1
|
Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilizing potent microbes for sustainable management of phytopathogenic diseases. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00859. [PMID: 39308938 PMCID: PMC11415593 DOI: 10.1016/j.btre.2024.e00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Plants have an impact on the economy because they are used in the food and medical industries. Plants are a source of macro- and micronutrients for the health of humans and animals; however, the rise in microbial diseases has put plant health and yield at risk. Because there are insufficient controls, microbial infections annually impact approximately 25 % of the world's plant crops. Alternative strategies, such as biocontrol, are required to fight these illnesses. This review discusses the potential uses of recently discovered microorganisms because they are safe, effective, and unlikely to cause drug resistance. They have no negative effects on soil microbiology or the environment because they are environmentally benign. Biological control enhances indigenous microbiomes by reducing bacterial wilt, brown blotch, fire blight, and crown gall. More research is required to make these biocontrol agents more stable, effective, and less toxic before they can be used in commercial settings.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Programa de Pos-graduacao em Invacao Tecnologia, Universidade de Minas Gerais Belo Horizonte, Brazil
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663, Kaiserslautern, Germany
| | - Bushra Ijaz
- Department of Functional and Evolutionary Ecology, University of Vienna, Austria
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Najeeba Parre Paker
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
2
|
Meng P, Xin K, Lu Z, Chen J, Tang X, Meng G, He F, Liu L, Wang H, Wang C. Intercropping with Robinia pseudoacacia reduces soft rot incidence in konjac by modulating the root bacterial community. PEST MANAGEMENT SCIENCE 2024. [PMID: 39263914 DOI: 10.1002/ps.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Soft rot (Pectobacterium aroidearum and Dickeya) is a devastating soil-borne bacterial disease that threatens konjac production. Intercropping with false acacia has been shown to significantly reduce soft rot incidence in konjac by shifting the microbial community. However, how intercropping shapes the root bacterial community and affects soft rot incidence remains unclear. To address this, we investigated three konjac intercropping systems (false acacia, paulownia, and maize) to explore the relationships among intercropping, soft rot incidence, root bacterial community, soil enzyme activity, and soil properties. RESULTS Konjac intercropped with false acacia exhibited the lowest soft rot incidence and the lowest abundance of pathogenic taxa. Soft rot incidence was negatively correlated with total soil nitrogen and potassium but positively correlated with total and available soil phosphorus. The bacterial community structure and function in konjac roots differed among intercropping types, mainly driven by available soil phosphorus. Beneficial microorganisms such as Bradyrhizobium and Variovorax were enriched under a false acacia intercropping system and were negatively correlated with soil-available phosphorus. Additionally, the stable bacterial community in healthy konjac roots under false acacia may make konjac less susceptible to pathogen invasion. CONCLUSION The study showed that intercropping reduced the soft rot incidence by regulating the structure and stability of the konjac root bacterial community, and soil-available phosphorus was the main factor affecting the difference in the konjac root bacterial community, which provided a basis for the management of soil fertilization in konjac cultivation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kexu Xin
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhoumin Lu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Juan Chen
- Yachang Forest Farm, Guangxi Zhuang Autonomous Region, Baise, China
| | - Xiaan Tang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Guihua Meng
- College of Forestry, Northwest A&F University, Yangling, China
| | - Fei He
- College of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | | | - Haihua Wang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
E. M, S. U, R. K, M.W. R, J. P, F. A, J. H. J. L. Draft genome sequence of Collimonas sp. strain H4R21, an effective mineral-weathering bacterial strain isolated from the beech rhizosphere. Microbiol Resour Announc 2024; 13:e0030824. [PMID: 39037313 PMCID: PMC11320959 DOI: 10.1128/mra.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
We present the draft genome sequence of Collimonas sp. strain H4R21, isolated from the rhizosphere of Fagus sylvatica in the forest experimental site of Montiers (France). This genome features coding capacity for plant growth promotion, such as the ability to solubilize minerals, to produce siderophores and antifungal secondary metabolites.
Collapse
Affiliation(s)
- Morin E.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Uroz S.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Kumar R.
- Novozymes Inc., Davis, California, USA
| | - Rey M.W.
- Novozymes Inc., Davis, California, USA
| | - Pham J.
- Novozymes Inc., Davis, California, USA
| | - Akum F.
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Leveau J. H. J.
