1
|
Bel’kova NL, Dzyuba EV, Klimenko ES, Khanaev IV, Denikina NN. Detection and Genetic Characterization of Bacteria of the Genus Pseudomonas from Microbial Communities of Lake Baikal. RUSS J GENET+ 2018; 54:514-524. [DOI: 10.1134/s1022795418040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/18/2017] [Indexed: 07/26/2024]
|
2
|
Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids 2015; 190:27-42. [PMID: 26148574 DOI: 10.1016/j.chemphyslip.2015.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Abstract
The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - François D'Heygère
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45071 Orléans, France
| | - Marc J Feuilloley
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Nicole Orange
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cécile Duclairoir Poc
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France.
| |
Collapse
|
3
|
Lagares A, Agaras B, Bettiol MP, Gatti BM, Valverde C. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients. J Microbiol Methods 2015; 114:66-74. [DOI: 10.1016/j.mimet.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023]
|
4
|
Ye L, Matthijs S, Bodilis J, Hildebrand F, Raes J, Cornelis P. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. Biometals 2014; 27:633-44. [PMID: 24756978 DOI: 10.1007/s10534-014-9734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research Group Microbiology, VIB Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Bodilis J. Fine-scale recombination and adaptive radiation could be linked. Gene X 2013; 527:429-30. [DOI: 10.1016/j.gene.2013.05.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022] Open
|
6
|
Leneveu-Jenvrin C, Madi A, Bouffartigues E, Biaggini K, Feuilloley M, Chevalier S, Connil N. Cytotoxicity and inflammatory potential of two Pseudomonas mosselii strains isolated from clinical samples of hospitalized patients. BMC Microbiol 2013; 13:123. [PMID: 23718251 PMCID: PMC3679952 DOI: 10.1186/1471-2180-13-123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Pseudomonas includes a heterogeneous set of microorganisms that can be isolated from many different niches and nearly 100 different strains have been described. The best characterized bacterium is Pseudomonas aeruginosa which is the primary agent of opportunistic infection in humans, causing both acute and chronic infections. Other species like fluorescens, putida or mosselii have been sporadically isolated from hospitalized patients but their association with the pathology often remains unclear. RESULTS This study focuses on the cytotoxicity and inflammatory potential of two strains of Pseudomonas mosselii (ATCC BAA-99 and MFY161) that were recently isolated from clinical samples of hospitalized patients. The behavior of these bacteria was compared to that of the well-known opportunistic pathogen P. aeruginosa PAO1. We found that P. mosselii ATCC BAA-99 and MFY161 are cytotoxic towards Caco-2/TC7 cells, have low invasive capacity, induce secretion of human β-defensin 2 (HBD-2), alter the epithelial permeability of differentiated cells and damage the F-actin cytoskeleton. CONCLUSIONS These data bring new insights into P. mosselii virulence, since this bacterium has often been neglected due to its rare occurrence in hospital.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- Laboratoire de Microbiologie Signaux et Microenvironnement-LMSM EA 4312, Université de Rouen, Normandie Université, 55 Rue Saint-Germain, Evreux F-27000, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Hao W. Unrecognized fine-scale recombination can mimic the effects of adaptive radiation. Gene 2013; 518:483-8. [PMID: 23337592 DOI: 10.1016/j.gene.2012.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/19/2012] [Accepted: 12/25/2012] [Indexed: 11/17/2022]
Abstract
Gene sequences can undergo accelerated nucleotide changes and rapid diversification. The rapid sequence changes can then potentially lead to phylogenetic incongruence. Recently, Bodilis et al. (2011) observed artificial phylogenetic incongruence using the Pseudomonas surface protein gene oprF, and hypothesized that it was the result of a long-branch attraction artifact ultimately caused by adaptive radiation. In this study, an alternative hypothesis, namely fine-scale recombination, was tested on the same dataset. The results reveal that regions in oprF are of different evolutionary origins, and the mosaic gene structure resulted in confounding phylogenetic signals. These findings demonstrate that unrecognized fine-scale recombination can confound the phylogenetic interpretation and emphasize the limitation of using whole genes as the unit of phylogenetic analysis.
Collapse
Affiliation(s)
- Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
8
|
Costa R, Keller-Costa T, Gomes NCM, da Rocha UN, van Overbeek L, van Elsas JD. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. MICROBIAL ECOLOGY 2013; 65:232-244. [PMID: 22903086 DOI: 10.1007/s00248-012-0102-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.
