1
|
Johnson BJ, Hereward JP, Wilson R, Furlong MJ, Devine GJ. A review of the potential impacts of coastal mosquito control programs on Australian Stingless Bees (Apidae, Meliponini)-likely exposure pathways and lessons learned from studies on honey bees. ENVIRONMENTAL ENTOMOLOGY 2024; 53:894-907. [PMID: 39373633 DOI: 10.1093/ee/nvae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvicides are the bacterium Bacillus thuringiensis var. israelensis (Bti) and the insect hormone mimic methoprene (as S-methoprene). Each has a unique mode of action that could present a risk to stingless bees and other pollinators. Herein, we review the potential impacts of these larvicides on native Australian bees and conclude that their influence is mitigated by their low recommended field rates, poor environmental persistence, and the seasonal and intermittent nature of mosquito control applications. Moreover, evidence suggests that stingless bees may display a high physiological tolerance to Bti similar to that observed in honey bees (Apis mellifera), whose interactions with B. thuringiensis-based biopesticides are widely reported. In summary, neither Bti or methoprene is likely to pose a significant risk to the health of stingless bees or their nests. However, current knowledge is limited by regulatory testing requirements that only require the use of honey bees as toxicological models. To bridge this gap, we suggest that regulatory testing is expanded to include stingless bees and other nontarget insects. This is imperative for improving our understanding of the potential risks that these and other pesticides may pose to native pollinator conservation.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James P Hereward
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Rachele Wilson
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Michael J Furlong
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
2
|
Miyazaki M, Asakura M, Ide T, Hayakawa T. Random Mutational Analysis Targeting Residue K 155 within the Transmembrane β-Hairpin of the Mosquitocidal Mpp46Ab Toxin. BIOLOGY 2023; 12:1481. [PMID: 38132307 PMCID: PMC10741074 DOI: 10.3390/biology12121481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane β-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane β-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab.
Collapse
Affiliation(s)
| | | | | | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (M.M.); (M.A.); (T.I.)
| |
Collapse
|
3
|
Bacillus thuringiensis Cyt Proteins as Enablers of Activity of Cry and Tpp Toxins against Aedes albopictus. Toxins (Basel) 2023; 15:toxins15030211. [PMID: 36977103 PMCID: PMC10054650 DOI: 10.3390/toxins15030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.
Collapse
|
4
|
Proteomic Response of Aedes aegypti Larvae to Silver/Silver Chloride Nanoparticles Synthesized Using Bacillus thuringiensis subsp. israelensis Metabolites. INSECTS 2022; 13:insects13070641. [PMID: 35886817 PMCID: PMC9323952 DOI: 10.3390/insects13070641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Aedes aegypti is a vector of important mosquito-borne diseases. Green synthesized nanoparticles (NPs) have been used to control the larvae of mosquitoes including A. aegypti. However, the molecular responses of A. aegypti larvae to green synthesized NPs remain unexplored. This work analyzed protein expression in A. aegypti larvae in response to treatment using green synthesized silver/silver chloride nanoparticles (Ag/AgCl NPs) based on two-dimensional polyacrylamide gel electrophoresis. Fifteen differentially expressed protein spots were selected for identification using mass spectrometry. The results showed that the six upregulated proteins in A. aegypti larvae responsible for green synthesized Ag/AgCl NP treatment were involved in mitochondrial dysfunction, DNA and protein damage, inhibition of cell proliferation, and cell apoptosis, implying the modes of actions of Ag/AgCl NPs. This finding has provided greater insight into the possible mechanisms of green synthesized Ag/AgCl NPs on the control of A. aegypti larvae. Abstract Silver/silver chloride nanoparticles (Ag/AgCl NPs) are an alternative approach to control the larvae of Aedes aegypti, a vector of mosquito-borne diseases. However, the molecular mechanisms of Ag/AgCl NPs to A. aegypti have not been reported. In this