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Uroz S, Bouche S, Morin E, Bocquart M, Kumar R, Rey MW, Pham J, Akum F, Leveau JHJ. Collimonas rhizosphaerae sp. nov., a novel species isolated from the beech rhizosphere. Int J Syst Evol Microbiol 2024; 74:006481. [PMID: 39078398 PMCID: PMC11288634 DOI: 10.1099/ijsem.0.006481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial strain H4R21T was isolated from beech rhizosphere soil sampled in the forest experimental site of Montiers (Meuse, France). It effectively weathers minerals, hydrolyses chitin and produces quorum sensing signal molecules. The strain is aerobic and Gram-stain-negative. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain H4R21T belongs to the genus Collimonas with high sequence similarity to C. arenae Ter10T (99.38 %), C. fungivorans Ter6T(98.97 %), C. pratensis Ter91T (98.76 %), C. humicola RLT1W51T (98.46 %) and C. silvisoli RXD178 T (98.46 %), but less than 98 % similarity to other strains of the genus Collimonas. The predominant quinone in H4R21T is ubiquinone-8 (Q8). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and lipid. The major fatty acids identified were C12 : 0, C12:0 3-OH, C16 : 0 and C17:0 cyclo. The digital DNA G+C content of the genomic DNA was 59.5 mol%. Furthermore, the strain could be clearly distinguished from its closely related type strains by a combination of phylogenomic and in silico DNA-DNA hybridization results, and phenotypic characteristics. Therefore, strain H4R21T represents a novel species within the genus Collimonas, for which the name Collimonas rhizosphaerae sp. nov. is proposed, with strain H4R21T (=CFBP 9203T=DSM 117599T) as the type strain.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
- INRAE, UR1138, Biogéochimie des Ecosystèmes Forestiers, F-54280 Champenoux, France
| | - Ségolène Bouche
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
- INRAE, UR1138, Biogéochimie des Ecosystèmes Forestiers, F-54280 Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
| | - Mathilde Bocquart
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
| | - Ravi Kumar
- Novozymes Inc., 1445 Drew Ave., Davis, CA 95618, USA
| | | | - Jonathan Pham
- Novozymes Inc., 1445 Drew Ave., Davis, CA 95618, USA
| | - Fidel Akum
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Agha SI, Ullah M, Khan A, Jahan N, ullah SM, Tabassum B, Parveen S, Rehmat Z, Hussain A, Ahmed S, Hamid Hamdard M. Biocontrol rhizobacteria enhances growth and yield of wheat ( Triticum aestivum) under field conditions against Fusarium oxysporum. Bioengineered 2023; 14:2260923. [PMID: 37791524 PMCID: PMC10552572 DOI: 10.1080/21655979.2023.2260923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 10/05/2023] Open
Abstract
The current study aimed to identify the survival of bio-control bacteria with antifungal activity against Fusarium oxysporum and assess their growth promoting activity in wheat crop field conditions. To evaluate the fungicidal activities of isolated bacteria using the dual culture method, both qualitative and quantitative bioassays were performed. Plant Growth Promoting activities such as Indole 3-Acetic Acid (IAA), phosphate solubilization, Hydrogen cyanide (HCN), and Siderophore production were assessed for three biocontrol bacterial isolates (BCB 07, BCB16, and BCB 83) out of 180 with 70% antagonistic activity against Fusarium oxysporum. Chitinase, protease, and cellulase interaction in isolates was also tested. BCB16 was selected as it had 70% antagonist activity against F. oxysporum but also had the highest PGPR (Plant Growth Promoting Rhizobacteria) traits when compared to the other two isolates. BCB16 was also tested for survival in talc powder and in wheat crop field conditions. Even after 4 months in talc powder, the survival rate remained stable. In a wheat crop field, BCB16 reduced the disease incidence of Fusarium oxysporum by 54.38%. When compared to fungus alone treatment, BCB16 increased average yield by 57% alone and 32% in challenged conditions. BCB16 was identified molecularly using the 16s rRNA gene. Bacillus amyloliquefaciens shared 97% of the deduced sequence. The sequence was submitted to genbank and assigned the accession number OM333889. Bacillus amyloliquefaciens has the potential to be used in the field as an alternative to synthetic fungicides against Fusarium oxysporum.
Collapse
Affiliation(s)
- Syed Inayatullah Agha
- Department of Biotechnology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Maghfoor Ullah
- Department of Biotechnology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Anwar Khan
- Department of Microbiology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Nusrat Jahan
- Department of Biotechnology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Syed Moeez ullah
- Department of Biotechnology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Parveen
- Department of Microbiology, Balochistan University of Information Technology, Quetta, Pakistan
| | | | - Abrar Hussain
- Department of Biotechnology, Balochistan University of Information Technology, Quetta, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | |
Collapse
|
6
|
Çelik Doğan C, Yüksel Dolgun HT, İkiz S, Kırkan Ş, Parın U. Detection of the Microbial Composition of Some Commercial Fermented Liquid Products via Metagenomic Analysis. Foods 2023; 12:3538. [PMID: 37835192 PMCID: PMC10572611 DOI: 10.3390/foods12193538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The fermented liquid sector is developing all over the world due to its contribution to health. Our study has contributed to the debate about whether industrially manufactured fermented liquids live up to their claims by analyzing pathogens and beneficial bacteria using a 16S rRNA sequencing technique called metagenomic analysis. Paenibacillus, Lentibacillus, Bacillus, Enterococcus, Levilactobacillus, and Oenococcus were the most abundant bacterial genera observed as potential probiotics. Pseudomonas stutzeri, Acinetobacter, and Collimonas, which have plant-growth-promoting traits, were also detected. The fact that we encounter biocontroller bacteria that promote plant growth demonstrates that these organisms are widely used in foods and emphasizes the necessity of evaluating them in terms of public health. Their potential applications in agriculture may pose a danger to food hygiene and human health in the long term, so our data suggest that this should be evaluated.
Collapse
Affiliation(s)
- Cansu Çelik Doğan
- Food Technology Program, Food Processing Department, Vocational School of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye
| | - Hafize Tuğba Yüksel Dolgun
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Serkan İkiz
- Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye;
| | - Şükrü Kırkan
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| | - Uğur Parın
- Department of Microbiology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09010 Aydın, Türkiye; (H.T.Y.D.); (Ş.K.); (U.P.)
| |
Collapse
|
7
|
A New Perspective for Vineyard Terroir Identity: Looking for Microbial Indicator Species by Long Read Nanopore Sequencing. Microorganisms 2023; 11:microorganisms11030672. [PMID: 36985245 PMCID: PMC10054463 DOI: 10.3390/microorganisms11030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Grapevine is one of the most important fruit crops worldwide, being Portugal one of the top wine producers. It is well established that wine sensory characteristics from a particular region are defined by the physiological responses of the grapevine to its environment and thus, the concept of terroir in viticulture was established. Among all the factors that contribute to terroir definition, soil microorganisms play a major role from nutrient recycling to a drastic influence on plant fitness (growth and protection) and of course wine production. Soil microbiome from four different terroirs in Quinta dos Murças vineyard was analysed through long-read Oxford Nanopore sequencing. We have developed an analytical pipeline that allows the identification of function, ecologies, and indicator species based on long read sequencing data. The Douro vineyard was used as a case study, and we were able to establish microbiome signatures of each terroir.
