-Padilla
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid España
| | - J. A. Fargallo
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid España
| |
Collapse
|
27
|
Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl. Oecologia 2015; 180:371-81. [PMID: 26552377 DOI: 10.1007/s00442-015-3491-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes.
Collapse
|
28
|
Tringali A, Bowman R, Husby A. Selection and inheritance of sexually dimorphic juvenile plumage coloration. Ecol Evol 2015; 5:5413-5422. [PMID: 30151142 PMCID: PMC6102527 DOI: 10.1002/ece3.1793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022] Open
Abstract
Sexually dimorphic plumage coloration is widespread in birds and is generally thought to be a result of sexual selection for more ornamented males. Although many studies find an association between coloration and fitness related traits, few of these simultaneously examine selection and inheritance. Theory predicts that sex‐linked genetic variation can facilitate the evolution of dimorphism, and some empirical work supports this, but we still know very little about the extent of sex linkage of sexually dimorphic traits. We used a longitudinal study on juvenile Florida scrub‐jays (Aphelocoma coerulescens) to estimate strength of selection and autosomal and Z‐linked heritability of mean brightness, UV chroma, and hue. Although plumage coloration signals dominance in juveniles, there was no indication that plumage coloration was related to whether or not an individual bred or its lifetime reproductive success. While mean brightness and UV chroma are moderately heritable, hue is not. There was no evidence for sex‐linked inheritance of any trait with most of the variation explained by maternal effects. The genetic correlation between the sexes was high and not significantly different from unity. These results indicate that evolution of sexual dimorphism in this species is constrained by low sex‐linked heritability and high intersexual genetic correlation.
Collapse
Affiliation(s)
- Angela Tringali
- Avian Ecology Laboratory Archbold Biological Station 123 Main Dr. Venus Florida 33960
| | - Reed Bowman
- Avian Ecology Laboratory Archbold Biological Station 123 Main Dr. Venus Florida 33960
| | - Arild Husby
- Department of Biosciences University of Helsinki PO Box 65 FI-00014 Helsinki Finland
| |
Collapse
|
29
|
Chakarov N, Pauli M, Mueller AK, Potiek A, Grünkorn T, Dijkstra C, Krüger O. Territory Quality and Plumage Morph Predict Offspring Sex Ratio Variation in a Raptor. PLoS One 2015; 10:e0138295. [PMID: 26445010 PMCID: PMC4596812 DOI: 10.1371/journal.pone.0138295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Parents may adapt their offspring sex ratio in response to their own phenotype and environmental conditions. The most significant causes for adaptive sex-ratio variation might express themselves as different distributions of fitness components between sexes along a given variable. Several causes for differential sex allocation in raptors with reversed sexual size dimorphism have been suggested. We search for correlates of fledgling sex in an extensive dataset on common buzzards Buteo buteo, a long-lived bird of prey. Larger female offspring could be more resource-demanding and starvation-prone and thus the costly sex. Prominent factors such as brood size and laying date did not predict nestling sex. Nonetheless, lifetime sex ratio (LSR, potentially indicative of individual sex allocation constraints) and overall nestling sex were explained by territory quality with more females being produced in better territories. Additionally, parental plumage morphs and the interaction of morph and prey abundance tended to explain LSR and nestling sex, indicating local adaptation of sex allocation However, in a limited census of nestling mortality, not females but males tended to die more frequently in prey-rich years. Also, although females could have potentially longer reproductive careers, a subset of our data encompassing full individual life histories showed that longevity and lifetime reproductive success were similarly distributed between the sexes. Thus, a basis for adaptive sex allocation in this population remains elusive. Overall, in common buzzards most major determinants of reproductive success appeared to have no effect on sex ratio but sex allocation may be adapted to local conditions in morph-specific patterns.