work, Ag/AgCl NPs were synthesized using supernatant, mixed toxins from Bacillus thuringiensis subsp. israelensis (Bti), and heterologously expressed Cry4Aa and Cry4Ba toxins. The images from scanning electron microscopy revealed that the Ag/AgCl NPs were spherical in shape with a size range of 25–100 nm. The larvicidal activity against A. aegypti larvae revealed that the Ag/AgCl NPs synthesized using the supernatant of Bti exhibited higher toxicity (LC50 = 0.133 μg/mL) than the Ag/AgCl NPs synthesized using insecticidal proteins (LC50 = 0.148–0.217 μg/mL). The proteomic response to Ag/AgCl NPs synthesized using the supernatant of Bti in A. aegypti larvae was compared to the ddH2O-treated control. Two-dimensional gel electrophoresis analysis revealed 110 differentially expressed proteins, of which 15 were selected for identification using mass spectrometry. Six upregulated proteins (myosin I heavy chain, heat shock protein 70, the F0F1-type ATP synthase beta subunit, methyltransferase, protein kinase, and condensin complex subunit 3) that responded to Ag/AgCl NP treatment in A. aegypti were reported for NP treatments in different organisms. These results suggested that possible mechanisms of action of Ag/AgCl NPs on A. aegypti larvae are: mitochondrial dysfunction, DNA and protein damage, inhibition of cell proliferation, and cell apoptosis. The findings from this work provide greater insight into the action of green synthesized Ag/AgCl NPs on the control of A. aegypti larvae.
Collapse
|
5
|
Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins (Basel) 2020; 12:toxins12120773. [PMID: 33291447 PMCID: PMC7762171 DOI: 10.3390/toxins12120773] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.
Collapse
|
6
|
Bolotin A, Quinquis B, Roume H, Gohar M, Lereclus D, Sorokin A. Long inverted repeats around the chromosome replication terminus in the model strain Bacillus thuringiensis serovar israelensis BGSC 4Q7. Microb Genom 2020; 6. [PMID: 33180015 PMCID: PMC8116677 DOI: 10.1099/mgen.0.000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used natural biopesticide against mosquito larvae worldwide. Its lineage has been actively studied and a plasmid-free strain, B. thuringiensis serovar israelensis BGSC 4Q7 (4Q7), has been produced. Previous sequencing of the genome of this strain has revealed the persistent presence of a 235 kb extrachromosomal element, pBtic235, which has been shown to be an inducible prophage, although three putative chromosomal prophages have been lost. Moreover, a 492 kb region, potentially including the standard replication terminus, has also been deleted in the 4Q7 strain, indicating an absence of essential genes in this area. We reanalysed the genome coverage distribution of reads for the previously sequenced variant strain, and sequenced two independently maintained samples of the 4Q7 strain. A 553 kb area, close to the 492 kb deletion, was found to be duplicated. This duplication presumably restored the equal sizes of the replichores, and a balanced functioning of replication termination. An analysis of genome assembly graphs revealed a transient association of the host chromosome with the pBtic235 element. This association may play a functional role in the replication of the bacterial chromosome, and the termination of this process in particular. The genome-restructuring events detected may modify the genetic status of cytotoxic or haemolytic toxins, potentially influencing strain virulence. Twelve of the single-nucleotide variants identified in 4Q7 were probably due to the procedure used for strain construction or were present in the precursor of this strain. No sequence variants were found in pBtic235, but the distribution of the corresponding 4Q7 reads indicates a significant difference from counterparts in natural B. thuringiensis serovar israelensis strains, suggesting a duplication or over-replication in 4Q7. Thus, the 4Q7 strain is not a pure plasmid-less offshoot, but a highly genetically modified derivative of its natural ancestor. In addition to potentially influencing virulence, genome-restructuring events can modify the replication termination machinery. These findings have potential implications for the conclusions of virulence studies on 4Q7 as a model, but they also raise interesting fundamental questions about the functioning of the Bacillus genome.