Collapse
|
8
|
Uroz S, Geisler O, Fauchery L, Lami R, Rodrigues AMS, Morin E, Leveau JHJ, Oger P. Genomic and transcriptomic characterization of the Collimonas quorum sensing genes and regulon. FEMS Microbiol Ecol 2022; 98:6679101. [PMID: 36040340 DOI: 10.1093/femsec/fiac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France.,INRAE, UR1138 "Biogéochimie des écosystèmes forestiers", F-54280 Champenoux, France
| | - Océane Geisler
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Johan H J Leveau
- Department of Plant Pathology, University of California - Davis, Davis, CA 95616, United States
| | - Philippe Oger
- Université Lyon, INSA de Lyon, CNRS UMR 5240, F-69622 Villeurbanne, France
| |
Collapse
|
9
|
Khalil MMR, Fierro-Coronado RA, Peñuelas-Rubio O, Villa-Lerma AG, Plascencia-Jatomea R, Félix-Gastélum R, Maldonado-Mendoza IE. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi J Biol Sci 2021; 28:7460-7471. [PMID: 34867051 PMCID: PMC8626321 DOI: 10.1016/j.sjbs.2021.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022] Open
Abstract
The discovery of novel biocontrol agents requires the continuous scrutiny of native microorganisms to ensure that they will be useful on a regional scale. The goal of the present work was to discover novel antagonistic bacteria against Fusarium oxysporum ff. spp. lycopersici race 3 (Fol R3) and radicis-lycopersici (Forl) causing Fusarium wilt disease and Fusarium crown and root rot of tomatoes, respectively. High-throughput liquid antagonism screening of 1,875 rhizospheric bacterial strains followed by dual confrontation assays in 96-well plates was used to select bacteria exhibiting > 50% fungal growth inhibition. In a second dual confrontation assay in 10-cm Petri dishes, bacteria showing > 20% Fol R3 or Forl growth inhibition were further screened using a blood hemolysis test. After discarding β-hemolytic bacteria, a seedling antagonistic assay was performed to select five potential antagonists. A phylogenetic analysis of 16S rRNA identified one strain as Acinetobacter calcoaceticus (AcDB3) and four strains as members of the genus Bacillus (B. amyloliquefaciens BaMA26, Bacillus siamensis BsiDA2, B. subtilis BsTA16 and B. thuringiensis BtMB9). Greenhouse assays demonstrated that BsTA16 and AcDB3 were the most promising antagonists against Fol R3 and Forl, respectively. Pathogen biocontrol and growth promotion mechanisms used by these bacteria include the production of siderophores, biofilm, proteases, endoglucanases and indole acetic acid, and phosphate solubilization. These five bacteria exerted differential responses on pathogen control depending on the tomato hybrid, and on the growth stage of tomatoes. We report for the first time the use of an Acinetobacter calcoaceticus isolate (AcDB3) to control Forl in tomato under greenhouse conditions.
Collapse
Affiliation(s)
- Md Masudur Rahman Khalil
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Sinaloa, Instituto Politécnico Nacional, CP 81101 Guasave, Sinaloa, Mexico
| | - Rosario Alicia Fierro-Coronado
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Sinaloa, Instituto Politécnico Nacional, CP 81101 Guasave, Sinaloa, Mexico
| | - Ofelda Peñuelas-Rubio
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Sinaloa, Instituto Politécnico Nacional, CP 81101 Guasave, Sinaloa, Mexico.,Departamento de Ingenierías, Instituto Tecnológico del Valle del Yaqui, Tecnológico Nacional de México, CP 85276 Bácum, Sonora, Mexico
| | - Alma Guadalupe Villa-Lerma
- SYME Agroinsumos Innovadores S.A. de C.V., CP 85225 Navojoa, Sonora, Mexico.,Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Campus Náinari, CP 85130 Ciudad Obregón, Sonora, Mexico
| | | | - Rubén Félix-Gastélum
- Departamento de Ciencias Naturales y Exactas, Universidad Autónoma de Occidente, Unidad Regional Los Mochis, CP 81217 Los Mochis, Sinaloa, Mexico
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad Sinaloa, Instituto Politécnico Nacional, CP 81101 Guasave, Sinaloa, Mexico
| |
Collapse
|
10
|
Li J, Pan M, Zhang X, Zhou Y, Feng GD, Zhu H. Collimonas silvisoli sp. nov. and Collimonas humicola sp. nov., two novel species isolated from forest soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34678140 DOI: 10.1099/ijsem.0.005061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria, designated strains RXD178T, RXD172-2 and RLT1W51T, were isolated from two forest soil samples of Nanling National Nature Reserve in Guangdong Province, PR China. Phylogenetic analyses based on 16S rRNA gene sequences and 92 core genes showed that they belonged to the genus Collimonas, and were most closely related to four validly published species with similarities ranging from 99.4 to 98.2 %. The genomic DNA G+C contents of strains RXD178T, RXD172-2 and RLT1W51T were 57.1, 59.5 and 59.4 mol%, respectively. The genome-derived average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the novel strains and closely related type species were below 37.90 and 89.34 %, respectively. Meanwhile, the ANI and dDDH values between strains RXD172-2 and RLT1W51T were 98.27 and 83.50 %, respectively. The three novel strains contained C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) as the major fatty acids, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) comprised a relative higher proportion in strain RXD178T than in other strains. Both strains RXD172-2 and RLT1W51T had phosphatidylglycerol (PG), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG) and an unidentified aminophospholipid (APL) as the main polar lipids while only PE and APL were detected in strain RXD178T. Ubiquinone 8 was the predominant quinone. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, strain RXD178T should be considered as representing one novel species within the genus Collimonas and strains RXD172-2 and RLT1W51T as another one, for which the names Collimonas silvisoli sp. nov. and Collimonas humicola sp. nov. are proposed, with RXD178T (=GDMCC 1.1925T=KACC 21987T) and RLT1W51T (=GDMCC 1.1923T=KACC 21985T) as the type strains, respectively.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mingkai Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xianjiao Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