Collapse
Affiliation(s)
- Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
- * E-mail:
| | - Martina Pauli
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| | - Anna-Katharina Mueller
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| | - Astrid Potiek
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| | | | - Cor Dijkstra
- Behavioural Biology, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| |
Collapse
|
30
|
Booksmythe I, Mautz B, Davis J, Nakagawa S, Jennions MD. Facultative adjustment of the offspring sex ratio and male attractiveness: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2015; 92:108-134. [DOI: 10.1111/brv.12220] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Isobel Booksmythe
- Division of Evolution, Ecology & Genetics; Research School of Biology, The Australian National University; Daley road Canberra Australian Capital Territory 2601 Australia
- Department of Animal Ecology; Evolutionary Biology Centre, Uppsala University; Norbyvägen 18D SE-75236 Uppsala Sweden
- Institute of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Brian Mautz
- Division of Evolution, Ecology & Genetics; Research School of Biology, The Australian National University; Daley road Canberra Australian Capital Territory 2601 Australia
- Department of Animal Ecology; Evolutionary Biology Centre, Uppsala University; Norbyvägen 18D SE-75236 Uppsala Sweden
| | - Jacqueline Davis
- Division of Evolution, Ecology & Genetics; Research School of Biology, The Australian National University; Daley road Canberra Australian Capital Territory 2601 Australia
- Department of Psychology; University of Cambridge; Downing Street CB2 3EB Cambridge U.K
| | - Shinichi Nakagawa
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney New South Wales 2052 Australia
| | - Michael D. Jennions
- Division of Evolution, Ecology & Genetics; Research School of Biology, The Australian National University; Daley road Canberra Australian Capital Territory 2601 Australia
| |
Collapse
|
31
|
Hõrak P, Männiste M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 2015; 180:23-32. [PMID: 26386701 DOI: 10.1007/s00442-015-3451-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Much of the debate surrounding the selective forces responsible for the expression of conspicuous plumage colouration is centred on the question of precisely which individual qualities are signalled by carotenoid- and melanin-based pigments. To examine this and other related issues, we performed viability selection analyses in wild-caught captive male greenfinches (Carduelis chloris) in Estonia during winters between 2003 and 2014. Based on our measurements, birds with a darker black eumelanin-based colouration of tail feathers survived better than those whose tail feathers had a paler black colouration. The carotenoid-based yellow colouration of the same feathers was not associated with mortality in captivity and showed much less between-year variation in the field than the black colouration. Between year-variation in the black (but not yellow) colouration of feathers was parallel in wild-grown feathers (on birds in the wild) and laboratory-grown ones (on birds held temporarily in captivity). Taken together, these findings imply that eumelanotic colouration in greenfinches is currently under selection and suggest the presence of sufficient genetic variation for a rapid response to selection. In particular, tail feathers have become darker black since the emergence of avian trichomonosis, which is known to selectively kill paler individuals.
Collapse
Affiliation(s)
- Peeter Hõrak
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014, Tartu, Estonia.
| | - Marju Männiste
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
32
|
Romano A, Romano M, Caprioli M, Costanzo A, Parolini M, Rubolini D, Saino N. Sex allocation according to multiple sexually dimorphic traits of both parents in the barn swallow (Hirundo rustica). J Evol Biol 2015; 28:1234-47. [PMID: 25913917 DOI: 10.1111/jeb.12650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/10/2023]
Abstract
Parents should differentially invest in sons or daughters depending on the sex-specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin-based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce 'sexy sons' and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.
Collapse
Affiliation(s)
- A Romano
- Department of Biosciences, University of Milan, Milan, Italy
| | - M Romano
- Department of Biosciences, University of Milan, Milan, Italy
| | - M Caprioli
- Department of Biosciences, University of Milan, Milan, Italy
| | - A Costanzo
- Department of Biosciences, University of Milan, Milan, Italy
| | - M Parolini
- Department of Biosciences, University of Milan, Milan, Italy
| | - D Rubolini
- Department of Biosciences, University of Milan, Milan, Italy
| | - N Saino
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
33
|
San-Jose LM, Ducrest AL, Ducret V, Béziers P, Simon C, Wakamatsu K, Roulin A. Effect of the MC1R gene on sexual dimorphism in melanin-based colorations. Mol Ecol 2015; 24:2794-808. [PMID: 25857339 DOI: 10.1111/mec.13193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Variants of the melanocortin-1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within-species sexual dimorphism, and thereby to sex-specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin-based coloration and in the number and size of black feather spots. We found that a valine (V)-to-isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin-based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex-specific selection processes.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Marshall KLA, Gluckman TL. The evolution of pattern camouflage strategies in waterfowl and game birds. Ecol Evol 2015; 5:1981-91. [PMID: 26045950 PMCID: PMC4449753 DOI: 10.1002/ece3.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.