Collapse
Affiliation(s)
- Alexander Bolotin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Benoit Quinquis
- MGP, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Hugo Roume
- MGP, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Michel Gohar
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
- *Correspondence: Alexei Sorokin,
| |
Collapse
|
7
|
Ursino E, Albertini AM, Fiorentino G, Gabrieli P, Scoffone VC, Pellegrini A, Gasperi G, Di Cosimo A, Barbieri G. Bacillus subtilis as a host for mosquitocidal toxins production. Microb Biotechnol 2020; 13:1972-1982. [PMID: 32864888 PMCID: PMC7533320 DOI: 10.1111/1751-7915.13648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aedes albopictus transmits several arboviral infections. In the absence of vaccines, control of mosquito populations is the only strategy to prevent vector-borne diseases. As part of the search for novel, biological and environmentally friendly strategies for vector control, the isolation of new bacterial species with mosquitocidal activity represents a promising approach. However, new bacterial isolates may be difficult to grow and genetically manipulate. To overcome these limits, here we set up a system allowing the expression of mosquitocidal bacterial toxins in the well-known genetic background of Bacillus subtilis. As a proof of this concept, the ability of B. subtilis to express individual or combinations of toxins of Bacillus thuringiensis israelensis (Bti) was studied. Different expression systems in which toxin gene expression was driven by IPTG-inducible, auto-inducible or toxin gene-specific promoters were developed. The larvicidal activity of the resulting B. subtilis strains against second-instar Ae. albopictus larvae allowed studying the activity of individual toxins or the synergistic interaction among Cry and Cyt toxins. The expression systems here presented lay the foundation for a better improved system to be used in the future to characterize the larvicidal activity of toxin genes from new environmental isolates.
Collapse
Affiliation(s)
- Emanuela Ursino
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | | | - Giulia Fiorentino
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Paolo Gabrieli
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
- Present address:
Department of BiosciencesUniversità degli Studi di MilanoMilanoItaly
| | | | - Angelica Pellegrini
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Giuliano Gasperi
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Alessandro Di Cosimo
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| | - Giulia Barbieri
- Department of Biology and BiotechnologyUniversità degli Studi di PaviaPaviaItaly
| |
Collapse
|
8
|
Valtierra-de-Luis D, Villanueva M, Lai L, Williams T, Caballero P. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Bacillus thuringiensis ser. israelensis, for the Control of Aedes aegypti Larvae. Toxins (Basel) 2020; 12:toxins12060355. [PMID: 32485828 PMCID: PMC7354544 DOI: 10.3390/toxins12060355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned from the commercial larvicide VectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.
Collapse
Affiliation(s)
- Daniel Valtierra-de-Luis
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | - Maite Villanueva
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
| | - Liliana Lai
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | | | - Primitivo Caballero
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
- Institute for Multidisciplinary Applied Biology Research (IMAB), Universidad Pública de Navarra, 31006 Mutilva, Spain
- Correspondence:
| |
Collapse
|
9
|
Derua YA, Kahindi SC, Mosha FW, Kweka EJ, Atieli HE, Zhou G, Lee MC, Githeko AK, Yan G. Susceptibility of Anopheles gambiae complex mosquitoes to microbial larvicides in diverse ecological settings in western Kenya. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:220-227. [PMID: 30628101 PMCID: PMC6995353 DOI: 10.1111/mve.12353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/20/2018] [Accepted: 11/01/2018] [Indexed: 05/26/2023]
Abstract
The microbial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (Bacillales: Bacillaceae) are well known for their efficacy and safety in mosquito control. In order to assess their potential value in future mosquito control strategies in western Kenya, the current study tested the susceptibility of five populations of Anopheles gambiae complex mosquitoes (Diptera: Culicidae), collected from five diverse ecological sites in this area, to Bti and Bs under laboratory conditions. In each population, bioassays were conducted with eight concentrations of larvicide (Bti/Bs) in four replicates and were repeated on three separate days. Larval mortality was recorded at 24 h or 48 h after the application of larvicide and subjected to probit analysis. A total of 2400 An. gambiae complex larvae from each population were tested for their susceptibility to Bti and Bs. The mean (± standard error of the mean, SEM) lethal concentration values of Bti required to achieve 50% and 95% larval mortality (LC50 and LC95 ) across the five populations were 0.062 (± 0.005) mg/L and 0.797 (± 0.087) mg/L, respectively. Corresponding mean (± SEM) values for Bs were 0.058 (± 0.005) mg/L and 0.451 (± 0.053) mg/L, respectively. Statistical analysis indicated that the five populations of An. gambiae complex mosquitoes tested were fully susceptible to Bti and Bs, and there was no significant variation in susceptibility among the tested populations.