11
|
Sharma S, Compant S, Franken P, Ruppel S, Ballhausen MB. It Takes Two to Tango: A Bacterial Biofilm Provides Protection against a Fungus-Feeding Bacterial Predator. Microorganisms 2021; 9:microorganisms9081566. [PMID: 34442645 PMCID: PMC8398733 DOI: 10.3390/microorganisms9081566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/23/2022] Open
Abstract
Fungus-bacterium interactions are widespread, encompass multiple interaction types from mutualism to parasitism, and have been frequent targets for microbial inoculant development. In this study, using in vitro systems combined with confocal laser scanning microscopy and real-time quantitative PCR, we test whether the nitrogen-fixing bacterium Kosakonia radicincitans can provide protection to the plant-beneficial fungus Serendipita indica, which inhabits the rhizosphere and colonizes plants as an endophyte, from the fungus-feeding bacterium Collimonas fungivorans. We show that K. radicincitans can protect fungal hyphae from bacterial feeding on solid agar medium, with probable mechanisms being quick hyphal colonization and biofilm formation. We furthermore find evidence for different feeding modes of K. radicincitans and C. fungivorans, namely “metabolite” and “hyphal feeding”, respectively. Overall, we demonstrate, to our knowledge, the first evidence for a bacterial, biofilm-based protection of fungal hyphae against attack by a fungus-feeding, bacterial predator on solid agar medium. Besides highlighting the importance of tripartite microbial interactions, we discuss implications of our results for the development and application of microbial consortium-based bioprotectants and biostimulants.
Collapse
Affiliation(s)
- Shubhangi Sharma
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria;
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 24, 07743 Jena, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
| | - Max-Bernhard Ballhausen
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; (S.S.); (P.F.); (S.R.)
- Correspondence:
| |
Collapse
|
12
|
Akum FN, Kumar R, Lai G, Williams CH, Doan HK, Leveau JH. Identification of Collimonas gene loci involved in the biosynthesis of a diffusible secondary metabolite with broad-spectrum antifungal activity and plant-protective properties. Microb Biotechnol 2021; 14:1367-1384. [PMID: 33347710 PMCID: PMC8313283 DOI: 10.1111/1751-7915.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase-non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.
Collapse
Affiliation(s)
- Fidele N. Akum
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | | | - Gary Lai
- Novozymes Inc1445 Drew AvenueDavisCAUSA
| | | | - Hung K. Doan
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Johan H.J. Leveau
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
13
|
Repeated Exposure of Aspergillus niger Spores to the Antifungal Bacterium Collimonas fungivorans Ter331 Selects for Delayed Spore Germination. Appl Environ Microbiol 2021; 87:e0023321. [PMID: 33811027 DOI: 10.1128/aem.00233-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bacterial strain Collimonas fungivorans Ter331 (CfTer331) inhibits mycelial growth and spore germination in Aspergillus niger N402 (AnN402). The mechanisms underlying this antagonistic bacterial-fungal interaction have been extensively studied, but knowledge on the long-term outcome of this interaction is currently lacking. Here, we used experimental evolution to explore the dynamics of fungal adaptation to recurrent exposure to CfTer331. Specifically, five single-spore isolates (SSIs) of AnN402 were evolved under three selection scenarios in liquid culture, i.e., (i) in the presence of CfTer331 for 80 growth cycles, (ii) in the absence of the bacterium for 80 cycles, and (iii) in the presence of CfTer331 for 40 cycles and then in its absence for 40 cycles. The evolved SSI lineages were then evaluated for phenotypic changes from the founder fungal strain, such as germinability with or without CfTer331. The analysis showed that recurrent exposure to CfTer331 selected for fungal lineages with reduced germinability and slower germination, even in the absence of CfTer331. In contrast, when AnN402 evolved in the absence of the bacteria, lineages with increased germinability and faster germination were favored. SSIs that were first evolved in the presence of CfTer331 and then in its absence showed intermediate phenotypes but overall were more similar to SSIs that evolved in the absence of CfTer331 for 80 cycles. This suggests that traits acquired from exposure to CfTer331 were reversible upon removal of the selection pressure. Overall, our study provides insights into the effects on fungi from the long-term coculture with bacteria. IMPORTANCE The use of antagonistic bacteria for managing fungal diseases is becoming increasingly popular, and thus there is a need to understand the implications of their long-term use against fungi. Most efforts have so far focused on characterizing the antifungal properties and mode of action of the bacterial antagonists, but the possible outcomes of the persisting interaction between antagonistic bacteria and fungi are not well understood. In this study, we used experimental evolution in order to explore the evolutionary aspects of an antagonistic bacterial-fungal interaction, using the antifungal bacterium Collimonas fungivorans and the fungus Aspergillus niger as a model system. We show that evolution in the presence or absence of the bacteria selects for fungal lineages with opposing and conditionally beneficial traits, such as slow and fast spore germination, respectively. Overall, our studies reveal that fungal responses to biotic factors related to antagonism could be to some extent predictable and reversible.