Collapse
Affiliation(s)
- Kate L A Marshall
- Department of Zoology, University of Cambridge Cambridge, CB2 3EJ, UK
| | - Thanh-Lan Gluckman
- Department of Zoology, University of Cambridge Cambridge, CB2 3EJ, UK ; Department of Zoology, University of Melbourne Parkville, Victoria, 3010, Australia ; Department of Animal and Plant Sciences, University of Sheffield Western Bank, S10 2TN, UK
| |
Collapse
|
35
|
Almasi B, Roulin A. Signalling value of maternal and paternal melanism in the barn owl: implication for the resolution of the lek paradox. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bettina Almasi
- Swiss Ornithological Institute; CH-6204 Sempach Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution; University of Lausanne; Biophore Building CH-1015 Lausanne Switzerland
| |
Collapse
|
36
|
Roulin A, Jensen H. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl. J Evol Biol 2015; 28:655-66. [PMID: 25656218 DOI: 10.1111/jeb.12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 02/03/2023]
Abstract
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.
Collapse
Affiliation(s)
- A Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
37
|
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev Camb Philos Soc 2015; 91:328-48. [PMID: 25631160 DOI: 10.1111/brv.12171] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Sirkiä PM, Adamík P, Artemyev AV, Belskii E, Both C, Bureš S, Burgess M, Bushuev AV, Forsman JT, Grinkov V, Hoffmann D, Järvinen A, Král M, Krams I, Lampe HM, Moreno J, Mägi M, Nord A, Potti J, Ravussin PA, Sokolov L, Laaksonen T. Fecundity selection does not vary along a large geographical cline of trait means in a passerine bird. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Päivi M. Sirkiä
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Finnish Museum of Natural History; Zoology Unit; University of Helsinki; Helsinki Finland
| | - Peter Adamík
- Department of Zoology and Laboratory of Ornithology; Palacky University; Olomouc Czech Republic
| | - Alexandr V. Artemyev
- Institute of Biology, Karelian Research Centre; Russian Academy of Science; Petrozavodsk Russia
| | - Eugen Belskii
- Institute of Plant and Animal Ecology; Ural Branch; Russian Academy of Science; Ekaterinburg Russia
| | - Christiaan Both
- Centre for Ecological and Evolutionary Studies; University of Groningen; Haren The Netherlands
| | - Stanislav Bureš
- Department of Zoology and Laboratory of Ornithology; Palacky University; Olomouc Czech Republic
| | - Malcolm Burgess
- Centre for Research in Animal Behaviour; School of Life & Environmental Sciences; University of Exeter; Exeter UK
| | - Andrey V. Bushuev
- Department of Vertebrate Zoology; Faculty of Biology; Moscow State University; Moscow Russia
| | | | - Vladimir Grinkov
- Department of Vertebrate Zoology; Faculty of Biology; Moscow State University; Moscow Russia
| | | | - Antero Järvinen
- Kilpisjärvi Biological Station; University of Helsinki; Helsinki Finland
| | | | - Indrikis Krams
- Institute of Systematic Biology; University of Daugavpils; Daugavpils Latvia
| | - Helene M. Lampe
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
| | - Juan Moreno
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - Marko Mägi
- Institute of Ecology and Earth Sciences; Department of Zoology; University of Tartu; Tartu Estonia
| | - Andreas Nord
- Department of Biology; Section of Evolutionary Ecology; Lund University; Lund Sweden
| | - Jaime Potti
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; Sevilla Spain
| | | | - Leonid Sokolov
- Biological Station of the Zoological Institute; Russian Academy of Science; Rybachy Russia
| | - Toni Laaksonen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Finnish Museum of Natural History; Zoology Unit; University of Helsinki; Helsinki Finland
| |
Collapse
|
39
|
Vergara P, Fargallo JA, Martínez-Padilla J. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus. J Evol Biol 2014; 28:146-54. [DOI: 10.1111/jeb.12553] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- P. Vergara
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - J. A. Fargallo
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
| | - J. Martínez-Padilla
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales-CSIC; Madrid Spain
- Department of Ethology and Biodiversity Conservation; Estación Biológica de Doñana - CSIC; Sevilla Spain
| |
Collapse
|
40
|
Evans SR, Schielzeth H, Forstmeier W, Sheldon BC, Husby A. Nonautosomal Genetic Variation in Carotenoid Coloration. Am Nat 2014; 184:374-83. [DOI: 10.1086/677397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Scriba MF, Rattenborg NC, Dreiss AN, Vyssotski AL, Roulin A. Sleep and vigilance linked to melanism in wild barn owls. J Evol Biol 2014; 27:2057-68. [PMID: 25056556 DOI: 10.1111/jeb.12450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/02/2014] [Accepted: 06/19/2014] [Indexed: 02/03/2023]
Abstract
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.