Collapse
Affiliation(s)
- Y A Derua
- Department of Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tumaini University Makumira, Moshi, Tanzania
- Department of Research Programmes, National Institute for Medical Research, Amani Research Centre, Tanga, Tanzania
| | - S C Kahindi
- Department of Zoology, School of Pure and Applied Sciences, Pwani University, Kilifi, Kenya
| | - F W Mosha
- Department of Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tumaini University Makumira, Moshi, Tanzania
| | - E J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - H E Atieli
- Department of Public Health, Maseno University, Kisumu, Kenya
| | - G Zhou
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| | - M-C Lee
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| | - A K Githeko
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - G Yan
- Programme in Public Health, College of Health Sciences, University of California Irvine, Irvine, CA, U.S.A
| |
Collapse
|
10
|
Florez AM, Suarez-Barrera MO, Morales GM, Rivera KV, Orduz S, Ochoa R, Guerra D, Muskus C. Toxic Activity, Molecular Modeling and Docking Simulations of Bacillus thuringiensis Cry11 Toxin Variants Obtained via DNA Shuffling. Front Microbiol 2018; 9:2461. [PMID: 30386315 PMCID: PMC6199390 DOI: 10.3389/fmicb.2018.02461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
The Cry11 family belongs to a large group of δ-endotoxins that share three distinct structural domains. Among the dipteran-active toxins referred to as three-domain Cry11 toxins, the Cry11Aa protein from Bacillus thuringiensis subsp. israelensis (Bti) has been the most extensively studied. Despite the potential of Bti as an effective biological control agent, the understanding of Cry11 toxins remains incomplete. In this study, five Cry11 variants obtained via DNA shuffling displayed toxic activity against Aedes aegypti and Culex quinquefasciatus. Three of these Cry11 variants (8, 23, and 79) were characterized via 3D modeling and analysis of docking with ALP1. The relevant mutations in these variants, such as deletions, insertions and point mutations, are discussed in relation to their structural domains, toxic activities and toxin-receptor interactions. Importantly, deletion of the N-terminal segment in domain I was not associated with any change in toxic activity, and domain III exhibited higher sequence variability than domains I and II. Variant 8 exhibited up to 3.78- and 6.09-fold higher toxicity to A. aegypti than Cry11Bb and Cry11Aa, respectively. Importantly, variant 79 showed an α-helix conformation at the C-terminus and formed crystals retaining toxic activity. These findings indicate that five Cry11 variants were preferentially reassembled from the cry11Aa gene during DNA shuffling. The mutations described in loop 2 and loop 3 of domain II provide valuable information regarding the activity of Cry11 toxins against A. aegypti and C. quinquefasciatus larvae and reveal new insights into the application of directed evolution strategies to study the genetic variability of specific domains in cry11 family genes.
Collapse
Affiliation(s)
- Alvaro Mauricio Florez
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Microbiomas Foundation, Chía, Colombia
| | - Miguel Orlando Suarez-Barrera
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia.,Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Gloria M Morales
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia
| | - Karen Viviana Rivera
- Laboratorio de Biología Molecular y Biotecnología, Universidad de Santander, Bucaramanga, Colombia
| | - Sergio Orduz
- Grupo Biologa Funcional, Laboratorio de Prospección y Diseo de Biomoléculas, Escuela de Biociencias, Universidad Nacional, Sede Medellín, Colombia
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| | - Diego Guerra
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Unidad de Biologa Molecular y Computacional-UBMC, Universidad de Antioquía, Medellín, Colombia
| |
Collapse
|
11
|
Using phage display technology to obtain Crybodies active against non-target insects. Sci Rep 2017; 7:14922. [PMID: 29097681 PMCID: PMC5668233 DOI: 10.1038/s41598-017-09384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are increasingly important in the biological control of insect pests and vectors of human disease. Markets for Bt products and transgenic plants expressing their toxins are driven by their specificity, safety and the move away from chemical control agents. However, the high specificity of Cry toxins can also prove to be a limitation when there is no known Cry toxin active against a particular target. Novel activities can be discovered by screening natural Bt isolates or through modifications of the Cry proteins. Here we demonstrate the use of λ-phage displaying Cry1Aa13 toxin variants modified in domain II loop 2 (Crybodies) to select retargeted toxins. Through biopanning using gut tissue from larvae of the non-target insect Aedes aegypti, we isolated a number of phage for further testing. Two of the overexpressed Cry toxin variants showed significant activity against A. aegypti larvae while another induced mortality at the pupal stage. We present the first report of the use of phage display to identify novel activities toward insects from distant taxonomic Orders and establish this technology based on the use of Crybodies as a powerful tool for developing tailor-made insecticides against new target insects.