Collapse
|
14
|
Picard L, Paris C, Dhalleine T, Morin E, Oger P, Turpault MP, Uroz S. The mineral weathering ability of Collimonas pratensis PMB3(1) involves a Malleobactin-mediated iron acquisition system. Environ Microbiol 2021; 24:784-802. [PMID: 33817942 DOI: 10.1111/1462-2920.15508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.
Collapse
Affiliation(s)
- Laura Picard
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Cédric Paris
- Université de Lorraine, EA 4367 « Laboratoire d'Ingénierie des Biomolécules », Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Vandœuvre-lès-Nancy, F-54505, France.,Plateau d'Analyse Structurale et Métabolomique (PASM) - SF4242 EFABA, Vandœuvre-lès-Nancy, F-54505, France
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR 5240 « Microbiologie, Adaptation et Pathogénie », Villeurbanne, F-69621, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| |
Collapse
|
15
|
Wang X, Wang C, Li Q, Zhang J, Ji C, Sui J, Liu Z, Song X, Liu X. Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. J Appl Microbiol 2018; 125:1868-1880. [PMID: 30179289 DOI: 10.1111/jam.14099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to identify efficient plant-beneficial rhizobacterium that has the potential to be developed as biocontrol agent for the control of wheat soil-borne diseases. METHODS AND RESULTS Rhizosphere soil samples were collected from a wheat field located in Taian City. Numerous bacteria were isolated and screened for antagonistic activity against soil-borne plant pathogenic fungi by performing dual-culture assays. Among them, XH-9 was selected for its highly antagonistic activity and others growth-promoting characteristics. Subsequently, the strain was identified as Bacillus amyloliquefaciens subsp. plantarum based on phylogenetic analysis of 16S rDNA sequence. Pot experiment indicated that XH-9 has good capacities for wheat, corn, and chili root colonization and considerably increased the biometric parameters of wheat seedlings. Quantitative real-time polymerase chain reaction experiments showed that the amount of Fusarium oxysporum associated with the XH-9 after treatment significantly decreased compared with control group. CONCLUSIONS Bacillus amyloliquefaciens subsp. plantarum XH-9 has the potential as biocontrol agent when applied in local arable land to prevent damage caused by F. oxysporum and other phytopathogens. SIGNIFICANCE AND IMPACT OF THE STUDY The development of biocontrol strategies for reducing the damage caused by plant pathogens is fully in accord with the current principles of sustainability.
Collapse
Affiliation(s)
- X Wang
- College of Life Science, Shandong Agriculture University, Taian, China
| | - C Wang
- College of Forestry, Shandong Agriculture University, Taian, China
| | - Q Li
- College of Forestry, Shandong Agriculture University, Taian, China
| | - J Zhang
- College of Forestry, Shandong Agriculture University, Taian, China
| | - C Ji
- College of Forestry, Shandong Agriculture University, Taian, China
| | - J Sui
- College of Life Science, Shandong Agriculture University, Taian, China
| | - Z Liu
- College of Forestry, Shandong Agriculture University, Taian, China
| | - X Song
- College of Forestry, Shandong Agriculture University, Taian, China
| | - X Liu
- College of Forestry, Shandong Agriculture University, Taian, China
| |
Collapse
|
16
|
Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME JOURNAL 2018; 12:1252-1262. [PMID: 29358736 DOI: 10.1038/s41396-017-0035-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
Plants release a wide set of secondary metabolites including volatile organic compounds (VOCs). Many of those compounds are considered to function as defense against herbivory, pests, and pathogens. However, little knowledge exists about the role of belowground plant VOCs for attracting beneficial soil microorganisms. We developed an olfactometer system to test the attraction of soil bacteria by VOCs emitted by Carex arenaria roots. Moreover, we tested whether infection of C. arenaria with the fungal pathogen Fusarium culmorum modifies the VOCs profile and bacterial attraction. The results revealed that migration of distant bacteria in soil towards roots can be stimulated by plant VOCs. Upon fungal infection, the blend of root VOCs changed and specific bacteria with antifungal properties were attracted. Tests with various pure VOCs indicated that those compounds can diffuse over long distance but with different diffusion abilities. Overall, this work highlights the importance of plant VOCs in belowground long-distance plant-microbe interactions.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Maria Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Jasper Melenhorst
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.,Department of Soil Quality, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Abstract
Microbes in nature often live in unfavorable conditions. To survive, they have to occupy niches close to food sources and efficiently utilize nutrients that are often present in very low concentrations. Moreover, they have to possess an arsenal of attack and defense mechanisms against competing bacteria. In this review, we will discuss strategies used by microbes to compete with each other in the rhizosphere and on fruits, with a focus on mechanisms of inter- and intra-species antagonism. Special attention will be paid to the recently discovered roles of volatile organic compounds. Several microbes with proven capabilities in the art of warfare are being applied in products used for the biological control of plant diseases, including post-harvest control of fruits and vegetables.