Collapse
Affiliation(s)
- Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences (CCMAR-CIMAR), University of Algarve, Gambelas, 8005-139, Faro, Portugal.
| | | | | | | | | | | |
Collapse
|
9
|
Rieder G, Krisch L, Fischer H, Kaufmann M, Maringer A, Wessler S. Carnobacterium divergens - a dominating bacterium of pork meat juice. FEMS Microbiol Lett 2012; 332:122-30. [DOI: 10.1111/j.1574-6968.2012.02584.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gabriele Rieder
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| | - Linda Krisch
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| | | | | | | | - Silja Wessler
- Division of Microbiology; Department of Molecular Biology; University of Salzburg; Salzburg; Austria
| |
Collapse
|
10
|
Özen AI, Ussery DW. Defining the Pseudomonas genus: where do we draw the line with Azotobacter? MICROBIAL ECOLOGY 2012; 63:239-48. [PMID: 21811795 PMCID: PMC3275731 DOI: 10.1007/s00248-011-9914-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 07/13/2011] [Indexed: 05/07/2023]
Abstract
The genus Pseudomonas has gone through many taxonomic revisions over the past 100 years, going from a very large and diverse group of bacteria to a smaller, more refined and ordered list having specific properties. The relationship of the Pseudomonas genus to Azotobacter vinelandii is examined using three genomic sequence-based methods. First, using 16S rRNA trees, it is shown that A. vinelandii groups within the Pseudomonas close to Pseudomonas aeruginosa. Genomes from other related organisms (Acinetobacter, Psychrobacter, and Cellvibrio) are outside the Pseudomonas cluster. Second, pan genome family trees based on conserved gene families also show A. vinelandii to be more closely related to Pseudomonas than other related organisms. Third, exhaustive BLAST comparisons demonstrate that the fraction of shared genes between A. vinelandii and Pseudomonas genomes is similar to that of Pseudomonas species with each other. The results of these different methods point to a high similarity between A. vinelandii and the Pseudomonas genus, suggesting that Azotobacter might actually be a Pseudomonas.
Collapse
Affiliation(s)
- Asli I. Özen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark
| | - David W. Ussery
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Stenkova AM, Isaeva MP, Shubin FN, Rasskazov VA, Rakin AV. Trends of the major porin gene (ompF) evolution: insight from the genus Yersinia. PLoS One 2011; 6:e20546. [PMID: 21655186 PMCID: PMC3105102 DOI: 10.1371/journal.pone.0020546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species.
Collapse
Affiliation(s)
- Anna M Stenkova
- Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russian Federation.
| | | | | | | | | |
Collapse
|
12
|
Bodilis J, Nsigue Meilo S, Cornelis P, De Vos P, Barray S. A long-branch attraction artifact reveals an adaptive radiation in pseudomonas. Mol Biol Evol 2011; 28:2723-6. [PMID: 21504889 DOI: 10.1093/molbev/msr099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A significant proportion of protein-encoding gene phylogenies in bacteria is inconsistent with the species phylogeny. It was usually argued that such inconsistencies resulted from lateral transfers. Here, by further studying the phylogeny of the oprF gene encoding the major surface protein in the bacterial Pseudomonas genus, we found that the incongruent tree topology observed results from a long-branch attraction (LBA) artifact and not from lateral transfers. LBA in the oprF phylogeny could be explained by the faster evolution in a lineage adapted to the rhizosphere, highlighting an unexpected adaptive radiation. We argue that analysis of such artifacts in other inconsistent bacterial phylogenies could be a valuable tool in molecular ecology to highlight cryptic adaptive radiations in microorganisms.
Collapse
|
13
|
Arana I, Muela A, Orruño M, Seco C, Garaizabal I, Barcina I. Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli. FEMS Microbiol Ecol 2010; 74:500-9. [DOI: 10.1111/j.1574-6941.2010.00979.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J. Both Cycloclasticusâspp. and Pseudomonasâspp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 2010; 71:137-47. [DOI: 10.1111/j.1574-6941.2009.00788.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Costa R, Gomes NCM, Krögerrecklenfort E, Opelt K, Berg G, Smalla K. Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environ Microbiol 2007; 9:2260-73. [PMID: 17686023 DOI: 10.1111/j.1462-2920.2007.01340.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas-specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol - 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis.
Collapse
Affiliation(s)
- Rodrigo Costa
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Messeweg 11/12, D-38104 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Chevalier S, Bodilis J, Jaouen T, Barray S, Feuilloley MGJ, Orange N. Sequence diversity of the OprD protein of environmental Pseudomonas strains. Environ Microbiol 2007; 9:824-35. [PMID: 17298381 DOI: 10.1111/j.1462-2920.2006.01191.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OprD has been widely described for Pseudomonas aeruginosa at both structural and functional levels. Here, we describe the sequence diversity of the OprD proteins from other fluorescent Pseudomonads. We analysed the sequence of the oprD gene in each of the 49 Pseudomonas isolates, mostly putida and fluorescens species, obtained from various environmental sources, including soil, rhizosphere and hospitals. Phylogeny based on OprD sequences distinguished three well-separated clusters in the P. fluorescens species whereas P. putida isolates formed only one cluster. The OprD sequences were generally well conserved within each cluster whereas on the opposite, they were highly variable from one cluster to another and particularly with regards to the cluster of P. aeruginosa. Predicted secondary structures, based on the topological model elaborated for P. aeruginosa, suggest signatures in the large extracellular loops of OprD, which are linked to the OprD-based clusters. Correlations between these OprD-based clusters and ecological niches, growth on various carbon sources and antibiotic sensitivity were investigated.
Collapse
Affiliation(s)
- Sylvie Chevalier
- LMDF (Laboratoire de Microbiologie du Froid), UPRES 2123, Université de Rouen, 55, rue St Germain 27000 Evreux, France.
| | | | | | | | | | | |
Collapse
|