Collapse
|
12
|
Characterization of a novel mosquitocidal toxin of Cry50Ba and its potential synergism with other mosquitocidal toxins. Toxicon 2017; 138:165-168. [DOI: 10.1016/j.toxicon.2017.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022]
|
13
|
Brown LD, Thompson GA, Hillyer JF. Transstadial transmission of larval hemocoelic infection negatively affects development and adult female longevity in the mosquito Anopheles gambiae. J Invertebr Pathol 2017; 151:21-31. [PMID: 29111355 DOI: 10.1016/j.jip.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
During all life stages, mosquitoes are exposed to pathogens, and employ an immune system to resist or limit infection. Although much attention has been paid to how adult mosquitoes fight infection, little is known about how an infection during the larval stage affects the biology of the resultant adult. In this study, we investigated whether a bacterial infection in the hemocoel of the African malaria mosquito, Anopheles gambiae, is transstadially transmitted from larvae to adults (both females and males), and whether immune stimulation in the hemocoel as a larva alters development or biological traits of the adult. Specifically, larvae were injected in the hemocoel with either fluorescent microspheres or Escherichia coli, and the following traits were examined: transstadial transmission, larval development to adulthood, adult survival, and adult body size. Our results show that transstadial transmission of hemocoel contents occurs from larvae to pupae and from pupae to adults, but that bacterial prevalence and intensity varies with age. Injury, immune stimulation or infection decreases the proportion of larvae that undergo pupation and eclosion, infection decreases the longevity of adult females, and treatment has complex effects on the body size of the resultant adults. The present study adds larval hemocoelic infection to the known non-genetic factors that reduce overall fitness by negatively affecting development and adult biological traits that influence mosquito vector competence.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Grayson A Thompson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. Parasit Vectors 2017; 10:367. [PMID: 28764812 PMCID: PMC5539753 DOI: 10.1186/s13071-017-2302-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The immune system of adult mosquitoes has received significant attention because of the ability of females to vector disease-causing pathogens while ingesting blood meals. However, few studies have focused on the immune system of larvae, which, we hypothesize, is highly robust due to the high density and diversity of microorganisms that larvae encounter in their aquatic environments and the strong selection pressures at work in the larval stage to ensure survival to reproductive maturity. Here, we surveyed a broad range of cellular and humoral immune parameters in larvae of the malaria mosquito, Anopheles gambiae, and compared their potency to that of newly-emerged adults and older adults. RESULTS We found that larvae kill bacteria in their hemocoel with equal or greater efficiency compared to newly-emerged adults, and that antibacterial ability declines further with adult age, indicative of senescence. This phenotype correlates with more circulating hemocytes and a differing spatial arrangement of sessile hemocytes in larvae relative to adults, as well as with the individual hemocytes of adults carrying a greater phagocytic burden. The hemolymph of larvae also possesses markedly stronger antibacterial lytic and melanization activity than the hemolymph of adults. Finally, infection induces a stronger transcriptional upregulation of immunity genes in larvae than in adults, including differences in the immunity genes that are regulated. CONCLUSIONS These results demonstrate that immunity is strongest in larvae and declines after metamorphosis and with adult age, and suggest that adaptive decoupling, or the independent evolution of larval and adult traits made possible by metamorphosis, has occurred in the mosquito lineage.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
15
|