Collapse
Affiliation(s)
- Ben Lugtenberg
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Faina Kamilova
- Koppert Biological Systems, Veilingweg 14, PO Box 155, 2650 AD Berkel en Rodenrijs, Netherlands
| |
Collapse
|
18
|
Wu H, Li J, Liu W, Bai X, Liu D, Zhang J. Identification and characterization of ZL261, a novel Collimonas pratensis strain with antagonistic activity toward Monilinia fructicola. SCIENCE CHINA. LIFE SCIENCES 2016; 59:1345-1347. [PMID: 27734270 DOI: 10.1007/s11427-016-0066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Huiling Wu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jieqiong Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Weicheng Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xuelian Bai
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dewen Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiewei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
19
|
Ballhausen MB, van Veen JA, Hundscheid MPJ, de Boer W. Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria. Front Microbiol 2015; 6:1416. [PMID: 26733962 PMCID: PMC4687392 DOI: 10.3389/fmicb.2015.01416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires targeted isolation methods. In this study, we compared two different approaches to obtain mycophagous bacteria from rhizospheric soil. A short-term method based on baiting for bacteria that can rapidly adhere to fungal hyphae and a long-term method based on the enrichment of bacteria on fungal hyphae via repeated transfer. Hyphae-adhering bacteria were isolated, identified by 16S rDNA sequencing and tested for antifungal activity and the ability to feed on fungi as the sole source of carbon. Both methods yielded a range of potentially mycophagous bacterial isolates with little phylogenetic overlap. We also found indications for feeding preferences among the potentially mycophagous bacteria. Our results indicate that mycophagy could be an important growth strategy for rhizosphere bacteria. To our surprise, we found several potential plant pathogenic bacteria among the mycophagous isolates. We discuss the possible benefits that these bacteria might gain from colonizing fungal hyphae.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Plant Health, Institute for Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Soil Quality, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
20
|
Wolf AB, Rudnick MB, de Boer W, Kowalchuk GA. Early colonizers of unoccupied habitats represent a minority of the soil bacterial community. FEMS Microbiol Ecol 2015; 91:fiv024. [PMID: 25778508 DOI: 10.1093/femsec/fiv024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/14/2022] Open
Abstract
In order to understand (re-)colonization of microhabitats and bacterial succession in soil, it is important to understand which members of soil bacterial communities are most motile in the porous soil matrix. To address this issue, we carried out a series of experiments in sterilized soil microcosms. Using two different model strains, Pseudomonas fluorescens strain Pf0-1 and Collimonas fungivorans strain Ter331, we first determined the influence of nutrient availability on bacterial expansion rates. Based on these results, we then conducted similar microcosm experiments to examine microbial mobility within natural soil bacterial communities under a single nutrient regime. The expansion of bacterial populations within the community was assayed by quantitative PCR and pyrosequencing of 16S rRNA gene fragments. We observed that only a relatively small subset of the total community was able to expand to an appreciable distance (more than 2 cm) within 48 h, with the genera Undibacterium, Pseudomonas and Massilia and especially the family Enterobacteriaceae dominating the communities more distant from the point of inoculation. These results suggest that (re-)colonization of open habitats in soil may be dominated by a few rapidly moving species, which may have important consequences for microbial succession.
Collapse
Affiliation(s)
- Alexandra B Wolf
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, U.S.A
| | - Max-Bernhard Rudnick
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Plant Health, Institute for Vegetable and Ornamental Crops, Großbeeren/Erfurt e.V., Theodor Echtermeyer Weg 1, D-14979 Großbeeren, Germany
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Soil Quality, Wageningen University, 6700AA Wageningen, the Netherlands
| | - George A Kowalchuk
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Ecological Science, Free University of Amsterdam, 1081 HV Amsterdam, the Netherlands Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
21
|
Cardinale M. Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 2014; 5:94. [PMID: 24639675 PMCID: PMC3945399 DOI: 10.3389/fmicb.2014.00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 12/03/2022] Open
Abstract
No plant or cryptogam exists in nature without microorganisms associated with its tissues. Plants as microbial hosts are puzzles of different microhabitats, each of them colonized by specifically adapted microbiomes. The interactions with such microorganisms have drastic effects on the host fitness. Since the last 20 years, the combination of microscopic tools and molecular approaches contributed to new insights into microbe-host interactions. Particularly, confocal laser scanning microscopy (CLSM) facilitated the exploration of microbial habitats and allowed the observation of host-associated microorganisms in situ with an unprecedented accuracy. Here I present an overview of the progresses made in the study of the interactions between microorganisms and plants or plant-like organisms, focusing on the role of CLSM for the understanding of their significance. I critically discuss risks of misinterpretation when procedures of CLSM are not properly optimized. I also review approaches for quantitative and statistical analyses of CLSM images, the combination with other molecular and microscopic methods, and suggest the re-evaluation of natural autofluorescence. In this review, technical aspects were coupled with scientific outcomes, to facilitate the readers in identifying possible CLSM applications in their research or to expand their existing potential. The scope of this review is to highlight the importance of confocal microscopy in the study of plant-microbe interactions and also to be an inspiration for integrating microscopy with molecular techniques in future researches of microbial ecology.
