1
|
Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. Biol Rev Camb Philos Soc 2024; 99:622-652. [PMID: 38105542 DOI: 10.1111/brv.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
2
|
Rotterová J, Pánek T, Salomaki ED, Kotyk M, Táborský P, Kolísko M, Čepička I. Single cell transcriptomics reveals UAR codon reassignment in Palmarella salina (Metopida, Armophorea) and confirms Armophorida belongs to APM clade. Mol Phylogenet Evol 2024; 191:107991. [PMID: 38092322 DOI: 10.1016/j.ympev.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.
Collapse
Affiliation(s)
- Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic; Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR, USA.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic.
| |
Collapse
|
3
|
Abstract
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; .,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
4
|
Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, Eliáš M. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 2017; 15:8. [PMID: 28193262 PMCID: PMC5304391 DOI: 10.1186/s12915-017-0353-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Departures from the standard genetic code in eukaryotic nuclear genomes are known for only a handful of lineages and only a few genetic code variants seem to exist outside the ciliates, the most creative group in this regard. Most frequent code modifications entail reassignment of the UAG and UAA codons, with evidence for at least 13 independent cases of a coordinated change in the meaning of both codons. However, no change affecting each of the two codons separately has been documented, suggesting the existence of underlying evolutionary or mechanistic constraints. RESULTS Here, we present the discovery of two new variants of the nuclear genetic code, in which UAG is translated as an amino acid while UAA is kept as a termination codon (along with UGA). The first variant occurs in an organism noticed in a (meta)transcriptome from the heteropteran Lygus hesperus and demonstrated to be a novel insect-dwelling member of Rhizaria (specifically Sainouroidea). This first documented case of a rhizarian with a non-canonical genetic code employs UAG to encode leucine and represents an unprecedented change among nuclear codon reassignments. The second code variant was found in the recently described anaerobic flagellate Iotanema spirale (Metamonada: Fornicata). Analyses of transcriptomic data revealed that I. spirale uses UAG to encode glutamine, similarly to the most common variant of a non-canonical code known from several unrelated eukaryotic groups, including hexamitin diplomonads (also a lineage of fornicates). However, in these organisms, UAA also encodes glutamine, whereas it is the primary termination codon in I. spirale. Along with phylogenetic evidence for distant relationship of I. spirale and hexamitins, this indicates two independent genetic code changes in fornicates. CONCLUSIONS Our study documents, for the first time, that evolutionary changes of the meaning of UAG and UAA codons in nuclear genomes can be decoupled and that the interpretation of the two codons by the cytoplasmic translation apparatus is mechanistically separable. The latter conclusion has interesting implications for possibilities of genetic code engineering in eukaryotes. We also present a newly developed generally applicable phylogeny-informed method for inferring the meaning of reassigned codons.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
5
|
Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K. High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem 2011; 286:19446-58. [PMID: 21460211 DOI: 10.1074/jbc.m110.216655] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The complete amino acid sequence of a lectin from the green alga Boodlea coacta (BCA), which was determined by a combination of Edman degradation of its peptide fragments and cDNA cloning, revealed the following: 1) B. coacta used a noncanonical genetic code (where TAA and TAG codons encode glutamine rather than a translation termination), and 2) BCA consisted of three internal tandem-repeated domains, each of which contains the sequence motif similar to the carbohydrate-binding site of Galanthus nivalis agglutinin-related lectins. Carbohydrate binding specificity of BCA was examined by a centrifugal ultrafiltration-HPLC assay using 42 pyridylaminated oligosaccharides. BCA bound to high mannose-type N-glycans but not to the complex-type, hybrid-type core structure of N-glycans or oligosaccharides from glycolipids. This lectin had exclusive specificity for α1-2-linked mannose at the nonreducing terminus. The binding activity was enhanced as the number of terminal α1-2-linked mannose substitutions increased. Mannobiose, mannotriose, and mannopentaose were incapable of binding to BCA. Thus, BCA preferentially recognized the nonreducing terminal α1-2-mannose cluster as a primary target. As predicted from carbohydrate-binding propensity, this lectin inhibited the HIV-1 entry into the host cells at a half-maximal effective concentration of 8.2 nm. A high association constant (3.71 × 10(8) M(-1)) of BCA with the HIV envelope glycoprotein gp120 was demonstrated by surface plasmon resonance analysis. Moreover, BCA showed the potent anti-influenza activity by directly binding to viral envelope hemagglutinin against various strains, including a clinical isolate of pandemic H1N1-2009 virus, revealing its potential as an antiviral reagent.