Hayakawa T, Sakakibara A, Ueda S, Azuma Y, Ide T, Takebe S. Cry46Ab from Bacillus thuringiensis TK-E6 is a new mosquitocidal toxin with aerolysin-type architecture. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:100-106. [PMID: 28676354 DOI: 10.1016/j.ibmb.2017.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Cry46Ab is a Cry toxin derived from Bacillus thuringiensis TK-E6. Cry46Ab is not significantly homologous to other mosquitocidal Cry or Cyt toxins and is classified as an aerolysin-type pore-forming toxin based on structural similarity. In this study, the potency of Cry46Ab was assessed for its potential application to mosquito control. A synthetic Cry46Ab gene, cry46Ab-S1, was designed to produce recombinant Cry46Ab as a glutathione-S-transferase fusion in Escherichia coli. Recombinant Cry46Ab showed apparent toxicity to Culex pipiens larvae, with a 50% lethal dose of 1.02 μg/ml. In an artificial lipid bilayer, Cry46Ab activated by trypsin caused typical current transitions between open and closed states, suggesting it functions as a pore-forming toxin similar to other Cry and Cyt toxins. The single-channel conductance was 103.3 ± 4.1 pS in 150 mM KCl. Co-administration of recombinant Cry46Ab with other mosquitocidal Cry toxins, especially the combination of Cry4Aa and Cry46Ab, resulted in significant synergistic toxicity against C. pipiens larvae. Co-administration of multiple toxins exhibiting different modes of action is believed to prevent the onset of resistance in insects. Our data, taken in consideration with the differences in its structure, suggest that Cry46Ab could be useful in not only reducing resistance levels but also improving the insecticidal activity of Bt-based bio-insecticides.
Collapse
Affiliation(s)
- Tohru Hayakawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Akira Sakakibara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sho Ueda
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Japan
| | - Yoshinao Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Japan
| | - Toru Ide
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - So Takebe
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Japan
| |
Collapse
|
16
|
El-kersh TA, Ahmed AM, Al-sheikh YA, Tripet F, Ibrahim MS, Metwalli AAM. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). Parasit Vectors 2016; 9:647. [PMID: 27993165 PMCID: PMC5168711 DOI: 10.1186/s13071-016-1922-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Worldwide, mosquito vectors are transmitting several etiological agents of important human diseases, including malaria, causing millions of deaths every year. In Saudi Arabia, as elsewhere, vector-control is based mostly on chemical insecticides which may be toxic and cause environmental deprivation. Here, to support the development of bio-pesticide alternatives, a study was conducted to identify native Bacillus thuringiensis (Bt) isolates with improved toxicity against the malaria vector, Anopheles gambiae (s.l.). METHODS Sixty-eight Bt isolates were obtained from 300 soil and other samples collected from 16 sites across Saudi Arabia. Bt identification was based on morphological characteristics of colonies, shape of parasporal crystals and biochemical profiles. After characterization of their mosquitocidal activity, larvicidal strains were described through 16S ribosomal DNA gene sequencing, cry, cyt and chi genes PCR-amplification profiles, and SDS-PAGE protein analyses. RESULTS Spherical Bt crystals were predominant amongst the 68 isolates (34%), while irregular, bi-pyramidal and spore-attached crystals were found in 32, 13 and 21% of strains, respectively. LC50 and LC90 bioassays showed that 23/68 isolates were larvicidal, with distinct biochemical activity profiles compared to non-larvicidal Bt strains. Eight larvicidal strains showed larvicidal activity up to 3.4-fold higher (LC50 range: 3.90-7.40 μg/ml) than the reference Bti-H14 strain (LC50 = 13.33 μg/ml). Of these, 6 strains had cry and cyt gene profiles similar to Bti-H14 (cry4Aa, cry4Ba, cry10, cry11, cyt1Aa, cyt1Ab, cyt2Aa). The seventh strain (Bt63) displaying the highest larvicidal activity (LC50 = 3.90 μg/ml) missed the cry4Aa and cyt1Ab genes and had SDS-PAGE protein profiles and spore/crystal sizes distinct from Bti-H14. The eight strain (Bt55) with LC50 of 4.11μg/ml had cry and cyt gene profiles similar to Bti-H14 but gave a chi gene PCR product size of 2027bp. No strains harbouring cry2, cry17 + 27, cry24 + 40, cry25, cry29, cry30, or cyt2Ba were detected. CONCLUSION This study represents the first report of several Saudi indigenous Bt strains with significantly higher larvicidal efficacy against An. gambiae than the reference Bti-H14 strain. The very high toxicity of the Bt63 strain, combined with distinct cry and cyt genes and SDS-PAGE-protein profiles makes it a promising candidate for future applications in mosquito bio-control.