Collapse
Affiliation(s)
- Massimiliano Cardinale
- Institute of Plant Sciences, University of GrazGraz, Austria
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| |
Collapse
|
22
|
Garbeva P, Hordijk C, Gerards S, de Boer W. Volatiles produced by the mycophagous soil bacteriumCollimonas. FEMS Microbiol Ecol 2013; 87:639-49. [DOI: 10.1111/1574-6941.12252] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Paolina Garbeva
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Cornelis Hordijk
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Saskia Gerards
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Wietse de Boer
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Department of Soil Quality; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
23
|
A high-throughput screening assay to identify bacterial antagonists againstFusarium verticillioides. J Basic Microbiol 2013; 54 Suppl 1:S125-33. [DOI: 10.1002/jobm.201200594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/24/2013] [Indexed: 11/07/2022]
|
24
|
Cordero-Ramírez JD, López-Rivera R, Figueroa-Lopez AM, Mancera-López ME, Martínez-Álvarez JC, Apodaca-Sánchez MÁ, Maldonado-Mendoza IE. Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f. sp. radicis-lycopersici. J Basic Microbiol 2013; 53:838-47. [PMID: 23417777 DOI: 10.1002/jobm.201200128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/03/2012] [Indexed: 11/09/2022]
Abstract
Sinaloa state accounts for 23% of Mexico's tomato production. One constraint on this important crop is the Fusarium crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, which has been reported to reduce crop yield by up to 50%. In this study, we set out to identify bacterial populations which could be used to control this disease through natural antagonism. Five tomato rhizospheric soil samples were collected, dried for 1-week, and homogenized. Sub-samples were used to prepare an aqueous solution used to isolate microorganisms in pure cultures. Organisms were purified and grown separately, and used to generate a collection of 705 bacterial isolates. Thirty-four percent from this bank (254 strains) was screened against Forl, finding 27 bacteria displaying in vitro Forl growth inhibition levels from 5% to 60%. These isolates belonged to the genus Bacillus and their 16Sr DNA sequences showed that they are closely related to seven species and they were putatively designated as: B. subtilis, B. cereus, B. amyloliquefaciens, B. licheniformis, B. thuringiensis, B. megaterium, and B. pumilus. One isolate belonged to the genus Acinetobacter. Two B. subtilis isolates (144 and 151) and one B. cereus isolate (171) showed the best antagonistic potential against FCRRT when evaluated on seedlings. Plate and activity assays indicate that these isolates include a diverse repertoire of functional antagonistic traits that might explain their ability to control FCRRT. Moreover, bacteria showed partial hemolytic activity, and future research will be directed at ensuring that their application will be not harmful for humans and effective against Forl in greenhouse or field conditions.
Collapse
Affiliation(s)
- Jesús Damián Cordero-Ramírez
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Sinaloa, Guasave, Sinaloa, Mexico
| | | | | | | | | | | | | |
Collapse
|
25
|
Nion YA, Toyota K. Suppression of Bacterial Wilt and Fusarium Wilt by a Burkholderia nodosa Strain Isolated from Kalimantan Soils, Indonesia. Microbes Environ 2012; 23:134-41. [PMID: 21558699 DOI: 10.1264/jsme2.23.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A trial was conducted to suppress bacterial wilt of tomato (BWT) caused by Ralstonia solanacearum using biocontrol agents (BCAs) isolated from soils in Kalimantan, Indonesia. Five isolates were selected from 270 isolates as better performing BCAs through screening four times using a pumice medium. The isolates selected were identified as Burkholderia nodosa, Burkholderia sacchari, Burkholderia pyrrocinia and Burkholderia terricola according to 16S rDNA sequences, fatty acid composition and carbon source utilization patterns. Among them, B. nodosa G5.2.rif1 had significant suppressive effects on Fusarium wilt of tomato (FWT) and spinach (FWS) as well as BWT. When B. nodosa G5.2rif1 was inoculated into a pumice medium in combination with sucrose, it showed even more stable disease suppression for BWT, but not for FWS. This suppression was considered to mainly occur through competition for nutrients. In two times greenhouse experiments for BWT using pots comparable in size to those used commercially, B. nodosa G5.2rif1 significantly suppressed the disease index by 33-79%, with no inhibitory effects on the growth, yield and quality of tomatoes.
Collapse
Affiliation(s)
- Yanetri Asi Nion
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | | |
Collapse
|
26
|
Pseudomonas and other Microbes in Disease-Suppressive Soils. SUSTAINABLE AGRICULTURE REVIEWS 2012. [DOI: 10.1007/978-94-007-4113-3_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 2011; 77:5412-9. [PMID: 21685161 DOI: 10.1128/aem.00320-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility is one of the most important traits for efficient rhizosphere colonization by Pseudomonas fluorescens F113rif (F113). In this bacterium, motility is a polygenic trait that is repressed by at least three independent pathways, including the Gac posttranscriptional system, the Wsp chemotaxis-like pathway, and the SadB pathway. Here we show that the kinB gene, which encodes a signal transduction protein that together with AlgB has been implicated in alginate production, participates in swimming motility repression through the Gac pathway, acting downstream of the GacAS two-component system. Gac mutants are impaired in secondary metabolite production and are unsuitable as biocontrol agents. However, the kinB mutant and a triple mutant affected in kinB, sadB, and wspR (KSW) possess a wild-type phenotype for secondary metabolism. The KSW strain is hypermotile and more competitive for rhizosphere colonization than the wild-type strain. We have compared the biocontrol activity of KSW with those of the wild-type strain and a phenotypic variant (F113v35 [V35]) which is hypermotile and hypercompetitive but is affected in secondary metabolism since it harbors a gacS mutation. Biocontrol experiments in the Fusarium oxysporum f. sp. radicis-lycopersici/Lycopersicum esculentum (tomato) and Phytophthora cactorum/Fragaria vesca (strawberry) pathosystems have shown that the three strains possess biocontrol activity. Biocontrol activity was consistently lower for V35, indicating that the production of secondary metabolites was the most important trait for biocontrol. Strain KSW showed improved biocontrol compared with the wild-type strain, indicating that an increase in competitive colonization ability resulted in improved biocontrol and that the rational design of biocontrol agents by mutation is feasible.