Collapse
Affiliation(s)
- M F Scriba
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland; Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | | | | | | |
Collapse
|
42
|
Saino N, Romano M, Rubolini D, Caprioli M, Costanzo A, Canova L, Moller AP. Melanic coloration differentially predicts transfer of immune factors to eggs with daughters or sons. Behav Ecol 2014. [DOI: 10.1093/beheco/aru112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Dreiss AN, Roulin A. Divorce in the barn owl: securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate. J Evol Biol 2014; 27:1114-24. [DOI: 10.1111/jeb.12402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
Affiliation(s)
- A. N. Dreiss
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - A. Roulin
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
44
|
Freeman-Gallant CR, Schneider RL, Taff CC, Dunn PO, Whittingham LA. Contrasting patterns of selection on the size and coloration of a female plumage ornament in common yellowthroats. J Evol Biol 2014; 27:982-91. [DOI: 10.1111/jeb.12369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/27/2022]
Affiliation(s)
| | - R. L. Schneider
- Department of Biology; Skidmore College; Saratoga Springs NY USA
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - C. C. Taff
- Animal Behavior Graduate Group and Department of Evolution and Ecology; University of California-Davis; Davis CA USA
| | - P. O. Dunn
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - L. A. Whittingham
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| |
Collapse
|
45
|
Larsen CT, Holand AM, Jensen H, Steinsland I, Roulin A. On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba). Ecol Evol 2014; 4:1555-66. [PMID: 24967075 PMCID: PMC4063458 DOI: 10.1002/ece3.1032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022] Open
Abstract
Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome ( and ). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components.
Collapse
Affiliation(s)
- Camilla T Larsen
- Department of Mathematical Sciences, NTNU NO-7491, Trondheim, Norway
| | - Anna M Holand
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Ingelin Steinsland
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, NTNU NO-7491, Trondheim, Norway
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne 1015, Lausanne, Switzerland
| |
Collapse
|
46
|
Steinsland I, Larsen CT, Roulin A, Jensen H. Quantitative genetic modeling and inference in the presence of nonignorable missing data. Evolution 2014; 68:1735-47. [PMID: 24673414 DOI: 10.1111/evo.12380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022]
Abstract
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Collapse
|
47
|
Scandolara C, Caprioli M, Lardelli R, Sgarbi G, Rubolini D, Ambrosini R, Saino N. Brothers and sisters are stabbing each other in the back: long-term effects of sex of siblings on barn swallow offspring. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Gluckman TL. Pathways to elaboration of sexual dimorphism in bird plumage patterns. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thanh-Lan Gluckman
- Department of Zoology; University of Melbourne; Parkville Victoria 3010 Australia
- Department of Zoology; University of Cambridge; Cambridge CB2 3EJ UK
| |
Collapse
|
49
|
Swierk L, Langkilde T. Bearded ladies: females suffer fitness consequences when bearing male traits. Biol Lett 2013; 9:20130644. [PMID: 24196514 DOI: 10.1098/rsbl.2013.0644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A central assumption in evolutionary biology is that females of sexually dimorphic species suffer costs when bearing male secondary sexual traits, such as ornamentation. Nevertheless, it is common in nature to observe females bearing rudimentary versions of male ornaments (e.g. 'bearded ladies'), as ornaments can be under similar genetic control in both sexes. Here, we provide evidence that masculinized females incur both social and reproductive costs in nature. Male fence lizards (Sceloporus undulatus) discriminated against ornamented females during mate choice. Ornamented females had lower reproductive output, and produced eggs that were laid and hatched later than those of non-ornamented females. These findings support established theories of the evolution of sexual dimorphism and intralocus sexual conflict, and raise questions regarding the persistence of masculinizing ornamentation in females.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biology, Intercollege Graduate Program in Ecology, and Center for Brain, Behavior and Cognition, The Pennsylvania State University, , 208 Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
50
|
Abbott JK, Innocenti P, Chippindale AK, Morrow EH. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster. PLoS One 2013; 8:e70493. [PMID: 23922998 PMCID: PMC3726629 DOI: 10.1371/journal.pone.0070493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/19/2013] [Indexed: 12/04/2022] Open
Abstract
When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome–a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila’s X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|