Collapse
Affiliation(s)
- Talaat A. El-kersh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf M. Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yazeed A. Al-sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, ST5 5BG UK
| | - Mohamed S. Ibrahim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. M. Metwalli
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
League GP, Hillyer JF. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol 2016; 14:78. [PMID: 27643786 PMCID: PMC5027632 DOI: 10.1186/s12915-016-0305-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As both larvae and adults, mosquitoes encounter a barrage of immune insults, ranging from microbe-rich communities in larval habitats to ingested blood-borne pathogens in adult blood meals. Given that mosquito adults have evolved an efficient means of eliminating infections in their hemocoel (body cavity) via the coordinated action of their immune and circulatory systems, the goal of the present study was to determine whether such functional integration is also present in larvae. RESULTS By fluorescently labeling hemocytes (immune cells), pericardial cells, and the heart, we discovered that fourth instar larvae, unlike adults, contain segmental hemocytes but lack the periostial hemocytes that surround the ostia (heart valves) in abdominal segments 2-7. Instead, larvae contain an abundance of sessile hemocytes at the tracheal tufts, which are respiratory structures that are unique to larvae, are located in the posterior-most abdominal segment, and surround what in larvae are the sole incurrent openings for hemolymph entry into the heart. Injection of fluorescent immune elicitors and bacteria into the larval hemocoel then showed that tracheal tuft hemocytes mount rapid and robust immune responses against foreign insults. Indeed, green fluorescent protein-labeled Escherichia coli flowing with the hemolymph rapidly aggregate exclusively at the tracheal tufts, where they are killed within 24 h post-infection via both phagocytosis and melanization. CONCLUSION Together, these findings show that the functional integration of the circulatory, respiratory, and immune systems of mosquitoes varies drastically across life stages.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA.
| |
Collapse
|
18
|
Elleuch J, Jaoua S, Darriet F, Chandre F, Tounsi S, Zghal RZ. Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis: Interactions and toxicity mechanism against Aedes aegypti. Toxicon 2015; 104:83-90. [DOI: 10.1016/j.toxicon.2015.07.337] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
|
19
|
League GP, Onuh OC, Hillyer JF. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae. ACTA ACUST UNITED AC 2014; 218:370-80. [PMID: 25524976 DOI: 10.1242/jeb.114942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the malaria mosquito Anopheles gambiae. Using intravital video imaging we show that, unlike the adult heart, the larval heart contracts exclusively in the anterograde direction and does not undergo heartbeat directional reversals. The larval heart contracts 24% slower than the adult heart, and hemolymph travels across the larval dorsal vessel at a velocity that is 68% slower than what is seen in adults. By fluorescently labeling muscle tissue we show that although the general structure of the heart and its ostia are similar across life stages, the heart-associated alary muscles are significantly less robust in larvae. Furthermore, unlike the adult ostia, which are the entry points for hemolymph into the heart, the larval ostia are almost entirely lacking in incurrent function. Instead, hemolymph enters the larval heart through incurrent openings located at the posterior terminus of the heart. These posterior openings are structurally similar across life stages, but in adults have an opposite, excurrent function. Finally, the larval aorta and heart differ significantly in the arrangement of their cardiomyocytes. In summary, this study provides an in-depth developmental comparison of the circulatory system of larval and adult mosquitoes.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ogechukwu C Onuh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
20
|
Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel) 2014; 6:1222-43. [PMID: 24686769 PMCID: PMC4014730 DOI: 10.3390/toxins6041222] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023] Open
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.