Collapse
|
28
|
Leveau JHJ, Uroz S, de Boer W. The bacterial genusCollimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 2010; 12:281-92. [DOI: 10.1111/j.1462-2920.2009.02010.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Affiliation(s)
- Ben Lugtenberg
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| | - Faina Kamilova
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| |
Collapse
|
30
|
Höppener-Ogawa S, Leveau JHJ, Hundscheid MPJ, van Veen JA, de Boer W. Impact of Collimonas bacteria on community composition of soil fungi. Environ Microbiol 2009; 11:1444-52. [PMID: 19260938 DOI: 10.1111/j.1462-2920.2009.01872.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil that had a low abundance of indigenous collimonads. Development of fungal communities was stimulated by addition of cellulose or by introducing plants (Plantago lanceolata). Community composition of total fungi in soil and rhizosphere and of arbuscular mycorrhizal fungi in roots was examined by PCR-DGGE. The introduction of collimonads altered the composition of all fungal communities studied but had no effects on fungal biomass increase, cellulose degrading activity or plant performance. The most likely explanation for these results is that differences in sensitivity of fungal species to the presence of collimonads result in competitive replacement of species. The lab and greenhouse experiments were complemented with a field experiment. Mesh bags containing sterile sand with or without collimonads were buried in an ex-arable field and a forest. The presence of collimonads had an effect on the composition of fungi invading these bags in the ex-arable site but not in the forest site.
Collapse
Affiliation(s)
- Sachie Höppener-Ogawa
- Centre for Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Heteren, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Kamilova F, Lamers G, Lugtenberg B. Biocontrol strainPseudomonas fluorescensWCS365 inhibits germination ofFusarium oxysporumspores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 2008; 10:2455-61. [DOI: 10.1111/j.1462-2920.2008.01638.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Fritsche K, de Boer W, Gerards S, van den Berg M, van Veen JA, Leveau JHJ. Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiol Ecol 2008; 66:123-35. [PMID: 18671744 DOI: 10.1111/j.1574-6941.2008.00547.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Through a combinatorial approach of plasposon mutagenesis, genome mining, and heterologous expression, we identified genes contributing to the chitinolytic phenotype of bacterium Collimonas fungivorans Ter331. One of five mutants with abolished ability to hydrolyze colloidal chitin carried its plasposon in the chiI gene coding for an extracellular endochitinase. Two mutants were affected in the promoter of chiP-II coding for an outer-membrane transporter of chitooligosaccharides. The remaining two mutations were linked to chitobiose/N-acetylglucosamine uptake. Thus, our model for the Collimonas chitinolytic system assumes a positive feedback regulation of chitinase activity by chitin degradation products. A second chitinase gene, chiII, coded for an exochitinase that preferentially released chitobiose from chitin analogs. Genes hexI and hexII showed coding resemblance to N-acetylglucosaminidases, and the activity of purified HexI protein towards chitin analogs suggested its role in converting chitobiose to N-acetylglucosamine. The hexI gene clustered with chiI, chiII, and chiP-II in one locus, while chitobiose/N-acetylglucosamine uptake genes colocalized in another. Both loci contained genes for conversion of N-acetylglucosamine to fructose-6-phosphate, confirming that C. fungivorans Ter331 features a complete chitin pathway. No link could be established between chitinolysis and antifungal activity of C. fungivorans Ter331, suggesting that the bacterium's reported antagonism towards fungi relies on other mechanisms.
Collapse
Affiliation(s)
- Kathrin Fritsche
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientific research (NWO), EET, the European Commission and INTAS.
Collapse
|
34
|
Mela F, Fritsche K, Boersma H, van Elsas JD, Bartels D, Meyer F, de Boer W, van Veen JA, Leveau JHJ. Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol Ecol 2008; 66:45-62. [PMID: 18355297 DOI: 10.1111/j.1574-6941.2008.00472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Plasmid pTer331 from the bacterium Collimonas fungivorans Ter331 is a new member of the pIPO2/pSB102 family of environmental plasmids. The 40 457-bp sequence of pTer331 codes for 44 putative ORFs, most of which represent genes involved in replication, partitioning and transfer of the plasmid. We confirmed that pTer331 is stably maintained in its native host. Deletion analysis identified a mini-replicon capable of replicating autonomously in Escherichia coli and Pseudomonas putida. Furthermore, plasmid pTer331 was able to mobilize and retromobilize IncQ plasmid pSM1890 at typical rates of 10(-4) and 10(-8), respectively. Analysis of the 91% DNA sequence identity between pTer331 and pIPO2 revealed functional conservation of coding sequences, the deletion of DNA fragments flanked by short direct repeats (DR), and sequence preservation of long DRs. In addition, we experimentally established that pTer331 has no obvious contribution in several of the phenotypes that are characteristic of its host C. fungivorans Ter331, including the ability to efficiently colonize plant roots. Based on our findings, we hypothesize that cryptic plasmids such as pTer331 and pIPO2 might not confer an individual advantage to bacteria, but, due to their broad-host-range and ability to retromobilize, benefit bacterial populations by accelerating the intracommunal dissemination of the mobile gene pool.
Collapse
Affiliation(s)
- Francesca Mela
- Centre for Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Heteren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Kamilova F, Leveau JHJ, Lugtenberg B. Collimonas fungivorans, an unpredictedin vitrobut efficientin vivobiocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 2007. [DOI: 10.1111/j.1462-2920.2007.01348.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|