Collapse
Affiliation(s)
- Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, Asaminami, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Cocquyt E, Gile GH, Leliaert F, Verbruggen H, Keeling PJ, De Clerck O. Complex phylogenetic distribution of a non-canonical genetic code in green algae. BMC Evol Biol 2010; 10:327. [PMID: 20977766 PMCID: PMC2984419 DOI: 10.1186/1471-2148-10-327] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A non-canonical nuclear genetic code, in which TAG and TAA have been reassigned from stop codons to glutamine, has evolved independently in several eukaryotic lineages, including the ulvophycean green algal orders Dasycladales and Cladophorales. To study the phylogenetic distribution of the standard and non-canonical genetic codes, we generated sequence data of a representative set of ulvophycean green algae and used a robust green algal phylogeny to evaluate different evolutionary scenarios that may account for the origin of the non-canonical code. RESULTS This study demonstrates that the Dasycladales and Cladophorales share this alternative genetic code with the related order Trentepohliales and the genus Blastophysa, but not with the Bryopsidales, which is sister to the Dasycladales. This complex phylogenetic distribution whereby all but one representative of a single natural lineage possesses an identical deviant genetic code is unique. CONCLUSIONS We compare different evolutionary scenarios for the complex phylogenetic distribution of this non-canonical genetic code. A single transition to the non-canonical code followed by a reversal to the canonical code in the Bryopsidales is highly improbable due to the profound genetic changes that coincide with codon reassignment. Multiple independent gains of the non-canonical code, as hypothesized for ciliates, are also unlikely because the same deviant code has evolved in all lineages. Instead we favor a stepwise acquisition model, congruent with the ambiguous intermediate model, whereby the non-canonical code observed in these green algal orders has a single origin. We suggest that the final steps from an ambiguous intermediate situation to a non-canonical code have been completed in the Trentepohliales, Dasycladales, Cladophorales and Blastophysa but not in the Bryopsidales. We hypothesize that in the latter lineage an initial stage characterized by translational ambiguity was not followed by final reassignment of both stop codons to glutamine. Instead the standard code was retained by the disappearance of the ambiguously decoding tRNAs from the genome. We correlate the emergence of a non-canonical genetic code in the Ulvophyceae to their multinucleate nature.
Collapse
Affiliation(s)
- Ellen Cocquyt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Noda S, Hongoh Y, Sato T, Ohkuma M. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 2009; 9:158. [PMID: 19586555 PMCID: PMC2717939 DOI: 10.1186/1471-2148-9-158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 07/09/2009] [Indexed: 12/03/2022] Open
Abstract
Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a reservoir of diverse bacteria for associations with the protist cells. The similar morphologies are considered a result of evolutionary convergence. Despite the complicated evolutionary history, the host-symbiont relationships are mutually specific, suggesting their cospeciations at the protist genus level with only occasional replacements.
Collapse
Affiliation(s)
- Satoko Noda
- Ecomolecular Biorecycling Science Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
8
|
Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T. Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc Biol Sci 2009; 276:239-45. [PMID: 18812290 DOI: 10.1098/rspb.2008.1094] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cryptocercus cockroaches and lower termites harbour obligate, diverse and unique symbiotic cellulolytic flagellates in their hindgut that are considered critical in the development of social behaviour in their hosts. However, there has been controversy concerning the origin of these symbiotic flagellates. Here, molecular sequences encoding small subunit rRNA and glyceraldehyde-3-phosphate dehydrogenase were identified in the symbiotic flagellates of the order Trichonymphida (phylum Parabasalia) in the gut of Cryptocercus punctulatus and compared phylogenetically to the corresponding species in termites. In each of the monophyletic lineages that represent family-level groups in Trichonymphida, the symbionts of Cryptocercus were robustly sister to those of termites. Together with the recent evidence for the sister-group relationship of the host insects, this first comprehensive study comparing symbiont molecular phylogeny strongly suggests that a set of symbiotic flagellates representative of extant diversity was already established in an ancestor common to Cryptocercus and termites, was vertically transmitted to their offspring, and subsequently became diversified to distinct levels, depending on both the host and the symbiont lineages.
Collapse
Affiliation(s)
- Moriya Ohkuma
- Ecomolecular Biorecycling Science Research Team, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|