Collapse
|
21
|
Ketseoglou I, Bouwer G. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes. Parasit Vectors 2012; 5:220. [PMID: 23036082 PMCID: PMC3480929 DOI: 10.1186/1756-3305-5-220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. FINDINGS There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus CONCLUSIONS PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent's spectrum of activity and potential as a vector control agent.
Collapse
Affiliation(s)
- Irene Ketseoglou
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Gustav Bouwer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
22
|
Santos F, Lopes J, Vilas-Bôas G, Zequi J. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Acta Trop 2012; 122:64-70. [PMID: 22178674 DOI: 10.1016/j.actatropica.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Aedes aegypti (Linnaeus) is the vector of dengue virus in Brazil. Bioinsecticides based on Bacillus thuringiensis have shown satisfactory results in the control of Diptera, due to the production of proteins called Cry and Cyt. The aim of the present study was to select B. thuringiensis isolates carrying the cry and cyt genes, which are efficient in the control of Ae. aegypti. A collection of 27 isolates of B. thuringiensis, derived from various regions in Brazil, was evaluated using selective bioassays against A. aegypti larvae. Of the 27 isolates, five showed 100% larval mortality at a concentration of 0.05 ppm and the toxicity of these isolates in quantitative bioassays did not differ significantly at temperatures of 15, 25 and 35 °C. In addition, these isolates showed statistical differences for the LC50 values only above pH 9, which indicates a maintenance in insecticide potential in a wide range of alkaline pH values. This result is promising, considering that waste treatment reservoirs generally show an acid pH and higher temperatures. These isolates were also evaluated by PCR using specific primers for the genes cry4A, cry4B, cry10A, cry11, cyt1 and cyt2. The analyses demonstrated that all the five isolates showed amplification products for all the studied genes showing four different Cry proteins, besides Cyt proteins. The obtained results of bioassays and PCR demonstrates the great potential for the use of these isolates in controlling populations of Ae. Aegypti and perhaps other species of mosquitoes in a wide range of environments.
Collapse
|
23
|
Zhang W, Crickmore N, George Z, Xie L, He YQ, Li Y, Tang JL, Tian L, Wang X, Fang X. Characterization of a new highly mosquitocidal isolate of Bacillus thuringiensis – An alternative to Bti? J Invertebr Pathol 2012; 109:217-22. [DOI: 10.1016/j.jip.2011.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 11/26/2022]
|
24
|
Zaritsky A, Ben-Dov E, Borovsky D, Boussiba S, Einav M, Gindin G, Horowitz AR, Kolot M, Melnikov O, Mendel Z, Yagil E. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioeng Bugs 2011; 1:341-4. [PMID: 21326834 DOI: 10.4161/bbug.1.5.13087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
Various subspecies (ssp.) of Bacillus thuringiensis (Bt) are considered the best agents known so far to control insects, being highly specific and safe, easily mass produced and with long shelf life.1 The para-crystalline body that is produced during sporulation in the exosporium includes polypeptides named δ-endotoxins, each killing a specific set of insects. The different entomopathogenic toxins of various Bt ssp. can be manipulated genetically in an educated way to construct more efficient transgenic bacteria or plants that express combinations of toxin genes to control pests.2 Joint research projects in our respective laboratories during the last decade demonstrate what can be done by implementing certain ideas using molecular biology with Bt ssp. israelensis (Bti) as a model system. Here, we describe our progress achieved with Gram-negative bacterial species, including cyanobacteria, and some preliminary experiments to form transgenic plants, mainly to control mosquitoes (Diptera), but also a particular Lepidopteran and Coleopteran pest species. In addition, a system is described by which environment-damaging genes can be removed from the recombinants thus alleviating procedures for obtaining permits to release them in nature.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion Universiy of the Negev at Be'er-Sheva, S'de-Boker, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Site-specific recombination in the cyanobacterium Anabaena sp. strain PCC 7120 catalyzed by the integrase of coliphage HK022. J Bacteriol 2009; 191:4458-64. [PMID: 19429625 DOI: 10.1128/jb.00368-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli.
Collapse
|